JB

Jesús Balado Frías

14 records found

Authored

The Mobile Laser Scanning (MLS) data inevitably includes dynamic objects because there are always other vehicles (e.g., other cars, motorbikes, bikes, etc.) moving in the area near the MLS data collection vehicle on the road. These dynamic objects need to be removed in advance ...

Vehicle-related ground occlusion is a common problem in MLS data. This study aims to design a detection and reconstruction method of static vehicle-related ground occlusion for MLS data. Ground extraction and vehicle segmentation are performed on the input point cloud data in ...

The enrichment of the point clouds with colour images improves the visualisation of the data as well as the segmentation and recognition processes. Coloured point clouds are becoming increasingly common, however, the colour they display is not always as expected. Errors in the ...

Although point clouds are characterized as a type of unstructured data, timestamp attribute can structure point clouds into scanlines and shape them into a time signal. The present work studies the transformation of the street point cloud into a time signal based on the Z comp ...

Traffic signs are one of the most relevant road assets for driving, as the safety of drivers depends to a great extent on their correct location. In this paper two methods are compared for the segmentation of the sign and the pole supporting it. Both methods are based on the m ...

Mobile Laser Scanning (MLS) systems have proven their usefulness in the rapid and accurate acquisition of the urban environment. From the generated point clouds, street furniture can be extracted and classified without manual intervention. However, this process of acquisition ...

Mathematical morphology is a technique recently applied directly for point cloud data. Its working principle is based on the removal and addition of points from an auxiliary point cloud that acts as a structuring element. However, in certain applications within a more complex ...

Point cloud data have rich semantic representations and can benefit various applications towards a digital twin. However, they are unordered and anisotropically distributed, thus being unsuitable for a typical Convolutional Neural Networks (CNN) to handle. With the advance of ...

Indoor furniture is of great relevance to building occupants in everyday life. Furniture occupies space in the building, gives comfort, establishes order in rooms and locates services and activities. Furniture is not always static; the rooms can be reorganized according to the ne ...

Room segmentation is a matter of ongoing interesting for indoor navigation and reconstruction in robotics and AEC. While in robotics field, the problem room segmentation has been typically addressed on 2D floorplan, interest in enrichment 3D models providing more detailed repr ...

Occlusions accompany serious problems that reduce the applicability of numerous algorithms. The aim of this work is to detect and characterize urban ground gaps based on occluding object. The point clouds for input have been acquired with Mobile Laser Scanning and have been pr ...

Traffic signs are a key element in driver safety. Governments invest a great amount of resources in maintaining the traffic signs in good condition, for which a correct inventory is necessary. This work presents a novel method for mapping traffic signs based on data acquired w ...

Contributed

Many MLS point cloud application scenarios, such as navigation and localization algorithms, require only static environments, but the original MLS data usually inevitably includes many dynamic objects such as moving vehicles, bicycles, and pedestrians. Therefore, these dynamic ob ...

SCIPoC: Semantic Classification of Indoor Point Cloud

A study into the possibilities of classifying indoor point cloud using a Deep Learning approach

With the constantly evolving range of applications for technology the quality and amount of data constantly increases as well. In this growing data environment, there is a constant search to provide more value to all data that is available for as little effort as possible. Our re ...