E

Eugenio

16 records found

Authored

The layered metamagnet CrSBr offers a rich interplay between magnetic, optical, and electrical properties that can be extended down to the two-dimensional (2D) limit. Despite the extensive research regarding the long-range magnetic order in magnetic van der Waals materials, sh ...

The authors present magnetotransport measurements to demonstrate multistep magnetization switching in orthogonally twisted CrSBr ferromagnetic monolayers.

@en

Semiconducting van der Waals magnets exhibit a rich physical phenomenology with different collective excitations, as magnons or excitons, that can be coupled, thereby offering new opportunities for optoelectronic, spintronic, and magnonic devices. In contrast with the well-stu ...

Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic ...

CoPS3 stands out in the family of the van der Waals antiferromagnets XPS3 (X = Mn, Ni, Fe, and Co) due to the unquenched orbital momentum of the magnetic Co2+ ions, which is known to facilitate the coupling of spins to both electromagnetic wave ...

Nanomechanical spectroscopy (NMS) is a recently developed approach to determine optical absorption spectra of nanoscale materials via mechanical measurements. It is based on measuring changes in the resonance frequency of a membrane resonator vs. the photon energy of incoming ...

Two-dimensional magnetic materials with strong magnetostriction are attractive systems for realizing strain-tuning of the magnetization in spintronic and nanomagnetic devices. This requires an understanding of the magneto-mechanical coupling in these materials. In this work, w ...

The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, TCDW. However, it is often difficult to use conventional methods to study the phase tran ...

Through rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic ...

The reduced dimensionality of two-dimensional (2D) materials results in characteristic types of magnetically and electronically ordered phases. However, only few methods are available to study this order, in particular in ultrathin insulating antiferromagnets that couple weakl ...

In the past years, the use of highly sensitive silicon microelectromechanical cantilevers has been proposed as a tool to characterize the spin-crossover phenomenon by employing fast optical readout of the motion. In thi ...

A chemical protocol to design robust hybrid [Fe(Htrz)2(trz)](BF4)@SiO2 nanoparticles (NPs) with sizes as small as 28 nm and ultrathin silica shells below 3 nm has been developed. These NPs present a characteristic abrupt spin transition with a ...

It is known that the quantum mechanical ground state of a nanoscale junction has a significant impact on its electrical transport properties. This becomes particularly important in transistors consisting of a single molecule. Because of strong electron-electron interactions and t ...

We use the electrodeless time-resolved microwave conductivity (TRMC) technique to characterize spin-crossover (SCO) nanoparticles. We show that TRMC is a simple and accurate means for simultaneously assessing the magnetic state of SCO compounds and charge transport information ...

The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductiv ...

The charge transport properties of SCO [Fe(Htrz)2(trz)](BF4) NPs covered with a silica shell placed in between single-layer graphene electrodes are reported. A reproducible thermal hysteresis loop in the conductance above room-temperature is evidenced. This bistability combined w ...