Searched for: subject%3A%22Engineering%22
(1 - 10 of 10)
document
Bracher, J.M. (author), Verhoeven, M.D. (author), Wisselink, H. Wouter (author), Crimi, B. (author), Nijland, Jeroen G. (author), Driessen, Arnold J.M. (author), Klaassen, Paul (author), van Maris, A.J.A. (author), Daran, J.G. (author), Pronk, J.T. (author)
Background: l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these...
journal article 2018
document
Papapetridis, I. (author), Verhoeven, M.D. (author), Wiersma, S.J. (author), Goudriaan, M. (author), van Maris, A.J.A. (author), Pronk, J.T. (author)
Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch...
journal article 2018
document
Verhoeven, M.D. (author), de Valk, S.C. (author), Daran, J.G. (author), van Maris, A.J.A. (author), Pronk, J.T. (author)
D-Glucose, D-xylose and L-arabinose are major sugars in lignocellulosic hydrolysates. This study explores fermentation of glucose-xylose-arabinose mixtures by a consortium of three ‘specialist’ Saccharomyces cerevisiae strains. A D-glucose- and L-arabinose-tolerant xylose specialist was constructed by eliminating hexose phosphorylation in an...
journal article 2018
document
Mans, R. (author), Else-Hassing, J. (author), Wijsman, M. (author), Giezekamp, Annabel (author), Pronk, J.T. (author), Daran, J.G. (author), van Maris, A.J.A. (author)
CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, an S. cerevisiae strain was constructed with deletions in 25...
journal article 2017
document
Bracher, J.M. (author), de Hulster, A.F. (author), Koster, C.C. (author), van den Broek, M.A. (author), Daran, J.G. (author), van Maris, A.J.A. (author), Pronk, J.T. (author)
Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is extremely slow (specific growth rate [μ] ≈ 0.01...
journal article 2017
document
Papapetridis, I. (author), van Dijk, M. (author), van Maris, A.J.A. (author), Pronk, J.T. (author)
Background: Glycerol, whose formation contributes to cellular redox balancing and osmoregulation in Saccharomyces cerevisiae, is an important by-product of yeast-based bioethanol production. Replacing the glycerol pathway by an engineered pathway for NAD<sup>+</sup>-dependent acetate reduction has been shown to improve ethanol yields and...
journal article 2017
document
Marques, W.L. (author), Mans, R. (author), Marella, Eko Roy (author), Cordeiro, Rosa Lorizolla (author), van den Broek, M.A. (author), Daran, J.G. (author), Pronk, J.T. (author), Gombert, Andreas K. (author), van Maris, A.J.A. (author)
Many relevant options to improve efficacy and kinetics of sucrose metabolism in Saccharomyces cerevisiae and, thereby, the economics of sucrose-based processes remain to be investigated. An essential first step is to identify all native sucrose-hydrolysing enzymes and sucrose transporters in this yeast, including those that can be activated...
journal article 2017
document
Jansen, Mickel L.A. (author), Bracher, J.M. (author), Papapetridis, I. (author), Verhoeven, M.D. (author), de Bruijn, J.A. (author), de Waal, P. (author), van Maris, A.J.A. (author), Klaassen, P (author), Pronk, J.T. (author)
The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains,...
journal article 2017
document
Gonzalez Ramos, D. (author), Gorter de Vries, A.R. (author), Grijseels, Sietske S. (author), van Berkum, M.C. (author), Swinnen, Steve (author), van den Broek, M.A. (author), Nevoigt, Elke (author), Daran, J.G. (author), Pronk, J.T. (author), van Maris, A.J.A. (author)
Background: Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before...
journal article 2016
document
Kozak, B.U. (author), Rossum, Harmen M. (author), Niemeijer, M.S. (author), van Dijk, M. (author), Benjamin, Kirsten (author), Wu, Liang (author), Daran, J.G. (author), Pronk, J.T. (author), van Maris, A.J.A. (author)
In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory,...
journal article 2016
Searched for: subject%3A%22Engineering%22
(1 - 10 of 10)