C

Cecile

22 records found

Authored

A small volume and low-mass THz spectroscopy instrument, integrated in a CubeSat platform, enables an accessible and low-cost pathway to earth science. Low-profile lens antennas emerge as a suitable candidate to realize a high gain, 50 dB, over a wide bandwidth, from 450 GHz to 5 ...
This paper presents an overview of a sub-orbital flight demonstration with a 183 GHz and 540–600 GHz limb-sounding instrument aboard a stratospheric ballooncraft. The 183 GHz band provides soundings of stratospheric H 2 O and is implemented with a hybrid CMOS-InP receiver archite ...

This article presents a low-loss silicon microelectrical mechanical system (MEMS) phase shifter operating in the 500-600 GHz band. The phase shifter consists of a \text{30-}\mu \text{m} thick perforated silicon slab that is moved in and out of a waveguide in the E-plane with a ...

In this article, we propose a hybrid electromechanical scanning lens antenna array architecture suitable for the steering of highly directive beams at submillimeter wavelengths with field-of-views (FoV) of ±25°. The concept relies on combining electronic phase shifting of a sp ...

In this contribution, we present the progress towards developing two submillimeter-wave prototypes of a scanning lens phased array. This recently-proposed array architecture can achieve high-gain, wide-scan radiation patterns with low sidelobes and only a few active elements. Mea ...

Micromachining for Advanced Terahertz

Interconnects and Packaging Techniques at Terahertz Frequencies

It is difficult to package and interconnect components and devices at millimeter-waves (mm-waves) due to excessive losses experiences at these frequencies using traditional techniques. The problem is multiplied manifold at terahertz (THz) frequencies. In this article, we revie ...

This paper presents a lens antenna that scans the beam using an integrated piezomotor at submillimeter-wave frequencies. The lens antenna is based on the concept presented by Llombart et al. in 2011, a leaky-wave waveguide feed in order to achieve wide angle scanning and seaml ...

In this contribution, we propose an antenna for a dual-band focal plane array (FPA) heterodyne receiver at 210-240 GHz and 500-580 GHz to perform cometary observations. The proposed antenna is composed of a fused silica lens fed by a leaky wave waveguide feed. The dual-band le ...

In this contribution, we propose a hybrid electromechanical scanning antenna array architecture suitable for highly directive phased arrays at submillimeter wavelengths with field-of-views (FoV) of+/-30 degrees. The concept relies on combining electrical phase shifting of a sp ...

In this review paper we explore different antenna technologies at terahertz frequencies for space science and other applications. We show that the antenna technologies generally used at lower frequencies are difficult to implement at terahertz frequencies. Additionally, one ha ...

The aim of this paper is to present an integrated beam-scanning antenna for a submillimeter wave instrument. The ultimate goal is to be able to scan the limb of the Martian surface to measure the wind, temperature and water vapor. The scanning of the limb can be achieved by the m ...

The development at 1.9 THz of a microlens antenna consisting of a leaky-wave waveguide feeding and a silicon microlens is presented in this paper. The antenna has excellent performances compared to horn antennas and can be fabricated entirely using silicon micromachining. Two ...

Using newly developed silicon micromachining technology that enables low-loss and highly integrated packaging solutions, we are developing vertically stacked transmitters and receivers at terahertz frequencies that can be used for communication and other terahertz systems. Alt ...

This paper describes the design and realization of a modulated metasurface (MTS) antenna at 300 GHz. To overcome the hurdles associated with the use of dielectric substrates in the sub-millimeter wave range, we propose an MTS structure which consists of an array of metalized c ...

We explore the use of a class of metasurface (MTS), which consists of metalized cylinders arranged in a square lattice and placed on a ground plane, for the realization of antennas at terahertz (THz) frequencies. This MTS is particularly appropriate for being micromachined out ...

Using newly developed silicon micromachining technology that enables low-mass and highly integrated receivers, we are developing state-of-the-art terahertz spectrometer instruments for space-based planetary and astrophysics orbiter missions. Our flexible receiver with integrat ...

Increasingly, terahertz systems are being used for multi-pixel receivers for different applications from mapping the star-forming regions of galaxies to stand-off radar imaging. Since microstrip patch antennas are too lossy and corrugated horn antenna arrays are difficult to m ...

This contribution presents the last developments of THz antenna arrays based on silicon micro-machined lenses for heterodyne receivers. The antenna proposed in this manuscript consists of a leaky waveguide feed that illuminates a shallow lens. It achieves high efficiencies and ...