## N. Muthusubramanian

15 records found

1

## Authored

We investigate die-level and wafer-scale uniformity of Dolan-bridge and bridgeless Manhattan-style Josephson junctions, using multiple substrates with and without through-silicon vias (TSVs). Dolan junctions fabricated on planar substrates have the highest yield and lowest roo ...

We present the use of a set of airbridges to trim the frequency of microwave coplanar-waveguide (CPW) resonators post-fabrication. This method is compatible with the fabrication steps of conventional CPW airbridges and crossovers and increases device yield by allowing compensa ...

Artificial neural networks are becoming an integral part of digital solutions to complex problems. However, employing neural networks on quantum processors faces challenges related to the implementation of non-linear functions using quantum circuits. In this paper, we use repe ...

Minimizing leakage from computational states is a challenge when using many-level systems like superconducting quantum circuits as qubits. We realize and extend the quantum-hardware-efficient, all-microwave leakage reduction unit (LRU) for transmons in a circuit QED architectu ...

Future fault-tolerant quantum computers will require storing and processing quantum data in logical qubits. Here we realize a suite of logical operations on a distance-2 surface code qubit built from seven physical qubits and stabilized using repeated error-detection cycles. L ...

The preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate- ...

Simple tuneup of fast two-qubit gates is essential for the scaling of quantum processors. We introduce the sudden variant (SNZ) of the net zero scheme realizing controlled-Z (CZ) gates by flux control of transmon frequency. SNZ CZ gates realized in a multitransmon processor op ...

Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits and performs parity measurements to identify errors without destroying the encoded information. Ho ...

Conditional-phase (cz) gates in transmons can be realized by flux pulsing computational states towards resonance with noncomputational ones. We present a 40 ns cz gate based on a bipolar flux pulse suppressing leakage (0.1%) by interference and approaching the speed limit set ...

Variational quantum eigensolvers offer a small-scale testbed to demonstrate the performance of error mitigation techniques with low experimental overhead. We present successful error mitigation by applying the recently proposed symmetry verification technique to the experiment ...

We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al_{2}O_{3} thickness deposited on the MCBJ devices was va
...