NK

Nader Khammassi

13 records found

Authored

OpenQL

A Portable Quantum Programming Framework for Quantum Accelerators

With the potential of quantum algorithms to solve intractable classical problems, quantum computing is rapidly evolving, and more algorithms are being developed and optimized. Expressing these quantum algorithms using a high-level language and making them executable on a quant ...

cQASM v1.0

Towards a Common Quantum Assembly Language

The quantum assembly language (QASM) is a popular intermediate representation used in many quantum compilation and simulation tools to describe quantum circuits. Currently, multiple different dialects of QASM are used in different quantum computing tools. This makes the interacti ...

eQASM

An executable quantum instruction set architecture

A widely-used quantum programming paradigm comprises of both the data flow and control flow. Existing quantum hardware cannot well support the control flow, significantly limiting the range of quantum software executable on the hardware. By analyzing the constraints in the con ...

Quantum Computing is an emerging field of technology with the promise that engineered quantum systems can address hard problems such as, problems with exponential compute complexity in Chemistry, Genomics, Optimization and many more applications. Quantum Computer Architecture is ...
Quantum error correction (QEC) and fault-tolerant (FT) mechanisms are essential for reliable quantum computing. However, QEC considerably increases the computation size up to four orders of magnitude. Moreover, FT implementation has specific requirements on qubit layouts, causing ...

Modern computer applications usually consist of a variety of components that often require quite different computational co-processors. Some examples of such co-processors are TPUs, GPUs or FPGAs. A more recent and promising technology that is being investigated is quantum co- ...

This article proposes a quantum microarchitecture, QuMA. Flexible programmability of a quantum processor is achieved by multilevel instructions decoding, abstracting analog control into digital control, and translating instruction execution with non-deterministic timing into e ...

The growing demand of processing power is being satisfied mainly by an increase in the number of homogeneous and heterogeneous computing cores in a system. Efficient utilization of these architectures demands analysis of memory-access behaviour of applications and perform data-co ...

A quantum machine may solve some complex problems that are intractable for even the most powerful classical computers. By exploiting quantum superposition and entanglement phenomena, quantum algorithms can achieve from polynomial to exponential speed up when compared to their ...

QX

A high-performance quantum computer simulation platform

Quantum computing is rapidly evolving especially after the discovery of several efficient quantum algorithms solving intractable classical problems such as Shor's factoring algorithm. However the realization of a large-scale physical quantum computer is very challenging and the n ...

Quantum computers promise to solve certain problems that are intractable for classical computers, such as factoring large numbers and simulating quantum systems. To date, research in quantum computer engineering has focused primarily at opposite ends of the required system sta ...

We present a scalable scheme for executing the error-correction cycle of a monolithic surface-code fabric composed of fast-flux-tunable transmon qubits with nearest-neighbor coupling. An eight-qubit unit cell forms the basis for repeating both the quantum hardware and coherent ...

Quantum computers may revolutionize the field of computation by solving some complex problems that are intractable even for the most powerful current supercomputers. This paper first introduces the basic concepts of quantum computing and describes what the required layers are for ...

Contributed

Quantum Computing is an emerging field of technology with the promise that engineered quantum systems can address hard problems such as, problems with exponential compute complexity in Chemistry, Genomics, Optimization and many more applications. Quantum Computer Architecture is ...
Quantum Computing is an emerging field of technology with the promise that engineered quantum systems can address hard problems such as, problems with exponential compute complexity in Chemistry, Genomics, Optimization and many more applications. Quantum Computer Architecture is ...