1 |
|
End-to-end performance analysis using engineering confidence models and a ground processor prototype
article |
2015
|
Author: |
Kruse, K.W.
·
Sauer, M.
·
Jäger, T.
·
Herzog, A.
·
Schmitt, M.
·
Huchler, M.
·
Wallace, K.
·
Eisinger, M.
·
Heliere, A.
·
Lefebvre, A.
·
Maher, M.
·
Chang, M.
·
Phillips, T.
·
Knight, S.
·
Goeij, B.T.G. de
·
Knaap, F.G.P. van der
·
Hof, C.A. van 't
|
Keywords: |
Electronics · Industrial Innovation · Nano Technology · SSE - Space Systems Engineering · TS - Technical Sciences
|
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. The EarthCARE Multispectral Imager (MSI) is relatively compact for a space borne imager. As a consequence, the immediate point-spread function (PSF) of the instrument will be mainly determined by the diffraction caused by the relatively small optical aperture. In order to still achieve a high contrast image, de-convolution processing is applied to remove the impact of diffraction on the PSF. A Lucy-Richardson algorithm has been chosen for this purpose. This paper will describe the system setup and the necessary data pre-processing and post-processing steps applied in order to compare the end-to-end image quality with the L1b performance required by the science community.
|
[PDF]
[Abstract]
|
2 |
|
The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
article |
2010
|
Author: |
Graauw, T. de
·
Helmich, F.P.
·
Phillips, T.G.
·
Stutzki, J.
·
Caux, E.
·
Whyborn, N.D.
·
Dieleman, P.
·
Roelfsema, P.R.
·
Aarts, H.
·
Assendorp, R.
·
Bachiller, R.
·
Baechtold, W.
·
Barcia, A.
·
Beintema, D.A.
·
Belitsky, V.
·
Benz, A.O.
·
Bieber, R.
·
Boogert, A.
·
Borys, C.
·
Bumble, B.
·
Caïs, P.
·
Caris, M.
·
Cerulli-Irelli, P.
·
Chattopadhyay, G.
·
Cherednichenko, S.
·
Ciechanowicz, M.
·
Coeur-Joly, O.
·
Comito, C.
·
Cros, A.
·
Jonge, A. de
·
Lange, G. de
·
Delforges, B.
·
Delorme, Y.
·
Boggende, T. den
·
Desbat, J.M.
·
Diez-González, C.
·
Di Giorgio, A.M.
·
Dubbeldam, L.
·
Edwards, K.
·
Eggens, M.
·
Erickson, N.
·
Evers, J.
·
Fich, M.
·
Finn, T.
·
Franke, B.
·
Gaier, T.
·
Gal, C.
·
Gao, J.R.
·
Gallego, J.D.
·
Gauffre, S.
·
Gill, J.J.
·
Glenz, S.
·
Golstein, H.
·
Goulooze, H.
·
Gunsing, T.
·
Güsten, R.
·
Hartogh, P.
·
Hatch, W.A.
·
Higgins, R.
·
Honingh, E.C.
·
Huisman, R.
·
Jackson, B.D.
·
Jacobs, H.
·
Jacobs, K.
·
Jarchow, C.
·
Javadi, H.
·
Jellema, W.
·
Justen, M.
·
Karpov, A.
·
Kasemann, C.
·
Kawamura, J.
·
Keizer, G.
·
Kester, D.
·
Klapwijk, T.M.
·
Klein, T.
·
Kollberg, E.
·
Kooi, J.
·
Kooiman, P.P.
·
Kopf, B.
·
Krause, M.
·
Krieg, J.M.
·
Kramer, C.
·
Kruizenga, B.
·
Kuhn, T.
·
Laauwen, W.
·
Lai, R.
·
Larsson, B.
·
Leduc, H.G.
·
Leinz, C.
·
Lin, R.H.
·
Liseau, R.
·
Liu, G.S.
·
Loose, A.
·
López-Fernandez, I.
·
Lord, S.
·
Luinge, W.
·
Marston, A.
·
Martín-Pintado, J.
·
Maestrini, A.
·
Maiwald, F.W.
·
McCoey, C.
·
Mehdi, I.
·
Megej, A.
·
Melchior, M.
·
Meinsma, L.
·
Merkel, H.
·
Michalska, M.
·
Monstein, C.
·
Moratschke, D.
·
Morris, P.
·
Muller, H.
·
Murphy, J.A.
·
Naber, A.
·
Natale, E.
·
Nowosielski, W.
·
Nuzzolo, F.
·
Olberg, M.
·
Olbrich, M.
·
Orfei, R.
·
Orleanski, P.
·
Ossenkopf, V.
·
Peacock, T.
·
Pearson, J.C.
·
Peron, I.
·
Phillip-May, S.
·
Piazzo, L.
·
Planesas, P.
·
Rataj, M.
·
Ravera, L.
·
Risacher, C.
·
Salez, M.
·
Samoska, L.A.
·
Saraceno, P.
·
Schieder, R.
·
Schlecht, E.
·
Schlöder, F.
·
Schmülling, F.
·
Schultz, M.
·
Schuster, K.
·
Siebertz, O.
·
Smit, H.
·
Szczerba, R.
·
Shipman, R.
·
Steinmetz, E.
·
Stern, J.A.
·
Stokroos, M.
·
Teipen, R.
·
Teyssier, D.
·
Tils, T.
·
Trappe, N.
·
Baaren, C. van
·
Leeuwen, B.J. van
·
Stadt, H. van de
·
Visser, H.
·
Wildeman, K.J.
·
Wafelbakker, C.K.
·
Ward, J.S.
·
Wesselius, P.
·
Wild, W.
·
Wulff, S.
·
Wunsch, H.J.
·
Tielens, X.
·
Zaal, P.
·
Zirath, H.
·
Zmuidzinas, J.
·
Zwart, F.
|
Keywords: |
Infrared: general · Instrumentation: spectrographs · Methods: observational · Submillimeter: general · Techniques: spectroscopic · Infrared: general · Instrumentation: spectrographs · Methods: observational · Submillimeter: generals · Techniques: spectroscopic · Bolometers · Correlators · Frequency bands · Heterodyning · Launching · Mixers (machinery) · Observatories · Orbits · Spectrographs · Spectrometers · Instruments
|
Aims. This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods. The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s<sup>-1</sup>. Results. After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations.
|
[Abstract]
|