X. Fu
17 records found
1
Authored
Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits and performs parity measurements to identify errors without destroying the encoded information. Ho ...
eQASM
An executable quantum instruction set architecture
A widely-used quantum programming paradigm comprises of both the data flow and control flow. Existing quantum hardware cannot well support the control flow, significantly limiting the range of quantum software executable on the hardware. By analyzing the constraints in the con ...
Variational quantum eigensolvers offer a small-scale testbed to demonstrate the performance of error mitigation techniques with low experimental overhead. We present successful error mitigation by applying the recently proposed symmetry verification technique to the experiment ...
Modern computer applications usually consist of a variety of components that often require quite different computational co-processors. Some examples of such co-processors are TPUs, GPUs or FPGAs. A more recent and promising technology that is being investigated is quantum co- ...
Quantum computers can solve problems that are inefficiently solved by classical computers, such as integer factorization. A fully programmable quantum computer requires a quantum control microarchitecture that connects the quantum software and hardware. Previous research has p ...
Low-temperature illumination of a two-dimensional electron gas in GaAs quantum wells is known to greatly improve the quality of high-field magnetotransport. The improvement is known to occur even when the carrier density and mobility remain unchanged, but what exactly causes i ...
This article proposes a quantum microarchitecture, QuMA. Flexible programmability of a quantum processor is achieved by multilevel instructions decoding, abstracting analog control into digital control, and translating instruction execution with non-deterministic timing into e ...
Quantum Control Architecture
Bridging the Gap between Quantum Software and Hardware
The Pauli frame mechanism allows Pauli gates to be tracked in classical electronics and can relax the timing constraints for error syndrome measurement and error decoding. When building a quantum computer, such a mechanism may be beneficial, and the goal of this paper is not o ...
We performed effective mass measurements employing microwave-induced resistance oscillation in a tunable-density GaAs/AlGaAs quantum well. Our main result is a clear observation of an effective mass increase with decreasing density, in general agreement with earlier studies wh ...
QX
A high-performance quantum computer simulation platform
Quantum computers promise to solve certain problems that are intractable for classical computers, such as factoring large numbers and simulating quantum systems. To date, research in quantum computer engineering has focused primarily at opposite ends of the required system sta ...
We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition me ...
We present two pulse schemes to actively deplete measurement photons from a readout resonator in the nonlinear dispersive regime of circuit QED. One method uses digital feedback conditioned on the measurement outcome, while the other is unconditional. In the absence of analyti ...