Searched for: subject%3A%22Robots%22
(1 - 9 of 9)
document
Pustina, P. (author), Della Santina, C. (author), Boyer, Frederic (author), De Luca, Alessandro (author), Renda, Federico (author)
Suitable representations of dynamical systems can simplify their analysis and control. On this line of thought, this article aims to answer the following question: Can a transformation of the generalized coordinates under which the actuators directly perform work on a subset of the configuration variables be found? We not only show that the...
journal article 2024
document
Ding, J. (author), Sels, Mees A.van Loben (author), Angelini, Franco (author), Kober, J. (author), Della Santina, C. (author)
Quadrupeds deployed in real-world scenarios need to be robust to unmodelled dynamic effects. In this work, we aim to increase the robustness of quadrupedal periodic forward jumping (i.e., pronking) by unifying cutting-edge model-based trajectory optimization and iterative learning control. Using a reduced-order soft anchor model, the...
journal article 2023
document
Spahn, M. (author), Wisse, M. (author), Alonso-Mora, J. (author)
Optimization fabrics are a geometric approach to real-time local motion generation, where motions are designed by the composition of several differential equations that exhibit a desired motion behavior. We generalize this framework to dynamic scenarios and nonholonomic robots and prove that fundamental properties can be conserved. We show...
journal article 2023
document
Bjelonic, Filip (author), Sachtler, Arne (author), Albu-Schaffer, Alin (author), Della Santina, C. (author)
Adding elastic elements to the mechanical structure should enable robots to perform efficient oscillatory tasks. Still, even characterizing natural oscillations in nonlinear systems is a challenge in itself, which nonlinear modal theory promises to solve. Therein eigenmanifolds generalize eigenspaces to mechanical systems with non-Euclidean...
journal article 2022
document
Rommers, J. (author), Naves, M. (author), Brouwer, D. M. (author), Herder, J.L. (author)
In this study, a flexure-based (compliant) linear guide with a motion range comparable to its footprint is presented. The design consists of two-folded leaf springs on which torsion reinforcement structures are added. Due to these structures, only two-folded leaf springs are needed instead of a minimum of five as in preexisting designs. The...
journal article 2022
document
Mészáros, A. (author), Franzese, G. (author), Kober, J. (author)
This work investigates how the intricate task of a continuous pick & place (P&P) motion may be learned from humans based on demonstrations and corrections. Due to the complexity of the task, these demonstrations are often slow and even slightly flawed, particularly at moments when multiple aspects (i.e., end-effector movement,...
journal article 2022
document
Erkelens, Folkert (author)
Legged locomotion is a discrete event system (DES) due to the ever changing contact states of each leg. As such, it requires a nonlinear modelling method to predict the trajectory of a legged robot. One such robot has been focused on throughout this thesis; the six legged "Zebro''. With its half-circular legs, the Zebro is well suited for...
master thesis 2021
document
Zhu, H. (author), Martinez Claramunt, Francisco (author), Ferreira de Brito, B.F. (author), Alonso-Mora, J. (author)
This paper presents a data-driven decentralized trajectory optimization approach for multi-robot motion planning in dynamic environments. When navigating in a shared space, each robot needs accurate motion predictions of neighboring robots to achieve predictive collision avoidance. These motion predictions can be obtained among robots by...
journal article 2021
document
de Groot, O.M. (author), Ferreira de Brito, B.F. (author), Ferranti, L. (author), Gavrila, D. (author), Alonso-Mora, J. (author)
We present an optimization-based method to plan the motion of an autonomous robot under the uncertainties associated with dynamic obstacles, such as humans. Our method bounds the marginal risk of collisions at each point in time by incorporating chance constraints into the planning problem. This problem is not suitable for online optimization...
journal article 2021
Searched for: subject%3A%22Robots%22
(1 - 9 of 9)