Searched for: subject:"self%5C-healing%5C+concrete"
(1 - 11 of 11)
document
Vermeer, C.M. (author), Rossi, E. (author), Tamis, J. (author), Jonkers, H.M. (author), Kleerebezem, R. (author)
Polyhydroxyalkanoate (PHA) production is a promising opportunity to recover organic carbon from waste streams. However, widespread application of waste-derived PHA as biodegradable plastic is restricted by expensive purification steps, high quality requirements, and a fierce competition with the conventional plastic market. To overcome these...
journal article 2021
document
Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Mercuri, L. (author), Gan, Y. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, the interface between different types of bacteria-embedded self-healing polylactic acid capsules (PLA) and cement paste is investigated. Particularly, the changes in microstructure and mechanical properties of the interface with respect to bulk cement paste were studied. First, nanoindentation was performed to obtain maps of...
journal article 2020
document
Palin, D. (author)
Bacteria-based self-healing concrete is an innovative self-healing materials approach, whereby bacteria embedded in concrete can form a crack healing mineral precipitate. Structures made from self-healing concrete promise longer service lives, with associated economic benefits [1]. Despite concretes susceptibility to marine-based degradation...
doctoral thesis 2017
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, E. (author)
Bacteria induced calcium carbonate precipitation based on metabolic conversion of nutrients has been acknowledged for having potentials in self-healing cement-based materials. Recent studies have shown the development of bacteria-based repair solution (liquid) for concrete surface repair. This article demonstrates the feasible application of...
conference paper 2017
document
De Koster, S.A.L. (author), Mors, R.M. (author), Nugteren, H.W. (author), Jonkers, H.M. (author), Meesters, G.M.H. (author), Van Ommen, J.R. (author)
Concrete structures are often reinforced with steel. In order for the reinforcement to take over tensile forces, concrete has to crack. Through such cracks, water and compounds that are harmful to concrete can enter. This can cause durability issues like leakage, concrete degradation and reinforcement corrosion. In situ repair of cracks is often...
journal article 2015
document
Sangadji, S. (author)
The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new infrastructures for longer service life) is one solution...
doctoral thesis 2015
document
Wang, X. (author), Xing, F. (author), Zhang, M. (author), Han, N. (author), Qian, Z. (author)
The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed...
journal article 2013
document
Sangadji, S. (author), Schlangen, H.E.J.G. (author)
To repair concrete cracks in difficult or dangerous conditions such as underground structures or hazardous liquid containers, self healing mechanism is a promising alternative method. This research aims to imitate the bone self healing process by putting porous concrete internally in the concrete structure to create a porous network similar to ...
journal article 2013
document
Wang, X. (author), Xing, F. (author), Zhang, M. (author), Han, N. (author), Qian, Z. (author)
A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is Epoxy. The effect of organic microcapsules on...
conference paper 2013
document
Wang, X. (author), Xing, F. (author), Zhang, M. (author), Han, N. (author), Qian, Z. (author)
A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is Epoxy. The effect of organic microcapsules on...
conference paper 2013
document
Jonkers, H.M. (author)
In 2006 a research program was launched at Delft University of Technology aiming for the development of a new class of materials, i.e. materials with an inbuilt healing mechanism. The idea is that these novel materials can self repair damage resulting in substantially decreased maintenance and repair costs and increased service life. Several...
conference paper 2012
Searched for: subject:"self%5C-healing%5C+concrete"
(1 - 11 of 11)