D. Pinto
8 records found
1
Authored
Integrated CO2 capture and reduction catalysis
Role of γ-Al2O3 support, unique state of potassium and synergy with copper
Carbon dioxide capture and reduction (CCR) process emerges as an efficient catalytic strategy for CO2 capture and conversion to valuable chemicals. K-promoted Cu/Al2O3 catalysts exhibited promising CO2 capture efficiency and highly s ...
Dynamic coke-mediated dry reforming of methane (DC-DRM) is an unsteady-state strategy to overcome the limitations of co-feed operation, including the fast deactivation of the catalysts and the loss of valuable H2 in the reverse water gas-shift reaction. This paper p ...
Catalytic Oxidative Coupling of Methane
Heterogeneous or Homogeneous Reaction?
Direct valorization of methane via oxidative coupling of methane (OCM) is an encouraging alternative to conventional oil-based processes for the production of light hydrocarbons (ethane and ethylene). Abundant, inexpensive simple oxides such as MgO and La2O3
The electrochemical CO2 reduction reaction (CO2RR) is an attractive method to produce renewable fuel and chemical feedstock using clean energy sources. Formate production represents one of the most economical target products from CO2RR but is p ...
Integrated CO2 capture and conversion processes bring the promise of drastic abatement of CO2 emission together with its valorisation to chemical building blocks such as CH4 and CO. Isothermal CO2 capture and reduction (CCR) on a K-p ...
Industrial-scale reforming of methane is typically carried out with an excess of oxidant to suppress coking of the catalyst. On the other hand, many academic studies on dry reforming employ a CO2/CH4 ratio of unity to quickly observe coking which can be r ...
Oxidative coupling of methane (OCM) to produce ethane and ethylene is one of the dream reactions of researchers in catalysis. Despite the extensive efforts over the last three decades, our general understanding on OCM is rather poor due to the complexity arising from the react ...