Searched for: subject%3A%22meta%255C-learning%22
(1 - 9 of 9)
document
van Leeuwen, Sander (author)
Language is an intuitive and effective way for humans to communicate. Large Language Models (LLMs) can interpret and respond well to language. However, their use in deep reinforcement learning is limited as they are sample inefficient. State-of-the-art deep reinforcement learning algorithms are more sample efficient but cannot understand...
master thesis 2023
document
den Blanken, Douwe (author)
The growing interest in edge computing is driving the demand for more efficient deep learning models that fit into resource-constrained edge devices like Internet-of-Things (IoT) sensors. The challenging limitations of these devices in terms of size and power has given rise to the field of tinyML, focusing on enabling low-cost machine learning...
master thesis 2023
document
Ramezani, Shayan (author)
Bayesian Optimization (BO) has demonstrated significant utility across numerous applications. However, due to it being designed as a universal optimizer, its performance can often be suboptimal in specialized environments. To overcome this issue, research has been conducted into the application of transfer learning for enhancing BO performance...
bachelor thesis 2023
document
Socol, Codrin (author)
Learning curves are used to shape the performance of a Machine Learning (ML) model with respect to the size of the set used for training it. It was commonly thought that adding more training samples would increase the model's accuracy (i.e., they are monotone), but recent works show that may not always be the case. In other words, some learners...
bachelor thesis 2023
document
de Inza Niemeijer, Carlos (author)
The continued increase in the number of satellites in low Earth orbit has led to a growing threat of collisions between space objects. On-orbit servicing and active debris removal missions can alleviate this threat by extending the lifetime of active satellites and deorbiting inactive ones, but this requires advanced guidance and control...
master thesis 2023
document
Galjaard, Jeroen (author)
Few-shot learning presents the challenging problem of learning a task with only a few provided examples. Gradient-Based Meta-Learners (GBML) offer a solution for learning such few-shot problems. These learners approach the few-shot problem by learning an initial parameterization that requires only a few adaptation steps for new tasks. Although...
master thesis 2023
document
Mohr, Felix (author), Viering, T.J. (author), Loog, M. (author), van Rijn, Jan N. (author)
The use of learning curves for decision making in supervised machine learning is standard practice, yet understanding of their behavior is rather limited. To facilitate a deepening of our knowledge, we introduce the Learning Curve Database (LCDB), which contains empirical learning curves of 20 classification algorithms on 246 datasets. One of...
conference paper 2023
document
LU, Jingyi (author)
Inspired by the natural nervous system, synaptic plasticity rules are applied to train spiking neural networks. Different from learning algorithms such as propagation and evolution that are widely used to train spiking neural networks, synaptic plasticity rules learn the parameters with local information, making them suitable for online learning...
master thesis 2022
document
ter Kuile, David (author)
As robots are becoming a more integral part in our daily lives, it is important to ensure they work in a safe and efficient manner. A large part of perceiving the environment is done through robot vision. Research in computer vision and machine learning lead to great improvements in the past decades and robots are able to outperform humans on...
master thesis 2021
Searched for: subject%3A%22meta%255C-learning%22
(1 - 9 of 9)