PE

6 records found

Authored

Micromagnet-based electric dipole spin resonance offers an attractive path for the near-term scaling of dense arrays of silicon spin qubits in gate-defined quantum dots while maintaining long coherence times and high control fidelities. However, accurately controlling dense ar ...

With the rise of quantum computing, many quantum devices have been developed and many more devices are being developed as we speak. This begs the question of which device excels at which tasks and how to compare these different quantum devices with one another. The answer is g ...

The mission of QuTech is to bring quantum technology to industry and society by translating fundamental scientific research into applied research. To this end we are developing Quantum Inspire (QI), a full-stack quantum computer prototype for future co-development and collabor ...

Electrostatically defined quantum dot arrays offer a compelling platform for quantum computation and simulation. However, tuning up such arrays with existing techniques becomes impractical when going beyond a handful of quantum dots. Here, we present a method for systematicall ...

Semiconductor quantum dot arrays defined electrostatically in a 2D electron gas provide a scalable platform for quantum information processing and quantum simulations. For the operation of quantum dot arrays, appropriate voltages need to be applied to the gate electrodes that ...

We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all ...