Repository hosted by TU Delft Library

Home · Contact · About · Disclaimer ·

Identification of pitfalls in the analysis of heat capacity changes of β-lactoglobulin A

Publication files not online:

Author: Teeffelen, A.M.M. van · Meinders, M.B.J. · Jongh, H.H.J. de
Institution: TNO Kwaliteit van Leven
Source:International Journal of Biological Macromolecules, 1-2, 37, 28-34
Identifier: 238772
doi: doi:10.1016/j.ijbiomac.2005.08.001
Keywords: Nutrition · Food technology · Calorimetry · Heat capacity · Protein · Spectroscopy · Thermodynamics · beta lactoglobulin · tryptophan · article · circular dichroism · data analysis · differential scanning calorimetry · fluorescence · protein conformation · protein denaturation · protein folding · sensitivity analysis · thermal analysis · ultraviolet radiation · validation process · Animals · Calorimetry · Calorimetry, Differential Scanning · Cattle · Circular Dichroism · Heat · Lactoglobulins · Milk · Protein Denaturation · Protein Folding · Sensitivity and Specificity · Spectrometry, Fluorescence · Temperature · Thermodynamics · Tryptophan · Ultraviolet Rays · Urea


Information on changes in heat capacity (ΔCp) of proteins upon unfolding is used frequently in literature to understand possible follow-up reactions of protein denaturation, like their aggregation propensity. This thermodynamic property is intrinsic to the protein's architecture and unfolding and should be independent of the approach used to evaluate it. However, for many proteins, the reported values for ΔCp vary considerably. To identify whether the origin of these discrepancies lies within the experimental approach chosen and/or in the too simplified unfolding models used in the analysis of the data, we choose β-lactoglobulin A, a relatively small protein, but disputed for its two-state unfolding, and established its ΔCp from tryptophan fluorescence, near-UV circular dichroism and differential scanning calorimetric measurements. In view of the large variation for the obtained ΔCp (between 3.2 and 10.1 ± 0.8 kJ/(mol K)), it is evident that: (1) the sensitivity of different approaches to the structural changes; (2) irreversibility of unfolding; (3) non-ideal two-state unfolding behaviour need to be considered prior to interpretation. While the first two points can be addressed by using multiple approaches, the applicability of the selected unfolding behaviour for the analysis is often less easy to establish. In this work, we illustrate that by checking the wavelength-dependence used to detect protein conformational changes a tool is provided that gives a direct insight in the validity of the interpretation in these studies. An experimentally validated determination of ΔCp allows a more proper use for the mechanistic understanding of protein denaturation and its follow-up reactions, avoiding pitfalls in the interpretation. © 2005 Elsevier B.V. All rights reserved.