Searched for: subject%3A%22scaffold%22
(1 - 3 of 3)
document
Ye, Xiaotong (author), Leeflang, M.A. (author), Wu, Chengtie (author), Chang, Jiang (author), Zhou, J. (author), Huan, Z. (author)
Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM),<br/>having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds...
journal article 2017
document
Van der Stok, J. (author), Koolen, M.K.E. (author), De Maat, M.P.M. (author), Amin Yavari, S. (author), Alblas, J. (author), Patka, P. (author), Verhaar, J.A.N. (author), Van Lieshout, E.E.M. (author), Zadpoor, A.A. (author), Weinans, H.H. (author), Jahr, H. (author)
Regeneration of load-bearing segmental bone defects is a major challenge in trauma and orthopaedic surgery. The ideal bone graft substitute is a biomaterial that provides immediate mechanical stability, while stimulating bone regeneration to completely bridge defects over a short period. Therefore, selective laser melted porous titanium,...
journal article 2015
document
Arifvianto, B. (author), Zhou, J. (author)
Bone tissue engineering has been increasingly studied as an alternative approach to bone defect reconstruction. In this approach, new bone cells are stimulated to grow and heal the defect with the aid of a scaffold that serves as a medium for bone cell formation and growth. Scaffolds made of metallic materials have preferably been chosen for...
journal article 2014