Searched for: subject%3A%22nonsymmetric%255C+linear%255C+systems%22
(1 - 6 of 6)
document
Sonneveld, P. (author)
An explanation is given of the convergence behavior of IDR(s) methods. The convergence mechanism of these algorithms has two components. The first consists of damping properties of certain factors in the residual polynomials, which becomes less important for large values of s. The second component depends on the behavior of Lanczos polynomials...
journal article 2012
document
Collignon, T.P. (author), Sleijpen, G.L.G. (author), Van Gijzen, M.B. (author)
In this paper the IDR(s) method is interpreted in the context of deflation methods. It is shown that IDR(s) can be seen as a Richardson iteration preconditioned by a variable deflation–type preconditioner. The main result of this paper is the IDR projection theorem, which relates the spectrum of the deflated system in each IDR(s) cycle to all...
report 2010
document
Van Gijzen, M.B. (author), Sonneveld, P. (author)
The IDR(s) method that is proposed in [18] is a very efficient limited memory method for solving large nonsymmetric systems of linear equations. IDR(s) is based on the induced dimension reduction theorem, that provides a way to construct subsequent residuals that lie in a sequence of shrinking subspaces. The IDR(s) algorithm that is given in [18...
report 2010
document
Sonneveld, P. (author)
An explanation is given of the convergence behaviour of the IDR(s) methods. The convergence of the IDR(s) algorithms has two components. The first consists of damping properties of certain factors in the residual polynomials, which becomes less important for large values of s. The second component depends on the behaviour of quasi-Lanczos...
report 2010
document
Zijlema, M. (author), Segal, A. (author), Wesseling, P. (author)
journal article 1995
document
Collignon, T.P. (author), Van Gijzen, M.B. (author)
IDR(s) is a family of fast algorithms for iteratively solving large nonsymmetric linear systems [14]. With cluster computing and in particular with Grid computing, the inner product is a bottleneck operation. In this paper, three techniques are combined in order to alleviate this bottleneck. Firstly, the efficient and stable IDR(s) algorithm...
report
Searched for: subject%3A%22nonsymmetric%255C+linear%255C+systems%22
(1 - 6 of 6)