Adaptive Sliding Mode Control (ASMC) aims to adapt the switching gain in such a way to cope with possibly unknown uncertainty. In state-of-the-art ASMC methods, a priori boundedness of the uncertainty is crucial to ensure boundedness for the switching gain and uniformly ultima
...
Adaptive Sliding Mode Control (ASMC) aims to adapt the switching gain in such a way to cope with possibly unknown uncertainty. In state-of-the-art ASMC methods, a priori boundedness of the uncertainty is crucial to ensure boundedness for the switching gain and uniformly ultimately boundedness. A priori bounded uncertainty might impose a priori bounds on the system state before obtaining closed-loop stability. A design removing this assumption is still missing in literature. A positive answer to this quest is given by this note where a novel ASMC methodology is proposed which does not require a priori bounded uncertainty. An illustrative example is presented to highlight the main features of the approach, after which a general class of Euler–Lagrange systems is taken as a case study to show the applicability of the proposed design.
@en