Yageng Li
24 records found
1
Authored
Additively manufactured (AM) degradable porous metallic biomaterials offer unique opportunities for satisfying the design requirements of an ideal bone substitute. Among the currently available biodegradable metals, iron has the highest elastic modulus, meaning that it would b ...
Additively Manufactured Absorbable Porous Metal Implants
Processing, Alloying and Corrosion Behavior
Russian doll deployable meta-implants
Fusion of kirigami, origami, and multi-stability
Deployable meta-implants aim to minimize the invasiveness of orthopaedic surgeries by allowing for changes in their shape and size that are triggered by an external stimulus. Multi-stability enables deployable implants to transform their shape from some compact retracted state ...
Additively manufacturing (AM) opens up the possibility for biodegradable metals to possess uniquely combined characteristics that are desired for bone substitution, including bone-mimicking mechanical properties, topologically ordered porous structure, pore interconnectivity a ...
Partially due to the unavailability of ideal bone substitutes, the treatment of large bony defects remains one of the most important challenges of orthopedic surgery. Additively manufactured (AM) biodegradable porous metals that have emerged since 2018 provide unprecedented op ...
Biodegradable porous magnesium (Mg) scaffolds are promising for application in the regeneration of critical-sized bone defects. Although additive manufacturing (AM) carries the promise of offering unique opportunities to fabricate porous Mg scaffolds, current attempts to apply ...
Additively manufactured (AM) biodegradable porous zinc exhibits great potential as a promising bone-substituting biomaterial. However, there is no information whatsoever available regarding its corrosion fatigue behavior. In this study, we used direct metal printing to fabrica ...
Topological design provides additively manufactured (AM) biodegradable porous metallic biomaterials with a unique opportunity to adjust their biodegradation behavior and mechanical properties, thereby satisfying the requirements for ideal bone substitutes. However, no informat ...
From microstructural design to surface engineering
A tailored approach for improving fatigue life of additively manufactured meta-biomaterials
Recently, lattice titanium manufactured by additive manufacturing (AM) techniques has been utilized in various applications, including biomedical. The effects of topological design and processing parameters on the fatigue behaviour of such meta-biomaterials have been studied b ...
The corrosion fatigue behavior of additively manufactured topologically ordered porous iron based on diamond unit cells was studied for the first time to understand its response to cyclic loading in a simulated physiological environment. The material exhibited high fatigue res ...
Additively manufactured (AM) biodegradable metals with topologically ordered porous structures hold unprecedented promise as potential bone substitutes. The first reports on this type of biomaterials have just recently appeared in the literature. There is, however, no informat ...
Additively manufactured (AM) functionally graded porous metallic biomaterials offer unique opportunities to satisfy the contradictory design requirements of an ideal bone substitute. However, no functionally graded porous structures have ever been 3D-printed from biodegradable ...
Additively manufactured (AM) topologically ordered porous metallic biomaterials with the proper biodegradation profile offer a unique combination of properties ideal for bone regeneration. These include a fully interconnected porous structure, bone-mimicking mechanical propert ...
In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials ...