High-Order Isogeometric Methods for Compressible Flows

II: Compressible Euler Equations

More Info
expand_more

Abstract

This work extends the high-resolution isogeometric analysis approach established in chapter “High-Order Isogeometric Methods for Compressible Flows. I: Scalar Conservation Laws” (Jaeschke and Möller: High-order isogeometric methods for compressible flows. I. Scalar conservation Laws. In: Proceedings of the 19th International Conference on Finite Elements in Flow Problems (FEF 2017)) to the equations of gas dynamics. The group finite element formulation is adopted to obtain an efficient assembly procedure for the standard Galerkin approximation, which is stabilized by adding artificial viscosities proportional to the spectral radius of the Roe-averaged flux-Jacobian matrix. Excess stabilization is removed in regions with smooth flow profiles with the aid of algebraic flux correction (Kuzmin et al., Flux-corrected transport, chapter Algebraic flux correction II. Compressible Flow Problems. Springer, Berlin, 2012). The underlying principles are reviewed and it is shown that linearized FCT-type flux limiting (Kuzmin, J Comput Phys 228(7):2517–2534, 2009) originally derived for nodal low-order finite elements ensures positivity-preservation for high-order B-Spline discretizations.

Files

Hofem2.pdf
(.pdf | 1.25 Mb)
- Embargo expired in 23-02-2021
M_ller_Jaeschke2020_Chapter_Hi... (.pdf)
(.pdf | 0.316 Mb)

Download not available