Repository hosted by TU Delft Library

Home · Contact · About · Disclaimer ·

The operational mechanism of ferroelectric-driven organic resistive switches

Publication files not online:

Author: Kemerink, M. · Asadi, K. · Blom, P.W.M. · Leeuw, D.M. de
Source:Organic Electronics: physics, materials, applications, 1, 13, 147-152
Identifier: 461347
doi: doi:10.1016/j.orgel.2011.10.013
Keywords: Charge transport · Data storage · Ferroelectric nanostructures · Organic semiconductors · Thin films · Crossbar arrays · Data storage · Exponential dependence · Feature sizes · Ferroelectric nanostructures · Ferroelectric phase · Information density · Injection barriers · Lower limits · Memory element · Metallic electrodes · On/off ratio · Operational mechanism · Organic semiconductor · Rewritable memory · Space-charge limited · Stray field · Switching mechanism · Charge transfer · Logic circuits · Semiconducting organic compounds · Thin films · Ferroelectricity · High Tech Systems & Materials · Industrial Innovation · Mechatronics, Mechanics & Materials · HOL - Holst · TS - Technical Sciences


The availability of a reliable memory element is crucial for the fabrication of 'plastic' logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field modulates the charge injection from a metallic electrode into the organic semiconductor, switching the diode from injection limited to space charge limited. The modeling rationalizes the previously observed exponential dependence of the on/off ratio on injection barrier height. We find a lower limit of about 50 nm for the feature size that can be used in a crossbar array, translating into a rewritable memory with an information density of the order of 1 Gb/cm2. © 2011 Elsevier B.V. All rights reserved.