Searched for: subject%3A%22Lattice%255C+model%22
(1 - 20 of 58)

Pages

document
Jiang, Nengdong (author), Ge, Zhi (author), Wang, Zhiyuan (author), Gao, Tianming (author), Zhang, Hongzhi (author), Ling, Yifeng (author), Šavija, B. (author)
This study investigates the size effect on the compressive strength of foamed concrete at the mesoscale level combining X-ray computed tomography (X-CT) and a discrete lattice model. Image segmentation techniques and X-CT were employed to obtain virtual specimens comprising hydrated cement paste and air voids. The lineal-path function and...
journal article 2024
document
Gan, Yidong (author), Liang, M. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study employs a lattice fracture model to simulate static and fatigue fracture behaviour of Interfacial Transition Zone (ITZ) at microscale and mortar at mesoscale. The heterogeneous microstructure of ITZ and mesostructure of mortar are explicitly considered in the models. The initial step involves calibrating and validating the...
journal article 2024
document
Westerbeek, Elise (author)
Strain hardening cementitious composites (SHCC) can be used to reduce the amount of reinforcement needed to control crack widths. SHCC has a strain hardening behaviour with dense micro-cracking, which makes it more ductile compared to conventional concrete. Conventional concrete can be used in the non-critical locations. An interface is formed...
master thesis 2023
document
Tong, Liang-yu (author), Xiong, Qing Xiang (author), Zhang, Zhidong (author), Chen, Xiangsheng (author), Ye, G. (author), Liu, Qing feng (author)
This paper develops a novel lattice diffusive model to quantitatively study the chloride diffusion coefficient in unsaturated cementitious materials, in which the pore voxels are redistributed to make a better representation of a real microstructure of hardened cement paste. Considering the hierarchical microstructure and different drying...
journal article 2023
document
Zhang, H. (author), Jin, Zuquan (author), Jiang, Nengdong (author), Ge, Zhi (author), Schlangen, E. (author), Ling, Yifeng (author), Šavija, B. (author), Wang, Zheng (author)
The classically lattice model assumes the local elements behave elastic brittle, neglecting the ductility of the mortar matrix. This leads to the simulated load⁃displacement response more brittle than the realistic. To solve the aforementioned issue, a piece⁃wise approach was introduced to describe the elastic⁃plastic constitutive relation of...
journal article 2023
document
He, S. (author), Mustafa, S. (author), Chang, Z. (author), Liang, M. (author), Schlangen, E. (author), Lukovic, M. (author)
In the current study, experiments and numerical simulations were carried out to investigate the cracking behavior of reinforced concrete beams consisting of a very thin layer (i.e., 1 cm in thickness) of SHCC in the concrete cover, tension zone. A novel type of SHCC/concrete interface that features a weakened chemical adhesion but an enhanced...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
We propose a new numerical method to analyze the early-age creep of 3D printed segments with the consideration of stress history. The integral creep strain evaluation formula is first expressed in a summation form using superposition principle. The experimentally derived creep compliance surface is then employed to calculate the creep strain...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Chen, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Cementitious materials may exhibit significant creep at very early age. This is potentially important for concrete 3D printing, where the material is progressively loaded even before it sets. However, does creep actually affect the buildability of 3D printed concrete? Herein, the influence of early-age creep on the buildability of 3D printed...
journal article 2023
document
Zegers, Samuel (author)
In several experiments, enzymes have shown an in increase in diffusivity in the presence of their substrate. The enhancement in diffusivity ranged from as low as 28% for urease to 80% in the case of alkaline phosphatase. There are two main competing theories. One asserts that catalytically driven boosts propel the enzyme forward in ‘leaps’,...
bachelor thesis 2022
document
Mustafa, S. (author), Singh, S. (author), Hordijk, D. (author), Schlangen, E. (author), Lukovic, M. (author)
Hybrid application of conventional concrete and Strain Hardening Cementitious Composite (SHCC) is recently shown to be promising for crack width control. In this paper, a combined experimental and numerical study is performed to validate the concept and to study the effect of interface treatment on crack width control. The interface is varied...
journal article 2022
document
Jiang, Nengdong (author), Ge, Zhi (author), Guan, Yanhua (author), Zuo, Zhiwu (author), Zhang, Hongzhi (author), Ling, Yifeng (author), Šavija, B. (author)
This work presents a study of mechanical properties of foamed concrete at the meso-scale based on a combination of X-ray computed tomography (XCT) technique and a discrete lattice type fracture model. The microstructure of the foamed concrete with different densities was obtained by XCT technique and binarized as two-phase (pore/solid) materials...
journal article 2022
document
Singla, A. (author), Šavija, B. (author), Sluys, Lambertus J. (author), Romero Rodriguez, C. (author)
Lattice models have been used to simulate mass transport to predict durability of cementitious materials. In particular, the use of dual lattice meshes allows for the coupling of fracture and transport processes, which commonly occur at the same time in these materials. Literature has shown good agreement between simulations and experimental...
journal article 2022
document
Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
Tailoring lattice structures is a commonly used method to develop lattice materials with desired mechanical properties. However, for cementitious lattice materials, besides the macroscopic lattice structure, the multi-phase microstructure of cement paste may have substantial impact on the mechanical responses. Therefore, this work proposes a...
journal article 2022
document
Zhang, H. (author), Schlangen, E. (author), Ge, Z. (author), Šavija, B. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behaviour. This paper presents an experimentally informed approach for modelling elastic and transport properties of cement...
conference paper 2021
document
Zhang, H. (author), Schlangen, E. (author), Ge, Zhi (author), Šavija, B. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behaviour. This paper presents an experimentally informed approach for modelling elastic and transport properties of cement...
conference paper 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different local mechanical and fatigue properties are assigned to different...
journal article 2021
document
Gao, Peng (author), Chen, Yang (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
Non-uniform stresses, strains and microcracking of the concretes with three coarse aggregate sizes (5–10 mm, 10–16 mm, 16–20 mm) dried under 40% relative humidity (RH) for 60 days were quantified using digital image correlation and lattice fracture modelling. The influencing mechanism of coarse aggregate size on the drying-induced...
journal article 2021
document
Lyu, W. (author)
When concrete is subjected to sustained load, it first deforms elastically and then continues to deform with time. The stress-induced time-dependent deformation is, by definition, creep. Creep plays an important role in view of the serviceability, durability and sometimes even the safety of concrete structures. Prediction of the long-term creep...
doctoral thesis 2020
document
Tavakoli, D. (author), Gao, P. (author), Tarighat, Amir (author), Ye, G. (author)
In this study, first of all, the atomistic structure of cement hydration products is estimated via molecular dynamics method and their elastic properties are extracted. Then, cement hydration simulation is done by HYMOSTRUC3D model and the obtained results from both molecular dynamics and HYMOSTRUC3D methods are used for simulation in macro...
journal article 2020
document
Lifshitz Sherzer, G. (author), Schlangen, E. (author), Ye, G. (author), Gal, A. E. (author)
We propose an upscaled methodology for evaluating the compressive parameters of the Lattice Discrete Particle Model (LDPM) for a multiscale analysis of concrete structures. This methodology is based on mechanical and chemical models on a wide range of concrete scales. We show that the compressive mechanical parameters are related mainly to...
journal article 2020
Searched for: subject%3A%22Lattice%255C+model%22
(1 - 20 of 58)

Pages