JZ

13 records found

Authored

The presence of defects at the interface between the perovskite film and the carrier transport layer poses significant challenges to the performance and stability of perovskite solar cells (PSCs). Addressing this issue, we introduce a dual host-guest (DHG) complexation strateg ...

To increase the open-circuit voltage in solar cells based on triple cation, mixed halide perovskites, reducing recombination processes at the interfaces with transport layers (TLs) is key. Here, we investigated the charge carrier dynamics in bilayers and trilayers of Cs0. ...

The technique of alloying FA+ with Cs+ is often used to promote structural stabilization of the desirable α-FAPbI3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability h ...
As one of the fastest-growing renewable energy technologies, photovoltaics play an increasingly important role in the global energy transition. Over the past decade, metal halide perovskite solar cells (PSCs) have emerged as the most promising candidates for next-generation solar ...

State-of-the-art triple cation, mixed halide perovskites are extensively studied in perovskite solar cells, showing very promising performance and stability. However, an in-depth fundamental understanding of how the phase behavior in Cs0.05FA0.85MA0. ...

Multiple-source thermal evaporation is emerging as an excellent technique to obtain perovskite (PVK) materials for solar cell applications due to its solvent-free processing, accurate control of stoichiometric ratio, and potential for scalability. Nevertheless, the currently r ...

Metal-halide perovskites deposited by wet-chemical deposition have demonstrated great potential for various electronic applications, including solar cells. A remaining question is how light-induced excess charges become distributed over such polycrystalline material. Here, we ...

Perovskite-based solar cells have been rapidly developed, with record power conversion efficiencies now exceeding 25%. In order to rationally improve the efficiency of these devices, it is important to understand and quantify the dynamics of the excess charge carriers.

@en

Traps in the spotlight

How traps affect the charge carrier dynamics in Cs2AgBiBr6 perovskite

Suitable optoelectronic properties of lead halide perovskites make these materials interesting semiconductors for many applications. Toxic lead can be substituted by combining monovalent and trivalent cations, such as in Cs2AgBiBr6. However, efficiencies ...

Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the curr ...

Co-evaporation of metal halide perovskites by thermal evaporation is an attractive method since it does not require harmful solvents and enables precise control of the film thickness. Furthermore, the ability to manipulate the Fermi level allows the formation of a graded homoj ...

Wide-band-gap perovskites such as methylammonium lead bromide (MAPB) are promising materials for tandem solar cells because of their potentially high open-circuit voltage, which is yet still far below the maximum limit. The relatively short charge-carrier lifetimes deduced fro ...

Recent progress of vapor-deposited perovskite solar cells (PSCs) has proved the feasibility of this deposition method in achieving promising photovoltaic devices. For the first time, it is probed the versatility of the co-evaporation process in creating perovskite layers custo ...