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Abstract

We present a contrast source inversion (CSI) algorithm using a finite-difference
(FD) approach as its backbone for reconstructing the unknown material
properties of inhomogeneous objects embedded in a known inhomogeneous
background medium. Unlike the CSI method using the integral equation (IE)
approach, the FD-CSI method can readily employ an arbitrary inhomogeneous
medium as its background. The ability to use an inhomogeneous background
medium has made this algorithm very suitable to be used in through-wall
imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm
the unknown contrast sources and contrast function are updated alternately to
reconstruct the unknown objects without requiring the solution of the full
forward problem at each iteration step in the optimization process. The FD
solver is formulated in the frequency domain and it is equipped with a perfectly
matched layer (PML) absorbing boundary condition. The FD operator used
in the FD-CSI method is only dependent on the background medium and
the frequency of operation, thus it does not change throughout the inversion
process. Therefore, at least for the two-dimensional (2D) configurations, where
the size of the stiffness matrix is manageable, the FD stiffness matrix can
be inverted using a non-iterative inversion matrix approach such as a Gauss
elimination method for the sparse matrix. In this case, an LU decomposition
needs to be done only once and can then be reused for multiple source
positions and in successive iterations of the inversion. Numerical experiments
show that this FD-CSI algorithm has an excellent performance for inverting
inhomogeneous objects embedded in an inhomogeneous background medium.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A large class of inverse problems deal with the determination of the constitutive material
parameters of bounded objects embedded in a known background medium. The inversion

0266-5611/08/065004+17$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0266-5611/24/6/065004
mailto:aabubakar@slb.com
http://stacks.iop.org/IP/24/065004


Inverse Problems 24 (2008) 065004 A Abubakar et al

utilizes measurements of the scattered field when the object is illuminated with a known
incident wave field. The unknown parameter to be inverted for is usually the index of refraction
which may be complex if the medium is lossy. These problems are usually addressed by
employing the volume integral equation (IE) formulation which governs the wave field within
the object. An extensive review of linear and nonlinear scalar inverse scattering algorithms
based on the volume IE formulations can be found in Habashy and Mittra [17], Lesselier and
Duchene [21], Sabatier [25] and Colton et al [13]. The results of testing various inversion
algorithms against experimental data can be found in the special section in Inverse Problems
edited by Belkebir and Saillard [7, 8]. The main disadvantage of approaches based on volume
IE formulation is that the background medium is usually a simple medium (homogeneous
or layered medium), since for efficiency it would be desirable to have its response in
(semi-)analytical form. Publications on methods that approach these problems using
differential equation (finite-difference or finite-element) formulations can be found in Rekanos
et al [23], Bao and Li [6], Bulyshev et al [9] and Abubakar et al [5]. However in these
methods, several full forward simulations have to be solved in each iteration. Hence, without
the availability of a very efficient forward solver, the inversion method using the differential
equation formulation can be very expensive.

One of the well-known full nonlinear inversion methods based on the IE formulation is the
so-called contrast source inversion (CSI) method (see van den Berg and Kleinman [29]). We
will refer to this method as IE-CSI in this paper. The method is a variant of the so-called source
type integral equation (STIE) approach described in Habashy et al [18]. This IE-CSI method
does not require the solution of a forward problem in each of its inversion iteration. In each
inversion iteration the unknown contrast sources (the product of the unknown fields and the
unknown contrast function) and the unknown contrast function are updated by one conjugate
gradient (CG) step to minimize the appropriate cost function. Inspired by the successful
implementation of the total variation (TV) algorithms in image restoration problems (see for
example Rudin et al [24], Dobson and Santosa [15] and Vogel [34]), van den Berg et al [30]
have incorporated this TV functional as an extra regularization in the IE-CSI. The drawback of
adding an extra regularization term to the cost function is the presence of an artificial weighting
parameter in the cost function, which can only be determined through considerable numerical
experimentation and a priori information about the desired profile. Therefore, van den Berg
et al [30] take the regularization as a multiplicative constraint and show that the weighting
parameter is now completely prescribed by the error norm of the cost function. Subsequently,
van den Berg and Abubakar [31] and Abubakar et al [1] have shown that a weighted L2-
norm regularization factor improved significantly the reconstruction results. This weighted
L2-norm function belongs to the regularization class described by Charbonnier et al [10]. The
latter method is called the multiplicative regularized CSI (IE-MRCSI) method and have been
successfully applied to a wide range of applications, see Abubakar et al [1, 2, 4], van den Berg
et al [32], Marklein et al [22], Semenov et al [26], Song et al [27], Yu et al [35], van Dongen
and Wright [33] and Gilmore and LoVetri [16].

Since the IE-MRCSI method is based on the IE formulation, this method is very efficient
when the Green function is available in (semi-)closed form such as an homogeneous or layered
background medium. When one would like to use an arbitrary inhomogeneous background
medium in this IE-MRCSI, the Green function has to be constructed numerically. The
computation of the Green function in this way can be very expensive. In this work we introduce
CSI and MR-CSI methods based on the finite-difference (FD) formulations for reconstructing
the unknown configuration of inhomogeneous objects immersed in a known inhomogeneous
background medium. Similar to the IE-MRCSI algorithm, the unknown contrast source and
the unknown contrast function are updated alternately to reconstruct the scatterers without
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requiring the solution of the full forward problem at each iteration step in the inversion
process. We used the FD frequency domain (FDFD) method of Hu et al [19] incorporated
with a perfectly matching layer (PML) absorbing boundary condition. An attractive feature of
introducing the FD operator into the CSI algorithm is that the stiffness matrix of FD approach
for the CSI method is only dependent on the background medium, which is invariant throughout
the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where
the size of the stiffness matrix is manageable, this stiffness matrix can be inverted using
a non-iterative inversion matrix approach such as an LU decomposition method. Hence,
this FD operator only needs to be inverted once and the results can be reused for multiple
source positions and in successive iterations of the inversion. Numerical experiments show
that this FD-MRCSI algorithm has excellent performance for various applications such as
through-wall imaging and biomedical imaging. Furthermore since this FD-MRCSI method is
readily capable of using an inhomogeneous background medium, this method is very effective
for time-lapse data inversion applications. The idea is to use the baseline model (which is
inhomogeneous) as the background medium for the FD-MRCSI algorithm. By doing so, the
inversion algorithm will always honor this baseline model, and only reconstruct changes as a
function of time.

2. Formulation

We consider a two-dimensional (2D) inverse scattering problem. The scattering configuration
consists of a bounded, simply connected, inhomogeneous object domain D located in an
inhomogeneous background medium. The object domain D contains an object B, whose
location and index of refraction are unknowns. The vector r = (x, y) denotes the vectorial
position in R2. To reconstruct the contrast function χ(r) (which is a function of the index of
refraction), we assume that the test domain is successively illuminated by a number of incident
wave fields at a single frequency, uinc

j (r) = uinc(r, rj ) at source points rj for j = 1, 2, . . . , J .
The time convention used in this paper is exp(jωt), where ω is the angular frequency of the
incident field. The sources are located in a domain S, where the measurement of the scattered
fields are also collected, see figure 1.

The total field uj and the incident field uinc
j satisfy the following Helmholtz equations,

[∇2 + k2(r)]uj (r) = −S(r, rj ), (1)[∇2 + k2
b(r)

]
uinc

j (r) = −S(r, rj ), (2)

where k(r) is the wavenumber of the full medium and kb(r) is the wavenumber of the
inhomogeneous background medium. The source terms are given by the function S(r, rj ).
We define the scattered field usct

j as follows:

usct
j (r) = uj (r) − uinc

j (r). (3)

Subtracting equation (1) from equation (2) and using the definition in equation (3), we arrive
at [∇2 + k2

b(r)
]
usct

j (r) = −k2
b(r)wj (r), (4)

where we have introduced the contrast source quantity wj as follows:

wj(r) = χ(r)uj (r), (5)

in which the contrast function χ is given by

χ(r) =
[

k(r)

kb(r)

]2

− 1. (6)
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Figure 1. Configuration of the scattering problem.

Note that the contrast function χ is zero outside the object domain D since outside
D k(r) = kb(r). For further analysis we write equation (4) using an operator notation as
follows:

Hb
[
usct

j

] = −k2
bwj . (7)

Note that the FD operator Hb is only a function of the frequency and the material property
of the background medium. The formal solution of this linear system of equations can be
represented as follows:

usct
j = −H−1

b

[
k2

bwj

]
. (8)

Note also that if the background medium is homogeneous (the wavenumber kb is constant),
then equation (7) can be written in terms of an integral operator as follows:

usct(r) = k2
b

∫
D

g(r, r′)w(r′) dr′, (9)

where g is the 2D Green’s function of a homogeneous medium (a line-source solution).
In this work, we employ equation (8) as our basic equation for the formulation of the inver-

sion problem. Hence, the measured data (the scattered fields recorded on the data domain S)
can be represented by the following operator equation,

fj = MS{Lb[wj ]}, on S, (10)

where

Lb[wj ] = −H−1
b

[
k2
bwj

]
(11)

and MS is an operator that interpolates field values defined at the finite-difference grids to
the appropriate receiver positions. Substituting equation (3) in equation (8) and multiplying it
with the contrast function χ we obtain the object equation for the contrast sources wj ,

χuinc
j = wj − χMD{Lb[wj ]}, on D, (12)

where MD is an operator that selects fields only on the object domain D. Note that in this
CSI formulation it is possible to have contrast sources defined at finer grid points than the
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grid points used for the contrast function. However in this work we assumed that the contrast
sources and the contrast function are defined on the same grid points. We denote equation (10)
as the data equation while equation (12) as the object equation. These two equations are
the basic equations from which we would like to determine the contrast sources wj and the
contrast function χ on the domain D.

3. The FD-CSI method

Following the IE-CSI method (see van den Berg and Kleinman [29] and van den Berg et al
[30]), we recast the inverse problem as a minimization of a cost function, being a linear
combination of errors in the data equation and the object equation. The method alternatively
constructs sequences of contrast sources wj,n by a conjugate gradient iterative method such
that the cost function is minimized, and the contrast χn is then determined to minimize the
error in the object equation. The cost function is a superposition of the errors in the data
equations and errors in the object equations, i.e.,

F(χ,wj ) = FS(wj ) + FD(χ,wj )

=
∑

j ‖fj − MS{Lb[wj ]}‖2
S∑

j ‖fj‖2
S

+

∑
j

∥∥χuinc
j − wj + χMD{Lb[wj ]}∥∥2

D∑
j

∥∥χuinc
j

∥∥2
D

. (13)

The L2-norms on domains S and D are defined as follows:

‖vj‖2
S =

∫
S

vj (r)vj (r) dr, (14)

‖vj‖2
D =

∫
D

vj (r)vj (r) dr, (15)

where the overbar denotes the complex conjugate of a function and vj is an arbitrary function
either on S or D. The normalization factors in the cost function are chosen so that we weigh
the errors in the data and object equation equally. Note that the FD operator Hb needs to be
inverted only once since the background medium is not changing throughout the inversion
process. In the 2D case our frequency-domain finite difference (FDFD) code (see Hu et al
[19]) employs a LU decomposition technique, hence, the cost of calculating Lb operating on
a function is relatively cheap since the LU decomposition is done only once and then stored
to be used in each step of the inversion process.

In order to set up the FD-CSI method we define the data error to be

ρj,n = fj − MS{Lb[wj,n]}, (16)

and the object error to be

rj,n = χnuj,n − wj,n, (17)

where the total field uj,n is given by

uj,n = uinc
j + MD{Lb[wj,n]}. (18)

The essential ingredients of the CSI method are the expressions for the gradients of the
cost function to be minimized. The gradient of the total cost function with respect to the
contrast source wj is given by

gw
j,n = ∂F S(wj )

∂wj

∣∣∣∣
wj =wj,n−1

+
∂FD

n (χn−1, wj )

∂wj

∣∣∣∣
wj =wj,n−1

. (19)
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For convenience, we define ρ(wj ) = fj − MS{Lb[wj ]}, then the gradient of the data cost
function FS with respect to wj is calculated as follows:

∂F S(wj )

∂wj

= lim
ε→0

FS(wj + εgj ) − FS(wj )

ε

= lim
ε→0

ηS

ε

{‖ρ(wj + εgj )‖2
S − ‖ρ(wj )‖2

S

}
= lim

ε→0

ηS

ε

{‖ρ(wj ) − εMS{Lb[gj ]}‖2
S − ‖ρ(wj )‖2

S

}
= lim

ε→0

ηS

ε

{−2ε Re〈ρ(wj ), MS{Lb[gj ]}〉S + ε2‖MS{Lb[gj ]}‖2
S

}
= −2ηS Re〈ρ(wj ), MS{Lb[gj ]}〉S
= Re〈−2ηSL∗

b{MS∗[ρ(wj )]}, gj 〉S, (20)

where L∗
b is the Hermitian transpose (the adjoint operator) of the operator Lb, MS∗ denotes

the Hermitian transpose of the operator MS and the normalization factor ηS is given by

ηS =
⎛
⎝∑

j

‖fj‖2
S

⎞
⎠

−1

. (21)

The gradient of the object cost function FD
n is calculated in a similar way. For convenience

we define r(wj ) = χn−1u
inc
j − wj + χn−1MD{Lb[wj ]}, then

∂FD
n (χn−1, wj )

∂wj

= lim
ε→0

FD
n (χn−1, wj + εgj ) − FD

n (χn−1, wj )

ε

= lim
ε→0

ηD
n

ε

{‖r(wj + εgj )‖2
D − ‖r(wj )‖2

D

}
= lim

ε→0

ηD
n

ε

{‖r(wj ) − ε(gj − χn−1MD{Lb[gj ]})‖2
D − ‖r(wj )‖2

D

}
= lim

ε→0

ηD
n

ε

{−2ε Re〈r(wj ), (gj − χn−1MD{Lb[gj ]})〉D
+ ε2‖gj − χn−1MD{Lb[gj ]}‖2

D

}
= −2ηD

n Re〈r(wj ), {gj − χn−1MD{Lb[gj ]}}〉D
= Re

〈−2ηD
n (r(wj ) − L∗

b{MD∗[χn−1r(wj )]}), gj

〉
D
, (22)

where the normalization factor ηD
n is given by

ηD
n =

⎛
⎝∑

j

∥∥χn−1u
inc
j

∥∥2

D

⎞
⎠

−1

(23)

and MD∗ denotes the Hermitian transpose of the operator MD . According to the definition
of the Fréchet derivative (see Kantorovich and Akilov [20]), from equations (20) and (22) we
observe that the gradients are given by

∂F S(wj )

∂wj

∣∣∣∣
wj =wj,n−1

= −2ηSL∗
b{MS∗[ρj,n−1]} (24)

and
∂FD

n (χn−1, wj )

∂wj

∣∣∣∣
wj =wj,n−1

= −2ηD
n (rj,n−1 − L∗

b{MD∗[χn−1rj,n−1]}). (25)
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Figure 2. The FD-CSI algorithm.

The calculation of L∗
b[vj ] is done by solving the following linear system of equations,[∇2 + k2

b

]
uj = −k2

bvj . (26)

The operator L∗
b denotes a Hermitian transpose of the operator Lb. Since the background

medium does not change throughout the inversion process and we employ a LU decomposition
technique in solving equation (26), the cost of calculating L∗

b operating on a function is

relatively cheap since the LU decomposition of
[∇2 + k2

b

]
is done only once and then stored

to be used on −k2
bvj for each step of the inversion process.

A layout of the FD-CSI algorithm is given in figure 2. More details of how to derive the
updating parameters of the algorithm can be found in van den Berg and Kleinman [29] and
van den Berg et al [30].

4. FD-MRCSI

To enhance the quality of the reconstruction in the IE-CSI method, an extra weighted L2-
norm regularization factor was added to the cost function as a multiplicative constraint, see
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van den Berg and Abubakar [31]. This technique is shown to be very robust in terms of its
noise-suppressing property and with inversion performance for wide range of applications,
see Abubakar et al [1, 2, 4], van den Berg et al [32], Semenov et al [26], van Dongen and
Wright [33] and Gilmore and LoVetri [16].

Accordingly, we also incorporate this multiplicative regularization technique in this FD-
CSI method by introducing the following cost function:

Cn(χ,wj ) = [
FS(wj ) + FD

n (χ,wj )
] × FR

n (χ), (27)

where the regularization cost function FR
n is given by

FR
n (χ) =

∫
D

b2
n(r)

[|∇χ(r)|2 + δ2
n

]
dr = ‖bn∇χ‖2

D + δ2
n ‖bn‖2

D , (28)

where

b2
n(r) = 1

A
[|∇χn−1(r)|2 + δ2

n

] . (29)

The symbol A denotes the area of the object domain D and δ2
n is given by

δ2
n = FD

n (χn−1, wj,n−1)

	A
, (30)

where 	A is the two-dimensional cell area of the discretization grid. By introducing this extra
regularization, there is no change in the updating procedure for the contrast sources wj since
FR

n (χ) does not depend on the contrast sources and FR
n (χn−1) = 1. However, the updating

for the contrast function has to now be done using CG steps. Hence, we need to obtain the
gradient of the cost function with respect to the contrast function. This gradient is calculated
as follows:

gχ
n = ∂Cn(χ,wj,n)

∂χ

∣∣∣∣
χ=χa

n

= ∂FD
n (χ,wj,n)

∂χ

∣∣∣∣
χ=χa

n

FR
n

(
χa

n

)
+

[
FS(wj,n) + FD

n

(
χa

n ,wj,n

)] ∂FR
n (χ)

∂χ

∣∣∣∣
χ=χa

n

, (31)

where χa is the contrast obtained by only minimizing the object cost function (total cost
function in the absence of the regularization factor), and

∂FD
n (χ,wj,n)

∂χ
= lim

ε→0

FD
n (χ + εd,wj,n) − FD

n (χ,wj,n)

ε

= lim
ε→0

ηD
n

ε

⎧⎨
⎩

∑
j

‖χuj,n − wj,n + εduj,n‖2
D −

∑
j

‖χuj,n − wj,n‖2
D

⎫⎬
⎭

= lim
ε→0

ηD
n

ε

⎧⎨
⎩2ε Re

∑
j

〈χuj,n − wj,n, duj,n〉 + ε2
∑

j

‖duj,n‖2
D

⎫⎬
⎭

= 2ηD
n Re

∑
j

〈χuj,n − wj,n, duj,n〉

= Re

〈
2ηD

n

∑
j

(χuj,n − wj,n)uj,n, d

〉
. (32)

According to the definition of the Fréchet derivative, from equation (32) we obtain

∂FD
n (χ,wj,n)

∂χ

∣∣∣∣
χ=χa

n

= 2ηD
n

∑
j

(
χa

n uj,n − wj,n

)
uj,n. (33)

8
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The gradient of the regularization cost function FR
n with respect to the contrast function

χ is calculated as follows:

∂FR
n (χ)

∂χ
= lim

ε→0

FR
n (χ + εd) − FR

n (χ)

ε

= lim
ε→0

‖bn∇ (χ + εd)‖2
D − ‖bn∇χ‖2

D

ε

= 2 Re 〈bn∇χ, bn∇d〉D = 2 Re
∫

D

b2
n(r)∇χ(r) · [∇d(r)]∗ dr

= 2 Re

(
−

∫
D

{∇ · [
b2

n(r)∇χ(r)
]}

[d(r)]∗ dr

)
= Re

〈−2∇ · (
b2

n∇χ
)
, d

〉
D

. (34)

According to the definition of the Fréchet derivative, from equation (34) we observe that the
gradient gR

n is given by

FR
n (χ)

∂χ
= −2∇ · (

b2
n∇χa

n

)
. (35)

We denote the FD-CSI method using this extra regularization as FD-MRCSI. A layout of the
FD-MRCSI algorithm is given in figure 3. The line minimization for the contrast function
update is performed analytically since the cost functional is a fourth-degree polynomial in
terms of αχ . The differentiation of the multiplicative cost functional with respect to αχ yields
a cubic equation with one real root and two complex conjugate roots. The real root is the
desired minimizer for αχ . More details of how to derive the updating parameters of the
algorithm can be found in Abubakar et al [1] and van den Berg et al [32].

Finite difference solver

The Helmholtz equation and all ‘H’ operators are solved via the finite difference frequency
domain (FDFD) method, using a fourth order FD scheme [19], which incorporates perfectly
matched layer (PML) boundary [12] conditions. Both fields and materials are collocated on
the center of grid points. For the efficiency of the FD-MRCSI algorithm, it is vitally important
that the operators H−1

b and (H∗
b)

−1 need to be computed only once, at the beginning of the
inversion process. This is possible because the operators depend only on the background
medium and the frequency of operation, which does not change throughout the inversion
process. These two operators are solved via an efficient LU decomposition of the resultant
discretized operator (see [14]). The decomposition is computed once at the beginning of the
inversion process, and is stored and utilized at each step of the inversion process.

The computational complexity of this linear sparse direct matrix solver takes O(N3/2)

operations for matrix factorization and O(N log(N)) operations for any additional source
calculation where N is the number of unknowns. The memory complexity of the solver is
about O(N4/3).

5. Numerical examples

To assess the quality of the reconstructed images, we define the error in the model as follows:

Fmodel = ‖εn − εtrue‖D

‖εtrue‖D

, (36)

9
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Figure 3. The FD-MRCSI algorithm.

where εn is the reconstructed permittivity value at iteration n while εtrue is the permittivity
distribution of the true model. In this paper we restrict ourselves to problems with real
permittivity contrast and inversion of synthetic data. The numerical analysis of the problems
with complex permittivity contrast will be presented in a subsequent publication.

5.1. Through-wall imaging application

One of the unique features of the FD-MRCSI method is its capability to readily employ an
inhomogeneous background medium. This makes the method very suitable to be used in an

10
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Figure 4. Through-wall imaging example: (a) a true model, (b) a initial (wall) model, (c) inversion
using IE-MRCSI and (d) inversion using FD-MRCSI. The physical dimensions of the configuration
are in meters and the colorbars denote εr − 1.

application such as the through-wall imaging (TWI) problem. In this application the goal is
to see and/or monitor offensive objects through building walls or other obstacles by properly
processing the measured electromagnetic wave fields. There exists a wide variety of techniques
for this application, however most of them are based on a linearization of the inverse problem.
The linearized techniques are well known to produce the reconstructed images with poor
quality. Song et al [28] applied IE-CSI method using a layered background medium to this
TWI problem. They showed that by applying a full nonlinear inversion approach one will be
able to obtain a high quality resolution image. However, by using that approach they were not
able to model a realistic wall configuration (the walls were modeled as layered media).

In this paper we use a more realistic building wall model. The εr −1 distribution of the true
model (including the wall) is shown in figure 4(a). Here, εr denotes the relative permittivity.
The true model consists of a wall and an inhomogeneous object. The wall is a square with
dimension of 2λ × 2λ and the thickness of the wall is 0.2λ, where λ is the wavelength
in a vacuum medium (εr = 1). The relative permittivity of the wall is εr = 1.6. The
inhomogeneous object consists of two concentric square cylinders with dimension 1.2λ×1.2λ

and 0.6λ × 0.6λ. The relative permittivity of the inner cylinder is εr = 1.6 while that of the
outer cylinder εr = 1.3.

The measurement domain S where the data were assumed to be collected is a circle with
radius 3λ surrounding the configuration. Thirty line sources and 30 line receivers were spaced
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equally along the circle. The synthetic data were generated by solving a forward scattering
problem using an integral equation approach using 60 by 60 discretization grids. To the
generated data, we added 5% random white noise.

In the inversion we employed a square object domain D with dimension 3λ×3λ discretized
into 30×30 grids. The initial model that was used in the inversion is shown in figure 4(b). The
error in the model according to equation (36) at this initial value is 20.6%. First we use
the IE-MRCSI method (with homogeneous background vacuum medium) to invert the data.
The inversion results after 1024 iterations are given in figure 4(c). The data misfit cost function
FS in equation (27) is reduced from 24.1% (at n = 1) to 3.1% (at n = 1024) while the error in
the model, Fmodel, after 1024 iterations is 10.5%. We observe that the IE-MRCSI attempted to
modify the contrast values of the wall and it failed to identify that the inhomogeneous object
consists of two concentric square cylinders. It reconstructed the objects as one homogeneous
object with an average ε ≈ 1.45 and average dimension 0.9λ×0.9λ. The results were obtained
within 230 s using a PC workstation with PIV 3.04 GHz processor.

The inversion results that were obtained using the FD-MRCSI method with a background
medium shown in figure 4(b) are given in figure 4(d). For this inversion run we use the
back-propagation [29] approach as the initial model in the inversion. We observe that the
FD-MRCSI method better preserved the wall configuration and we were able to reconstruct
the two square concentric cylinders with the correct relative permittivity values. The data
misfit cost function FS reduced from 31% to 3.9% after 1024 iterations while the error in the
model is 2.5%. The results were obtained within 1687 s using the same PC workstation. The
CPU time is nearly one order slower because the size of the FD operator is larger than the size
of the IE operator. Furthermore, the LU decomposition of Hb is consuming some CPU time.

This example clearly shows the advantage of taking the known part of the configuration
as the background medium instead of only using it as the initial guess in the inversion process.
We obtain a better reconstructed object, albeit at a higher computation cost.

5.2. Medical imaging application

Another possible application of the FD-MRCSI method is for the interpretation of biomedical
data. One of the challenges in inverting biomedical data is to obtain an accurate image beyond
the fat/skin area. The high contrast between fat/skin and muscle tissues leads to substantial
deterioration in reconstructed images. In this work we will show that by embedding the skin/fat
configuration in the background medium we are able to obtain accurate reconstruction of the
internal organs.

The test example is a simple human thorax model as shown in figure 5(a). The figure
shows the relative permittivity (εr) distribution. The relative permittivity of the fat/skin,
muscle, lung, marrow, heart muscle, bone and veins/arteries are 5.5, 53, 36, 5.5, 56, 8.5 and
63, respectively. The thorax is immersed in the water medium with relative permittivity of
εr = 74 and this immersion medium is assumed to extend to infinity.

The measurement domain S where the data are assumed to be collected is a circle with
radius 0.3 m surrounding the configuration. The source operation frequency is 434 MHz.
Hence, the wavelength in water is about λw = 8 cm. We use 64 line sources and 64 line
receivers distributed uniformly along the counter of S. The synthetic data were generated using
the integral equation solver. To the synthetic data we added 5% random noise.

In the inversion we employed a square object domain D discretized into 63 by 63 grids
with a mesh size of 6.3 mm by 6.3 mm. Hence, the size of the test domain is 5λw by 5λw. In
the inversion, we constrain the relative permittivity εr to be always larger than one. The initial
model used in the inversion is shown in figure 5(b). The model error at this initial value is
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Figure 5. Thorax imaging example: (a) a true model, (b) a initial model, (c) inversion using
IE-MRCSI and (d) inversion using FD-MRCSI. The physical dimensions of the configuration are
in centimeters and the colorbars denote the relative permittivity εr .

12%. First, we inverted the data using IE-MRCSI with a homogeneous background medium
of water. The inversion results after 1024 iterations are shown in figure 5(c). The data misfit
cost function FS in equation (27) is reduced from 22.6% (at n = 1) to 3.5% (at n = 1024)
while the error in the model after 1024 iterations is 11%.

We then employed the FD-MRCSI method using an inhomogeneous background medium
as shown in figure 5(b). The inversion results after 1024 iterations is shown in figure 5(d).
In this case we use the back-propagation [29] approach as the initial model in the inversion.
Now, the data misfit cost function FS in equation (27) is reduced from 35.8% (at n = 1) to
5.7% (at n = 1, 024) while the error in the model after 1024 iterations is 3%. Comparing
figure 5(d) to figure 5(c), we observe that the FD-MRCSI better preserved the skin/fat
configuration than the IE-MRCSI method. Hence, the FD-MRCSI method is able to accurately
reconstruct the organs inside the skin/fat area. The total computational time of the FD-MRCSI
is about 3937 s on a PC workstation with a PIV 3.04 GHz processor.

5.3. Time-lapse data inversion application

In this subsection we consider a time-lapse example to test the FD-MRCSI method and
compare its performance relative to that of the IE-MRCSI method. In the time-lapse imaging
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Figure 6. Time-lapse imaging example: (a) a true monitor model and (b) a baseline model. The
physical dimensions of the configuration are in centimeters and the colorbars denote the relative
permittivity εr .

application our goal is to reconstruct the changes in the configuration over time. We have the
so-called baseline and monitor models. The baseline model is the model at the initial time
and is either known or reconstructed from data collected at earlier time. Hence, the goal is to
reconstruct the difference between the baseline model and the monitor model. In this example
we assume that we know the baseline model. The true monitor model and the baseline model
are shown in figures 6(a) and (b). The figures show the relative permittivity distribution of the
models, which varies from 1 to 2.8. In the monitor model we have a substantial increase in
permittivity between depth z = 35 cm to z = 50 cm. The size of the configuration is 45 cm by
120 cm. We employed three frequencies of operation: f1 = 0.5, f2 = 1.5 and f3 = 2.5 GHz.
Hence, the size of the configuration is 0.75λ1 × 2λ1, 2.25λ2 × 6λ2 or 3.75λ3 × 10λ3 where
λ1, λ2 and λ3 are the wavelengths in vacuum (εr = 1) with respect to the frequencies f1, f2

and f3, respectively.
The data were numerically generated using 20 line sources located at x = 2.5 cm, with 20

line receivers located at x = 42.5 cm. The sources and receivers were uniformly distributed
from z = 0 to z = 120 cm. After generating the data we added 5% random white noise.

In the inversion we employed an object domain D of size 45 cm × 120 cm, discretized into
45 by 120 uniform grids. The initial model that was used in the inversion is the baseline model
as shown in figure 6(b). First we inverted the data using IE-MRCSI with a homogeneous
background medium of vacuum εr = 1. The inversion result after 512 iterations are shown
in figure 7(a). We observe that the IE-MRCSI method had difficulties in preserving the
background medium structure. Hence, it failed to reconstruct the difference between the two
models. Moreover, we observed the appearance of many artifacts especially in the region
close to the receiver positions.

Next, we ran the FD-MRCSI, using the baseline model in figure 6(b) as an inhomogeneous
background medium. The inversion produced very good results shown in figure 7(b). In this
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Figure 7. Time-lapse imaging example: (a) inversion using IE-MRCSI and (d) inversion using
FD-MRCSI. The physical dimensions of the configuration are in centimeters and the colorbars
denote the relative permittivity εr .

inversion run we use the back-propagation [29] approach as the initial model in the inversion.
The geometry and the value of the relative permittivity variations in the region where the
medium changes are correctly reconstructed. This demonstrates that the FD-MRCSI has the
tendency to preserve the background medium and only tries to reconstruct the anomalous
regions corresponding to permittivity changes. Furthermore by using the FD-MRCSI method
we can also focus our inversion domain to particular areas while it is impossible to do so
using the IE-MRCSI when we have an inhomogeneous background medium. This algorithm
has great potential in inverting time-lapse electromagnetic and seismic data (Abubakar et al
[2, 3]).

6. Conclusions

We presented a novel nonlinear inversion algorithm, the FD-based contrast source inversion
and compared its performance with the traditional IE-based CSI method. Our numerical
simulation results show that this algorithm reconstructs more accurate images relative to
the IE-based CSI when a prioi knowledge is known about the inhomogeneous background
medium. This improvement is more significant for configurations with very high contrast.
Similar to the IE-based CSI, there is no forward solution required in each iteration. We
showed that the FD-based CSI has great potential for various applications, especially time-
lapse inversion application. In this time-lapse application the FD-based CSI tends to preserve
the baseline model and can allow one to focus the inversion to a particular area of interest.

Application of this approach in lossy media and on some experimental data will be
presented in a subsequent publication. Finally we would like to point out that it is possible to
accelerate the convergence of the FD-based CSI method by updating the background medium
after a certain number of inversion iterations. This procedure has been employed by the
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so-called distorted Born inversion method in [11]. However this procedure may incur a cost
of solving a forward problem which can be very expensive. We leave this investigation for
one of our future research topics.
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