Searched for: subject%3A%22Engineering%22
(1 - 6 of 6)
document
Verhoeven, M.D. (author), Bracher, J.M. (author), Nijland, Jeroen G. (author), Bouwknegt, J. (author), Daran, J.G. (author), Driessen, Arnold J.M. (author)
Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h−1 on l-arabinose in aerobic batch cultures, was subsequently...
journal article 2018
document
Papapetridis, I. (author), Verhoeven, M.D. (author), Wiersma, S.J. (author), Goudriaan, M. (author), van Maris, A.J.A. (author), Pronk, J.T. (author)
Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch...
journal article 2018
document
Verhoeven, M.D. (author), de Valk, S.C. (author), Daran, J.G. (author), van Maris, A.J.A. (author), Pronk, J.T. (author)
D-Glucose, D-xylose and L-arabinose are major sugars in lignocellulosic hydrolysates. This study explores fermentation of glucose-xylose-arabinose mixtures by a consortium of three ‘specialist’ Saccharomyces cerevisiae strains. A D-glucose- and L-arabinose-tolerant xylose specialist was constructed by eliminating hexose phosphorylation in an...
journal article 2018
document
Bracher, J.M. (author), Verhoeven, M.D. (author), Wisselink, H. Wouter (author), Crimi, B. (author), Nijland, Jeroen G. (author), Driessen, Arnold J.M. (author), Klaassen, Paul (author), van Maris, A.J.A. (author), Daran, J.G. (author), Pronk, J.T. (author)
Background: l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these...
journal article 2018
document
Jansen, Mickel L.A. (author), Bracher, J.M. (author), Papapetridis, I. (author), Verhoeven, M.D. (author), de Bruijn, J.A. (author), de Waal, P. (author), van Maris, A.J.A. (author), Klaassen, P (author), Pronk, J.T. (author)
The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains,...
journal article 2017
document
Veiga, T. (author), Gombert, A.K. (author), Landes, N. (author), Verhoeven, M.D. (author), Kiel, J.A.K.W. (author), Krikken, A. (author), Nijland, J.G. (author), Touw, H. (author), Luttik, M.A.H. (author), Van der Toorn, J.C. (author), Driessen, A.J.M. (author), Bovenberg, R.A.L. (author), Van den Berg, M.A. (author), Van der Klei, I.J. (author), Pronk, J.T. (author), Daran, J.M. (author)
Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional...
journal article 2012
Searched for: subject%3A%22Engineering%22
(1 - 6 of 6)