Three-dimensional (3D) stereophotogrammetry is a novel imaging technique that has gained popularity in the medical field as a reliable, non-invasive, and radiation-free imaging modality. It uses optical sensors to acquire multiple 2D images from different angles which are reco
...
Three-dimensional (3D) stereophotogrammetry is a novel imaging technique that has gained popularity in the medical field as a reliable, non-invasive, and radiation-free imaging modality. It uses optical sensors to acquire multiple 2D images from different angles which are reconstructed into a 3D digital model of the subject's surface. The technique proved to be especially useful in craniofacial applications, where it serves as a tool to overcome the limitations imposed by conventional imaging modalities and subjective evaluation methods. The capability to acquire high-dimensional data in a quick and safe manner and archive them for retrospective longitudinal analyses, provides the field with a methodology to increase the understanding of the morphological development of the cranium, its growth patterns and the effect of different treatments over time.This review describes the role of 3D stereophotogrammetry in the evaluation of craniosynostosis, including reliability studies, current and potential clinical use cases, and practical challenges. Finally, developments within the research field are analyzed by means of bibliometric networks, depicting prominent research topics, authors, and institutions, to stimulate new ideas and collaborations in the field of craniofacial 3D stereophotogrammetry.We anticipate that utilization of this modality's full potential requires a global effort in terms of collaborations, data sharing, standardization, and harmonization. Such developments can facilitate larger studies and novel deep learning methods that can aid in reaching an objective consensus regarding the most effective treatments for patients with craniosynostosis and other craniofacial anomalies, and to increase our understanding of these complex dysmorphologies and associated phenotypes.
@en