CA

C. Almendros Romero

10 records found

Authored

Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied ...

The immunization of bacteria and archaea against invading viruses via CRISPR adaptation is critically reliant on the efficient capture, accurate processing, and integration of CRISPR spacers into the host genome. The adaptation proteins Cas1 and Cas2 are sufficient for successful ...

Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1–Cas2 integrase complex2–4. A substantial fraction of CRISPR–Cas systems use a Fe ...

Vink et al. tracked single CRISPR RNA-surveillance complexes (Cascade) in the native host cell and determined the influence of Cascade copy numbers, PAM scanning speed, and the presence of CRISPR arrays and transcription on their ability to find and clear invading mobile genet ...

Integrating short DNA fragments at the correct leader-repeat junction is key to successful CRISPR-Cas memory formation. The Cas1-2 proteins are responsible to carry out this process. However, the CRISPR adaptation process additionally requires a DNA element adjacent to the CRI ...

Microbes have the unique ability to acquire immunological memories from mobile genetic invaders to protect themselves from predation. To confer CRISPR resistance, new spacers need to be compatible with a targeting requirement in the invader's DNA called the protospacer adjacen ...

CRISPR–Cas systems are able to acquire immunological memories (spacers) from bacteriophages and plasmids in order to survive infection; however, this often occurs at low frequency within a population, which can make it ...

In two recent studies in Molecular Cell, Wright et al. (2019) report complete spacer integration by a Cas1 mini-integrase and Edraki et al. (2019) describe accurate genome editing by a small Cas9 ortholog with less stringent PAM requirements.

@en

CRISPR-Cas systems adapt their immunological memory against their invaders by integrating short DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci. While Cas1 and Cas2 make up the core machinery of the CRISPR integration process, various ...

Contributed

CRISPR-Cas effectors (e.g. Cas9) have been widely used to perform genetic knock-outs. Performing knock-ins however, remains challenging due to the inefficiency of the endogenous pathway cells use to integrate a donor genetic cargo into its genome (homology directed repair) when c ...