Searched for: subject:"computational%5C%2Bfluid%5C%2Bdynamics"
(1 - 6 of 6)
document
Loeven, G.J.A. (author), Bijl, H. (author)
In this paper a Two-Step approach is presented for uncertainty quantification for expensive problems with multiple uncertain parameters. Both steps are performed using the Probabilistic Collocation method. The first step consists of a sensitivity analysis to identify the most important parameters of the problem. The sensitivity derivatives are...
journal article 2009
document
Witteveen, J.A.S. (author), Bijl, H. (author)
A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equations which can be coupled. The proposed monomial...
journal article 2008
document
Witteveen, J.A.S. (author), Bijl, H. (author)
A monomial chaos approach is proposed for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can still be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equations which can be coupled. The proposed...
conference paper 2006
document
Loeven, A. (author), Witteveen, J.A.S. (author), Bijl, H. (author)
In this paper a Two Step approach with Chaos Collocation for efficient uncertainty quantification in computational fluid-structure interactions is followed. In Step I, a Sensitivity Analysis is used to efficiently narrow the problem down from multiple uncertain parameters to one parameter which has the largest influence on the solution. In Step...
conference paper 2006
document
Witteveen, J.A.S. (author), Bijl, H. (author)
A monomial chaos approach is proposed for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can still be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equations which can be coupled. The proposed...
conference paper 2006
document
Loeven, A. (author), Witteveen, J.A.S. (author), Bijl, H. (author)
In this paper a Two Step approach with Chaos Collocation for efficient uncertainty quantification in computational fluid-structure interactions is followed. In Step I, a Sensitivity Analysis is used to efficiently narrow the problem down from multiple uncertain parameters to one parameter which has the largest influence on the solution. In Step...
conference paper 2006
Searched for: subject:"computational%5C%2Bfluid%5C%2Bdynamics"
(1 - 6 of 6)