Chenshan Gao
16 records found
1
Authored
Flexible strain sensors based on nanomaterials have sparked a lot of interest in the field of wearable smart electronics. Laser induced graphene (LIG) based sensors in particular stand out due to their straightforward fabrication procedure, three-dimensional porous structures, ...
In recent years, metal crack-based stretchable flexible strain sensors have attracted significant attention in wearable device applications due to their extremely high sensitivity. However, the tradeoff between sensitivity and detection range has been an intractable dilemma, s ...
Coalescence kinetics and microstructure evolution of Cu nanoparticles sintering on substrates
A molecular dynamics study
Nano copper sintering technology has great potential to be widely applied in the wide-bandgap semiconductor packaging. In order to investigate the coalescence kinetics of copper nano particles for this application, a molecular dynamic (MD) simulation was carried out at low tem ...
Strain-engineered S-HfSe2 monolayer as a promising gas sensor for detecting NH3
A first-principles study
The development of high-performance gas sensing materials is one of the development trends of new gas sensor technology. In this work, in order to predict the gas-sensitive characteristics of HfSe2 and its potential as a gas-sensitive material, the interactions of n ...
Effects of shell thickness on the thermal stability of Cu-Ag core-shell nanoparticles
A molecular dynamics study
For the relevant properties of pristine and doped (Si, P, Se, Te, As) monolayer WS2 before and after the adsorption of CO, CO2, N2, NO, NO2 and O2, density functional theory (DFT) calculations are made. Calculation results ...
A DFT study of As doped WSe2
A NO2 sensing material with ultra-high selectivity in the atmospheric environment
In this work, the adsorption of toxic gaseous NO2 and other gas molecules (NO, CO, CO2, N2, O2, SO2) on pristine and X-doped (X = Si, P, S, Te, As) two-dimensional (2D) WSe2 have been detailed studied by perform ...
Erratum
The inactivation mechanism of chemical disinfection against SARS-CoV-2: The MD and DFT perspectives(RSC Advances (2020) 10 (40480–40488) DOI: 10.1039/D0RA06730J)
The authors regret that one of the affiliations (affiliation f) was incorrectly omitted in the original manuscript. The corrected list of affiliations is as shown below. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and ...
In this paper, tin oxidation (SnO x )/tin-sulfide (SnS) heterostructures are synthesized by the post-oxidation of liquid-phase exfoliated SnS nanosheets in air. We comparatively analyzed the NO2 gas response of samples with different oxidation levels to study the gas sensing m ...
The inactivation mechanism of chemical disinfection against SARS-CoV-2
From MD and DFT perspectives
Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). By combining molecular dynami ...
Humidity sensors based on flexible sensitive nanomaterials are very attractive in noncontact healthcare monitoring. However, the existing humidity sensors have some shortcomings such as limited sensitivity, narrow relative humidity (RH) range, and a complex process. Herein, we ...
A DFT study of In doped Tl2O
A superior NO2 gas sensor with selective adsorption and distinct optical response
Sensitivity and selectivity are important factors for Tl2O monolayer to be the sensitive material. In this work, the sensing performance of NO2 on pure and X-Tl2O (X = In, Cd, Y, Pb, Ga, Si) sheets has been detailed investigated by means of DFT ...