Repository hosted by TU Delft Library

Home · Contact · About · Disclaimer ·

Synthesis of polystyrene-polyphenylsiloxane Janus particles through colloidal assembly with unexpected high selectivity: Mechanistic insights and their application in the design of polystyrene particles with multiple polyphenylsiloxane patches

Author: Mann, D. · Voogt, S. · Keul, H. · Möller, M. · Verheijen, M. · Buskens, P.
Publisher: MDPI AG
Source:Polymers, 10, 9
Identifier: 781368
doi: doi:10.3390/polym9100475
Article number: 475
Keywords: Materials · Janus particles · Patchy particles · Raspberry particles · Emulsion · Surfmer · Sol–gel reaction · Industrial Innovation · Nano Technology · MAS - Materials Solutions · TS - Technical Sciences


Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. Very recently, we reported the colloidal synthesis of Au semishells, making use of polystyrene-polyphenylsiloxane Janus particles as an intermediate product (Chem. Commun. 2017, 53, 3898-3901). Here, we demonstrate that these Janus particles are realized through colloidal assembly of spherical glucose-functionalized polystyrene particles and an emulsion of phenyltrimethoxysilane in aqueous ammonia, followed by interfacial polycondensation to form the polyphenylsiloxane patch. Both the polystyrene spheres and the emulsion of Ph-TMS in aqueous ammonia are stabilized by a surfmer-a reactive surfactant. The colloidal assembly reported in this manuscript proceeds with an unexpected high selectivity, which makes this process exceptionally interesting for the synthesis of Janus particles. Furthermore, we report insights into the details of the mechanism of formation of these Janus particles, and apply those to adapt the synthesis conditions to produce polystyrene particles selectively decorated with multiple polyphenylsiloxane patches, e.g., raspberry particles.