High-energy radiation monitoring based on radio-fluorogenic co-polymerization. I

Small volume in situ probe

More Info
expand_more

Abstract

A method of radiation dosimetry is described which is based on the radiation-induced initiation of polymerization of a bulk monomer (e.g. methyl methacrylate) containing a small concentration (about 100 ppm) of a compound which is non-fluorescent but which becomes highly fluorescent when it is incorporated into a growing polymer chain of the bulk monomer. We call the overall process ‘radio-fluorogenic co-polymerization’ or RFCP for short. The method is illustrated by results on the in situ monitoring of the accumulated dose within the irradiation chamber of a cobalt-60 gamma-ray source using a small plastic capsule containing about 0.2 ml of an RFCP solution. Remote monitoring of the fluorescence is carried out on a timescale of seconds using optical fibres connecting the probe to a 360 nm LED excitation source and a miniature spectrophotometer. The fluorescence is permanent and the intensity is linearly proportional to the accumulated dose from a few tenths of a gray up to hundreds of gray. The sensitivity to dose depends on the polymerizable monomer used and obeys a square root dependence on dose rate over the range studied, 0.27–3.76 Gy min?1. The polymeric nature of the fluorescent product suggests that the RFCP effect could be used to provide fixed two- or threedimensional fluorescent images of dose deposition in gel films or phantoms.

Files