Searched for: subject%3A%22System%255C%252Bidentification%22
(1 - 12 of 12)
document
Mulder, Max (author), Pool, D.M. (author), van der El, Kasper (author), van Paassen, M.M. (author)
Mathematical human control models are widely used in tuning manual control systems and understanding human performance. Human behavior is commonly described using linear time-invariant models, averaging-out all non-linear and time-varying effects, which are gathered into the remnant. These models are limited in their capability to capture...
journal article 2022
document
van der El, Kasper (author), Pool, D.M. (author), Mulder, Max (author)
Drivers rely on a variety of cues from different modalities while steering, but which exact cues are most important and how these different cues are used is still mostly unclear. The goal of our research project is to increase understanding of driver steering behavior; through a measuring and modeling approach we aim to extend the validity of...
journal article 2019
document
Mulder, Max (author), Pool, D.M. (author), van der El, Kasper (author), Drop, F.M. (author), van Paassen, M.M. (author)
Mathematical control models are widely used in tuning manual control systems and understanding human performance. The most common model, the crossover model, is severely limited, however, in describing realistic human control behaviour in relevant control tasks as it is only valid for tracking with a compensatory display. This paper first...
journal article 2019
document
Kolff, M.J.C. (author), van der El, Kasper (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author)
The understanding of human responses to visual information in car driving tasks requires the use of system identification tools that put constraints on the design of data collection experiments. Most importantly, multisine perturbation signals are required, including a multisine road geometry, to separately identify the different driver...
journal article 2019
document
Buskens, J. (author), Pel, Johan J.M. (author), Pool, D.M. (author)
In the analysis of human motor skills, tracking tasks with multisine target signals are often performed as they allow for quantitative measurement, identification, and modeling of human control dynamics. In this paper, the same "cybernetic" approach is taken to analyze eye movement dynamics in gaze tracking tasks, where participants had to...
journal article 2019
document
van der El, Kasper (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author)
Novel driver support systems potentially enhance road safety by cooperating with the human driver. To optimize the design of emerging steering support systems, a profound understanding of driver steering behavior is required. This article proposes a new theory of driver steering, which unifies visual perception and control models. The theory...
journal article 2019
document
Drop, F.M. (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author), Bulthoff, Heinrich H. (author)
The human controller (HC) in manual control of a dynamical system often follows a visible and predictable reference path (target). The HC can adopt a control strategy combining closed-loop feedback and an open-loop feedforward response. The effects of the target signal waveform shape and the system dynamics on the human feedforward dynamics...
journal article 2018
document
van der El, Kasper (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author)
Due to linear perspective, the visual stimulus provided by a previewed reference trajectory reduces with increasing distance ahead. This paper investigates the effects of linear perspective on human use of preview in manual control tasks. Results of a human-in-the-loop tracking experiment are presented, where the linear perspective&#x0027...
journal article 2018
document
van der El, Kasper (author), Padmos, S. (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author)
In manual control tasks, preview of the target trajectory ahead is often limited by poor lighting, objects, or display edges. This paper investigates the effects of limited preview, or preview time, in manual tracking tasks with single- and double-integrator controlled element dynamics. A quasi-linear human controller model is used to predict...
journal article 2018
document
Drop, F.M. (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author), Bülthoff, Heinrich H. (author)
Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system...
journal article 2017
document
Duarte, R.F.M. (author), Pool, D.M. (author), van Paassen, M.M. (author), Mulder, Max (author)
In this paper, the Linear Parameter Varying (LPV) model identification framework is applied to estimating time-varying human controller (HC) dynamics in a single-loop tracking task. Given the inherently unknown time changes in HC behavior, a global LPV approach with experimentally determined Scheduling Functions (SFs) is needed for this...
conference paper 2017
document
Zaal, P.M.T. (author), Pool, D.M. (author), Chu, Q.P. (author), Van Paassen, M.M. (author), Mulder, M. (author), Mulder, J.A. (author)
This paper presents a new method for estimating the parameters of multi-channel pilot models that is based on maximum likelihood estimation. To cope with the inherent nonlinearity of this optimization problem, the gradient-based Gauss-Newton algorithm commonly used to optimize the likelihood function in terms of output error is complemented with...
journal article 2009
Searched for: subject%3A%22System%255C%252Bidentification%22
(1 - 12 of 12)