Searched for: subject%3A%22Quantum%255C%252Balgorithms%22
(1 - 8 of 8)
document
Schalkers, M.A. (author), Möller, M. (author)
In this paper we present a scalable algorithm for fault-tolerant quantum computers for solving the transport equation in two and three spatial dimensions for variable grid sizes and discrete velocities, where the object walls are aligned with the Cartesian grid, the relative difference of velocities in each dimension is bounded by 1 and the...
journal article 2024
document
Steinberg, M.A. (author), Feld, S. (author), Almudever, Carmen G. (author), Marthaler, Michael (author), Reiner, Jan Michael (author)
The qubit-mapping problem aims to assign and route qubits of a quantum circuit onto an noisy intermediate-scale quantum (NISQ) device in an optimized fashion, with respect to some cost function. Finding an optimal solution to this problem is known to scale exponentially in computational complexity; as such, it is imperative to investigate...
journal article 2022
document
Sarkar, A. (author), Al-Ars, Z. (author), Almudever, Carmen G. (author), Bertels, K.L.M. (author)
With small-scale quantum processors transitioning from experimental physics labs to industrial products, these processors in a few years are expected to scale up and be more robust for efficiently computing important algorithms in various fields. In this paper, we propose a quantum algorithm to address the challenging field of data processing...
journal article 2021
document
Sarkar, A. (author), Al-Ars, Z. (author), Bertels, K.L.M. (author)
Inferring algorithmic structure in data is essential for discovering causal generative models. In this research, we present a quantum computing framework using the circuit model, for estimating algorithmic information metrics. The canonical computation model of the Turing machine is restricted in time and space resources, to make the target...
journal article 2021
document
O'Brien, T.E. (author), Tarasinski, B.M. (author), Terhal, B.M. (author)
Quantum phase estimation (QPE) is the workhorse behind any quantum algorithm and a promising method for determining ground state energies of strongly correlated quantum systems. Low-cost QPE techniques make use of circuits which only use a single ancilla qubit, requiring classical post-processing to extract eigenvalue details of the system....
journal article 2019
document
Steudtner, M. (author), Wehner, S.D.C. (author)
Quantum simulation of fermionic systems is a promising application of quantum computers, but to program them, we need to map fermionic states and operators to qubit states and quantum gates. While quantum processors may be built as two-dimensional qubit networks with couplings between nearest neighbors, standard fermion-To-qubit mappings do...
journal article 2019
document
Möller, M. (author), Vuik, Cornelis (author)
The development of practical quantum computers that can be used to solve real-world problems is in full swing driven by the ambitious expectation that quantum supremacy will be able to outperform classical super-computers. Like with any emerging compute technology, it needs early adopters in the scientific computing community to identify...
journal article 2019
document
Möller, M. (author), Vuik, Cornelis (author)
Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to researchers and vendors of future computing...
journal article 2017
Searched for: subject%3A%22Quantum%255C%252Balgorithms%22
(1 - 8 of 8)