Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions

More Info


A spatiospectral localization method is discussed for processing the global geopotential coefficients from satellite mission data to investigate time-variable gravity. The time-variable mass variation signal usually appears associated with a particular geographical area yielding inherently regional structure, while the dependence of the satellite gravity errors on a geographical region is not so evident. The proposed localization amplifies the signal-to-noise ratio of the (non-stationary) time-variable signals in the geopotential coefficient estimates by localizing the global coefficients to the area where the signal is expected to be largest. The results based on localization of the global satellite gravity coefficients such as Gravity Recovery And Climate Experiment (GRACE) and Gravity and Ocean Circulation Explorer (GOCE) indicate that the coseismic deformation caused by great earthquakes such as the 2004 Sumatra–Andaman earthquake can be detected by the low-low tracking and the gradiometer data within the bandwidths of spherical degrees 15–30 and 25–100, respectively. However, the detection of terrestrial water storage variation by GOCE gradiometer is equivocal even after localization.