Searched for: subject%3A%22Cell%255C%252BBE%22
(1 - 14 of 14)
document
Peng, Q. (author), Vermolen, F.J. (author), Weihs, D. (author)
Cancer cell migration between different body parts is the driving force behind cancer metastasis, which causes mortality of patients. Migration of cancer cells often proceeds by penetration through narrow cavities in possibly stiff tissues. In our previous work [12], a model for the evolution of cell geometry is developed, and in the current...
book chapter 2023
document
Peng, Q. (author), Vermolen, F.J. (author)
We consider a mathematical model for skin contraction, which is based on solving a momentum balance under the assumptions of isotropy, homogeneity, Hooke's Law, infinitesimal strain theory and point forces exerted by cells. However, point forces, described by Dirac Delta distributions lead to a singular solution, which in many cases may cause...
journal article 2022
document
Egberts, G. (author), Desmoulière, Alexis (author), Vermolen, F.J. (author), van Zuijlen, Paul (author)
We consider a two-dimensional biomorphoelastic model describing post-burn scar contraction. This model describes skin displacement and the development of the effective Eulerian strain in the tissue. Besides these mechanical components, signaling molecules, fibroblasts, myofibroblasts, and collagen also play a significant role in the model. We...
journal article 2022
document
Peng, Q. (author), Vermolen, F.J. (author), Weihs, D. (author)
The phenomenological model for cell shape deformation and cell migration Chen (BMM 17:1429–1450, 2018), Vermolen and Gefen (BMM 12:301–323, 2012), is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are...
journal article 2021
document
Chen, J. (author), Weihs, Daphne (author), Vermolen, F.J. (author)
More than eighty percent of pancreatic cancer involves ductal adenocarcinoma with an abundant desmoplastic extracellular matrix surrounding the solid tumor entity. This aberrant tumor microenvironment facilitates a strong resistance of pancreatic cancer to medication. Although various therapeutic strategies have been reported to be effective...
journal article 2019
document
Chen, J. (author), Weihs, Daphne (author), van Dijk, Marcel (author), Vermolen, F.J. (author)
Cell migration plays an essential role in cancer metastasis. In cancer invasion through confined spaces, cells must undergo extensive deformation, which is a capability related to their metastatic potentials. Here, we simulate the deformation of the cell and nucleus during invasion through a dense, physiological microenvironment by developing...
journal article 2018
document
Chen, J. (author), Weihs, Daphne (author), Vermolen, F.J. (author)
Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the...
journal article 2017
document
Bookholt, F.D. (author), Monsuur, H.N. (author), Gibbs, S. (author), Vermolen, F.J. (author)
In this work, we develop a mathematical formalism based on a 3D in vitro model that is used to simulate the early stages of angiogenesis. The model treats cells as individual entities that are migrating as a result of chemotaxis and durotaxis. The phenotypes used here are endothelial cells that can be distinguished into stalk and tip (leading)...
journal article 2016
document
Vermolen, F.J. (author)
The paper deals with a compilation of several of our modelling studies on particle methods used for simulation of wound healing and tumor growth processes. The paper serves as an introduction of our modelling approaches to researchers with interest in biological cell-based models that use particle-based modelling approaches. The particles that...
journal article 2015
document
Vermolen, F.J. (author), Gefen, A. (author)
A phenomenological model is formulated to model cellular forces on extracellular material. The model is capable of modelling both expansion and contractile forces. This work is based on the assumption of linear elasticity, which allows a superposition argument to arrive at fundamental expressions for cellular forces. It is also shown how the...
journal article 2015
document
Vermolen, F.J. (author), Van der Meijden, R.P. (author), Van Es, M. (author), Gefen, A. (author), Weihs, D. (author)
A phenomenological model is formulated to model the early stages of tumor formation. The model is based on a cell-based formalism, where each cell is represented as a circle or sphere in two-and three dimensional simulations, respectively. The model takes into account constituent cells, such as epithelial cells, tumor cells, and T-cells that...
journal article 2015
document
Vermolen, F.J. (author), Gefen, A. (author)
A phenomenological model for the evolution of shape transition of cells is considered. These transitions are determined by the emission of growth-factors, as well as mechanical interaction if cells are subjected to hard impingement. The originality of this model necessitates a formal treatment of the mathematical model, as well as the...
journal article 2012
document
Vermolen, F.J. (author), Gefen, A. (author)
We consider the movement and viability of individual cells in cell colonies. Cell movement is assumed to take place as a result of sensing the strain energy density as a mechanical stimulus. The model is based on tracking the displacement and viability of each individual cell in a cell colony. Several applications are shown, such as the dynamics...
journal article 2011
document
Javierre, E. (author), Vuik, C. (author), Vermolen, F.J. (author), Segal, A. (author)
A mathematical model is proposed for the dissolution of stoichiometric particles in binary alloys occurring during the heat treatments of as-cast aluminium alloys prior to hot extrusion. The Level Set method is used to capture the interface location implicitly. The front velocity, only dened on the moving interface, should be advected to the...
report 2005
Searched for: subject%3A%22Cell%255C%252BBE%22
(1 - 14 of 14)