CS
C.J. Simao Ferreira
185 records found
1
...
Accurately determining experimental blade loading distributions is crucial for analyzing rotor performance but challenging due to the limitations of conventional measurement techniques. This paper presents a so-called wake-informed lifting line model that estimates blade loading
...
The present study extends the idea of the vertical-axis wind turbine (VAWT) “vortex generator mode” for wake recovery on a wind farm scale, working towards the concept of “regenerative wind farming”, where upstream turbines entrain vertical momentum for those downstream. An exper
...
Numerical simulations of wind farms consisting of innovative wind energy harvesting systems are conducted. The novel wind harvesting system is designed to generate strong lift (vertical force) with lifting-devices. It is demonstrated that the tip-vortices generated by these lifti
...
Large wind turbines face more intricate atmospheric conditions with turbulent coherent structures sized similarly to the rotor diameter, posing loading challenges. The present study assesses twelve distinct wind fields using the Large Eddy Simulations (LES) and International Elec
...
The aerodynamics of the multi-rotor system with lifting-devices (MRSL), an innovative concept of wind energy harvesting machine, is preliminary investigated using Large Eddy Simulation (LES) with actuator techniques. In the current setup, turbulent inflow conditions are considere
...
The airfoil DU91-W2-150 was investigated in the Low Speed Low Turbulence Tunnel at the Delft University of Technology to study unsteady aerodynamics. This experimental study tested the airfoil under a wide range of angles of attack (AoA) from 0° to 310° at three Reynolds numbers
...
This study examined the effect of vortex generators on the dynamic stall characteristics of thick wind turbine airfoils with a relative thickness of 35% and trailing edge thickness of 10% and 2%. The experiments were conducted in the TU Delft LTT wind tunnel at a Reynolds number
...
Impact of zigzag tape on blade loads and aerodynamic wake in a vertical axis wind turbine
A Delft VAWT case study
This study investigates the impact of zigzag tape on the aerodynamic performance and wake characteristics of the Delft Vertical Axis Wind Turbine (VAWT). The primary aim is to understand how the zigzag tape affects blade loads and the resulting aerodynamic wake. A comprehensive a
...
This paper studies the dynamic stall characteristics of thick flatback and nonflatback wind turbine airfoils. Two airfoils with a maximum thickness of (Formula presented.) were studied, with trailing edge thicknesses of (Formula presented.) and (Formula presented.), respectively.
...
Wake losses are a significant source of inefficiency in wind farm arrays, hindering the development of high-energy-density wind farms offshore. Studies have demonstrated the potential of vertical-axis wind turbines (VAWTs) to achieve high-energy-density configurations, due to the
...
This study investigates the potential of regenerative wind farming using multirotor systems equipped with paired multirotor-sized wings, termed atmospheric boundary layer control (ABL-control) devices, positioned in the near-wake region of the multirotor. These ABL-control device
...
Wind turbine blades in standstill or parked conditions often experience large angles of attack (AoA), where vortex-induced vibrations (VIV) may occur that increase the risk of structural damage. To better understand the VIV of airfoils at high AoA from an aerodynamic perspective,
...
Recent studies have revealed the large potential of vertical-axis wind turbines (VAWTs) for high-energy-density wind farms due to their favorable wake recovery characteristics. The present study provides an experimental demonstration and proof-of-concept for the wake recovery mec
...
This study presents results from a wind tunnel experiment on a three-bladed horizontal axis wind turbine. The model turbine is a scaled-down version of the IEA 15 MW reference wind turbine, preserving the non-dimensional thrust distribution along the blade.
Flow fields w ...
Flow fields w ...
As the demand for renewable energy increases, wind turbine rotors will become larger with slender blades. Vortex Generators (VGs) are used for passive flow control to avoid flow separation and reduce unsteady loading on the thick root section of slender blades due to their simpli
...
This study investigates the near-wake aerodynamics of actuator disks (multirotor devices) paired with lift-generating devices (rotor-sized wings, dubbed ABL-control devices). These rotor-sized wings generate vortical structures that enhance the vertical momentum flux from above t
...
The Horizon 2020 European Commission-funded project - X-ROTOR - proposes a radical rethink of the traditional vertical-axis wind turbine geometry. The X-Rotor vertical axis wind turbine relies on blade-tip mounted rotors, referred to as secondary rotors, for power generation and
...
Modern slender wind turbine blades use thick inboard airfoils and thicker trailing edges prone to flow separation. The increasing size of these flexible blades amplifies the importance of considering unsteady aerodynamics during the design phase. Environmental conditions result i
...
Hybrid computational solvers that integrate Eulerian and Lagrangian methods are emerging as powerful tools in computational fluid dynamics, particularly for external aerodynamics. These solvers rely on the strengths of both approaches: Eulerian methods efficiently handle boundary
...
Hybrid Eulerian–Lagrangian solvers have gained increasing attention in the field of external aerodynamics, particularly when dealing with strong body–vortex interactions. This approach effectively combines the strengths of the Eulerian component, which accurately resolves boundar
...