Stochastic modeling of coherent wave fields over variable depth

More Info
expand_more

Abstract

Refractive focusing of swell waves can result in fast-scale variations in the wave statistics because of wave interference, which cannot be resolved by stochastic wave models based on the radiative transport equation. Quasi-coherent statistical theory does account for such statistical interferences and the associated wave inhomogeneities, but the theory has thus far been presented in a form that appears incompatible with models based on the radiative transfer equation (RTE). Moreover, the quasi-coherent theory has never been tested against field data, and it is not clear how the coherent information inherent to such models can be used for better understanding coastal wave and circulation dynamics. This study therefore revisits the derivation of quasi-coherent theory to formulate it into a radiative transport equation with a forcing term that accounts for the inhomogeneous part of the wave field. This paper shows how the model can be nested within (or otherwise used in conjunction with) quasi-homogeneous wave models based on the RTE. Through comparison to laboratory data, numerical simulations of a deterministic model, and field observations of waves propagating over a nearshore canyon head, the predictive capability of the model is validated. The authors discuss the interference patterns predicted by the model through evaluation of a complex cross-correlation function and highlight the differences with quasi-homogeneous predictions. These results show that quasi-coherent theory can extend models based on the RTE to resolve coherent interference patterns and standing wave features in coastal areas, which are believed to be important in nearshore circulation and sediment transport.