Repository hosted by TU Delft Library

Home · Contact · About · Disclaimer ·
 

Mechanical Properties of Weakly Segregated Block Copolymers. 3. Influence of Strain Rate and Temperature on Tensile Properties of Poly(styrene-b-butyl methacrylate) Diblock Copolymers with Different Morphologies

Publication files not online:

Author: Weidisch, R. · Stamm, M. · Michler, G.H. · Fischer, H.R. · Jérôme, R.
Type:article
Date:1999
Institution: Technisch Physische Dienst TNO - TH
Source:Macromolecules, 3, 32, 742-750
Identifier: 234940
Keywords: Conformations · Elastic moduli · Interfaces (materials) · Molecular structure · Morphology · Polyacrylates · Polystyrenes · Strain measurement · Strain rate · Tensile strength · Thermal effects · Polybutyl methacrylate · Block copolymers

Abstract

Poly(styrene-b-butyl methacrylate) diblock copolymers, PS-6-PBMA, with different morphologies are investigated with respect to the influence of strain rate and temperature on tensile properties. In the first part the mechanical properties of bicontinuous and perforated lamellar structure are compared with other morphologies. Diblock copolymers with bicontinuous structures (39% PS) show a much higher tensile strength as well as a higher strain at break than diblock copolymers with lamellar structures (50% PS). In the second part the dependence of tensile properties on strain rate and temperature are discussed for different morphologies. A diblock copolymer with a polystyrene content of 76% PS reveals hexagpnally packed PBMA-cylinder, and the tensile strength, strain at break, and Young's modulus exceed the values of pure polystyrene at all measured strain rates. The interesting properties of PS-b-PBMA diblock copolymers are discussed with respect to the phase behavior, interface formation, and chain conformation.