Searched for: faculty%3A%22Civil%255C%252BEngineering%255C%252Band%255C%252BGeosciences%22
(1 - 8 of 8)
document
Minato, S. (author), Matsuoka, T. (author), Tsuji, T. (author), Draganov, D.S. (author), Hunziker, J.W. (author), Wapenaar, C.P.A. (author)
Crosswell reflection method is a high-resolution seismic imaging method that uses recordings between boreholes. The need for downhole sources is a restrictive factor in its application, for example, to time-lapse surveys. An alternative is to use surface sources in combination with seismic interferometry. Seismic interferometry (SI) could...
journal article 2011
document
Wapenaar, C.P.A. (author), Draganov, D.S. (author), Snieder, R. (author), Campman, X. (author), Verdel, A. (author)
Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain the Green's function between these receivers. For the simple situation of an impulsive plane wave propagating along the x-axis, the crosscorrelation of the responses at two receivers along the x-axis gives the Green's function of the direct wave...
journal article 2010
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Snieder, R. (author), Curtis, A. (author)
In the 1990s, the method of time-reversed acoustics was developed. This method exploits the fact that the acoustic wave equation for a lossless medium is invariant for time reversal. When ultrasonic responses recorded by piezoelectric transducers are reversed in time and fed simultaneously as source signals to the transducers, they focus at the...
journal article 2010
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Snieder, R. (author)
We have analyzed the far-field approximation of the Green's function representation for seismic interferometry. By writing each of the Green's functions involved in the correlation process as a superposition of a direct wave and a scattered wave, the Green's function representation is rewritten as a superposition of four terms. When the...
journal article 2010
document
Wapenaar, C.P.A. (author)
Acoustic, electromagnetic, elastodynamic, poroelastic, and electroseismic waves are all governed by a unified matrix-vector wave equation. The matrices in this equation obey the same symmetry properties for each of these wave phenomena. This implies that the wave vectors for each of these phenomena obey the same reciprocity theorems. By...
journal article 2007
document
Draganov, D.S. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author)
In 1968, Jon Claerbout showed that the reflection response of a 1D acoustic medium can be reconstructed by autocorrelating the transmission response. Since then, several authors have derived relationships for reconstructing Green's functions at the surface, using crosscorrelations of (noise) recordings that were taken at the surface and that...
journal article 2006
document
Wapenaar, C.P.A. (author), Fokkema, J.T. (author)
The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered medium can be synthesized from the...
journal article 2006
document
Snieder, R. (author), Wapenaar, C.P.A. (author), Larner, K. (author)
Seismic interferometry is a technique for estimating the Green's function that accounts for wave propagation between receivers by correlating the waves recorded at these receivers. We present a derivation of this principle based on the method of stationary phase. Although this derivation is intended to be educational, applicable to simple media...
journal article 2006
Searched for: faculty%3A%22Civil%255C%252BEngineering%255C%252Band%255C%252BGeosciences%22
(1 - 8 of 8)