Searched for: subject%3A%22fluid%255C%252Bstructure%255C%252Binteraction%22
(1 - 3 of 3)
document
Maljaars, P.J. (author), Grasso, N. (author), den Besten, J.H. (author), Kaminski, M.L. (author)
The first part of the paper presents a partitioned fluid–structure interaction (FSI) coupling for the non-uniform flow hydro-elastic analysis of highly flexible propellers in cavitating and non-cavitating conditions. The chosen fluid model is a potential flow solved with a boundary element method (BEM). The structural sub-problem has been...
journal article 2020
document
Maljaars, P.J. (author), Kaminski, M.L. (author), den Besten, J.H. (author)
A special type of fluid–structure interaction (FSI) problems are problems with periodic boundary conditions like in turbomachinery. The steady state FSI response of these problems is usually calculated with similar techniques as used for transient FSI analyses. This means that, when the fluid and structure problem are not simultaneously...
journal article 2019
document
Maljaars, P.J. (author), Kaminski, M.L. (author), den Besten, J.H. (author)
Boundary element methods (BEM) have been used for propeller hydrodynamic calculations since the 1990s. More recently, these methods are being used in combination with finite element methods (FEM) in order to calculate flexible propeller fluid–structure interaction (FSI) response. The main advantage of using BEM for flexible propeller FSI...
journal article 2018