Searched for: subject%3A%22computational%255C%252Bfluid%255C%252Bdynamics%22
(1 - 3 of 3)
document
Loeven, G.J.A. (author)
When modeling physical systems, several sources of uncertainty are present. For example, variability in boundary conditions like free stream velocity or ambient pressure are always present. Furthermore, uncertainties in geometry arise from production tolerances, wear or unknown deformations under loading. Uncertainties in computational fluid...
doctoral thesis 2010
document
Loeven, G.J.A. (author), Bijl, H. (author)
In this paper a Two-Step approach is presented for uncertainty quantification for expensive problems with multiple uncertain parameters. Both steps are performed using the Probabilistic Collocation method. The first step consists of a sensitivity analysis to identify the most important parameters of the problem. The sensitivity derivatives are...
journal article 2009
document
Loeven, A. (author), Witteveen, J.A.S. (author), Bijl, H. (author)
In this paper a Two Step approach with Chaos Collocation for efficient uncertainty quantification in computational fluid-structure interactions is followed. In Step I, a Sensitivity Analysis is used to efficiently narrow the problem down from multiple uncertain parameters to one parameter which has the largest influence on the solution. In Step...
conference paper 2006