Repository hosted by TU Delft Library

Home · Contact · About · Disclaimer ·
 

Behavior Change Techniques in mHealth Apps for the Mental and Physical Health of Employees: Systematic Assessment

Author: Korte, E.M. de · Wiezer, N. · Bakhuys Roozeboom, M. · Vink, P. · Kraaij, W.
Type:article
Date:2018
Source:Journal of Medical Internet Research, 10, 6, e167
Identifier: 842423
doi: doi:10.2196/mhealth.6363
Keywords: Workplace · Behavior change techniques · MHealth · Mental health · Physical health · Lifestyle · Workplace · App · Employee · Work · Work and Employment · Healthy Living

Abstract

Background: Employees remain at risk of developing physical and mental health problems. To improve the lifestyle, health, and productivity many workplace interventions have been developed. However, not all of these interventions are effective. Mobile and wireless technology to support health behavior change (mobile health [mHealth] apps) is a promising, but relatively new domain for the occupational setting. Research on mHealth apps for the mental and physical health of employees is scarce. Interventions are more likely to be useful if they are rooted in health behavior change theory. Evaluating the presence of specific combinations of behavior change techniques (BCTs) in mHealth apps might be used as an indicator of potential quality and effectiveness. Objective: The aim of this study was to assess whether mHealth apps for the mental and physical health of employees incorporate BCTs and, if so, which BCTs can be identified and which combinations of BCTs are present. Methods: An assessment was made of apps aiming to reduce the risk of physical and psychosocial work demands and to promote a healthy lifestyle for employees. A systematic search was performed in iTunes and Google Play. Forty-five apps were screened and downloaded. BCTs were identified using a taxonomy applied in similar reviews. The mean and ranges were calculated. Results: On average, the apps included 7 of the 26 BCTs (range 2-18). Techniques such as “provide feedback on performance,” “provide information about behavior-health link,” and “provide instruction” were used most frequently. Techniques that were used least were “relapse prevention,” “prompt self-talk,” “use follow-up prompts,” and “provide information about others’ approval.” “Stress management,” “prompt identification as a role model,” and “agree on behavioral contract” were not used by any of the apps. The combination “provide information about behavior-health link” with “prompt intention formation” was found in 7/45 (16%) apps. The combination “provide information about behavior-health link” with “provide information on consequences,” and “use follow-up prompts” was found in 2 (4%) apps. These combinations indicated potential effectiveness. The least potentially effective combination “provide feedback on performance” without “provide instruction” was found in 13 (29%) apps. Conclusions: Apps for the occupational setting might be substantially improved to increase potential since results showed a limited presence of BCTs in general, limited use of potentially successful combinations of BCTs in apps, and use of potentially unsuccessful combinations of BCTs. Increasing knowledge on the effectiveness of BCTs in apps might be used to develop guidelines for app developers and selection criteria for companies and individuals. Also, this might contribute to decreasing the burden of work-related diseases. To achieve this, app developers, health behavior change professionals, experts on physical and mental health, and end-users should collaborate when developing apps for the working context.