Searched for: subject%3A%22Lane%255C%2BDetection%22
(1 - 4 of 4)
document
Li, Ruohan (author), Dong, Y. (author)
Lane detection is crucial for vehicle localization which makes it the foundation for automated driving and many intelligent and advanced driving assistant systems. Available vision-based lane detection methods do not make full use of the valuable features and aggregate contextual information, especially the interrelationships between lane...
journal article 2023
document
Dong, Y. (author), Patil, Sandeep (author), Farah, H. (author), van Arem, B. (author)
Reliable and accurate lane detection is of vital importance for the safe performance of Lane Keeping Assistance and Lane Departure Warning systems. However, under certain challenging peculiar circumstances (e.g., marking degradation, serious vehicle occlusion), it is quite difficult to get satisfactory performance in accurately detecting the...
poster 2022
document
Patil, Sandeep (author)
Lane detection represents a fundamental task for automated/autonomous vehicles. Current lane detection methods do not provide the versatility of real-time performance, robustness,and accuracy required for real-world scenarios. The reasons include lack of computing power while being portable and inability to observe the continuity and structure...
master thesis 2021
document
Lin, Y. (author), Pintea, S. (author), van Gemert, J.C. (author)
Current work on lane detection relies on large manually annotated datasets. We reduce the dependency on annotations by leveraging massive cheaply available unlabelled data. We propose a novel loss function exploiting geometric knowledge of lanes in Hough space, where a lane can be identified as a local maximum. By splitting lanes into separate...
conference paper 2021
Searched for: subject%3A%22Lane%255C%2BDetection%22
(1 - 4 of 4)