HT

Holger Thierschmann

14 records found

Authored

We experimentally study the free-space electromagnetic field emitted from a multimode rectangular waveguide equipped with a diagonal-horn antenna. Using the frequency range of 215-580 GHz, a photomixer is used to launch a free-space circularly polarized electromagnetic field, ...

We study the electrodynamic impedance of percolating conductors with a predefined network topology using a scanning microwave impedance microscope at gigahertz frequencies. For a given percolation number we observe strong spatial variations across a sample that correlate with the ...
We have realized a microstrip based terahertz (THz) near field cantilever that enables quantitative measurements of the impedance of the probe tip at THz frequencies (0.3 THz). A key feature is the on-chip balanced hybrid coupler that serves as an interferometer for passive signa ...

Entropy is a fundamental thermodynamic quantity indicative of the accessible degrees of freedom in a system. While it has been suggested that the entropy of a mesoscopic system can yield nontrivial information on emergence of exotic states, its measurement in such small electr ...

One of the hallmark experiments of quantum transport is the observation of the quantized resistance in a point contact in GaAs/AlGaAs heterostructures. Being formed with split gate technology, these structures represent in an ideal manner equilibrium reservoirs which are conne ...

We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron-electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define ...

We present a performance analysis of passive THz components based on Microstrip transmission lines with a 2-μmthin plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNX) dielectric layer. A set of thru-reflect-line calibration structures is used for basic tr ...
We present a performance analysis of passive THz components based on Microstrip transmission lines with a 2-μmthin plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNX) dielectric layer. A set of thru-reflect-line calibration structures is used for basic tr ...
Thin layers of black phosphorus present an ideal combination of a 2Dmaterial with a tunable direct bandgap and high carrier mobility. However the material suffers from degradation in ambient conditions due to an oxidation reaction which involves water, oxygen and light. Wehave me ...
A fabrication technology to realize THz microstrip lines and passive circuit components is developed and tested making use of a plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNx) dielectric membrane. We use 2 μm thick SiNx and 300 nm thick gold layers on ...
A fabrication technology to realize THz microstrip lines and passive circuit components is developed and tested making use of a plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNx) dielectric membrane. We use 2 μm thick SiNx and 300 nm thick gold layers on ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...

We have observed thermal gating, i.e. electrostatic gating induced by hot electrons. The effect occurs in a device consisting of two capacitively coupled quantum dots. The double dot system is coupled to a hot electron reservoir on one side (QD1), while the conductance of the ...