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Chapter 1Introdu
tionThe energy requirements around the world are expe
ted to grow. Even with bloomingand expanding green energy R&D, the developing so
iety will still need petroleum foranother tens of years. A 
on
ern might be that the oil and gas reserves that are easilya

essible have, to a large extent, been produ
ed already. The sour
es that are left areeither in geologi
ally 
ompli
ated areas or 
ontain heavy oil that is di�
ult to extra
t andpro
ess. Therefore, new te
hnologies and any possible improvements to all stages of theoil re
overy 
an 
ontribute to the world energy supply.Mathemati
al modeling of reservoirsA 
omputer model 
an help fore
ast some better known phenomena: in meteorologyit improves weather predi
tion, in 
y
lone tra
king it 
an save lives when people areeva
uated on time from the endangered areas, in reservoir engineering it helps optimizee
onomi
s. Nevertheless, 
omputer simulations 
an never pre
isely predi
t the pro
esses inthe nature whether it is reservoir engineering, weather predi
tion, spe
ies spread, market�u
tuations; the real world is far too 
omplex. Therefore, data assimilation methods needto be employed.Reservoir modeling plays an important role in enhan
ed oil re
overy planning. Itis a basis for �eld development and involves a signi�
ant number of resear
hers aroundthe world in the industry as well as in the a
ademia. The basi
 physi
s of �uid movingthrough a porous medium has been known sin
e Henry Dar
y in 1856 published hisresear
h. Modern 
omputers allow to e�
iently simulate the behavior of the �uids indi�erent reservoir 
onditions and with several 
hemi
al 
omponents present.Even though the models are not perfe
t due to simpli�
ations and approximations, abigger issue in reservoir engineering is reservoir 
ondition spe
i�
ation. Unlike in someother dis
iplines, like meteorology for instan
e, it is not possible to observe the domain ofinterest that is deep underground or, even more 
hallenging, under the sea bottom. Forthat reason, the 
ru
ial reservoir parameters like permeability or porosity are unknown.Therefore, initially the reservoir stru
tural information 
omes from the geologists andgeophysi
ists.The way the sediments form and what pro
esses 
reate the lands
ape through the agesdetermine whi
h stru
tures are to be expe
ted in the underground formations. Based onthat information (and possible observations des
ribed later) an expert derives a detailed3



geologi
al model. Two equivalent experts will produ
e two di�erent property modelsa

ording to their respe
tive experien
e and interpretations. These property models aresometimes very detailed and need to be ups
aled to make them suitable for �ow simulation.
Observations of the behavior of the reservoirsWhen an oil �eld is dis
overed there 
an be exploration data 
olle
ted. The most 
ommonlarge s
ale observations in this 
ase would be seismi
 observations. To gather seismi
 data,a 
ontrolled explosion is often performed and the signal of the re�e
ted waves is re
orded.The seismi
 waves re�e
t from subsurfa
e stru
tures in a di�erent way depending on thestru
ture's density, and that 
reates a seismi
 image. This image 
an be interpreted andinverted into subsurfa
e stru
tures.However, today there are not many new �elds being dis
overed. The industry highlyrelies on oil �elds that are at various stages of development. Then, one wants to 
olle
tdata for produ
tion improvement but at the lowest possible 
ost, and most data types areexpensive to obtain.

Figure 1.1: Simulated time-lapse gravity[mi
ro Gal℄ measurements of a water-driven gasreservoir produ
tion pro
ess at (from the top) 4,
7 and 10 years. Courtesy of M. Glegola.

Additionally to seismi
 data, there areother large s
ale observation te
hniquesavailable, for example, gravity (Figure 1.1)or magneti
 observations. While the wellsare drilled in the �eld, the ro
k that is be-ing removed 
an be a sour
e of valuableinformation about the underground stru
-ture. It is a type of hard data (data thatdoes not need to be inverted) that givesdire
t values of permeability and porositythrough lab tests on a very small s
ale. Ad-ditionally, there 
an be wireline log data
olle
ted from instruments lowered downan open borehole. These 
an provide verya

urate measurements in a small vi
inityof the well.There are di�erent types of wells, themore 
ompli
ated the more expensive theyget, rea
hing up to tens of millions of dol-lars per single well. The simplest wellsare the verti
al monitoring wells that onlygather data and do not intera
t with thesurroundings (
ommon in hydrogeology). There are inje
tion/produ
tion verti
al wellsthat 
an also 
olle
t pressure and/or �uid �ow data. The most te
hni
ally advan
ed wellsare the so-
alled smart horizontal wells that 
an rea
h areas that are di�
ult to a

ess and
an be kilometers away. These wells 
an sometimes be opened/
losed to �ow in separatesegments along their lengths and, in that way, may provide additional data.4



Data assimilationIn the 
ase that a model is well 
alibrated and its parameters are known, it would havegood predi
tive 
apa
ities, and it would be good enough to use the model in de
isionmaking 
on
erning �eld development. When the data are ri
h and pre
ise, they mightbe su�
ient for su

essful operation of the �eld without using a model. Unfortunately,in most 
ases neither the model nor the data provide good-enough information due tosimpli�
ations and un
ertainties, and the 
ombination of the two 
an help to redu
e thes
ar
ity of information.Data assimilation is a 
on
ept that 
ombines the model with observed data in orderto minimize un
ertainties and improve predi
tions. The model as a theoreti
al repre-sentation of a natural pro
ess is not perfe
t and its un
ertain parameters 
an be betterestimated given a
quired data. An improved model is expe
ted to have better predi
tive
apabilities, and in reservoir engineering 
an help planning the �eld development anddesigning produ
tion strategies.

Figure 1.2: Map of Muskauer Park at the German-Polish border. A meandering river 
uts through the park.The park's south-east border ar
 is the biggest terminalmoraine in the world.

Formally, data assimilationis a mathemati
al optimizationproblem. Typi
ally, one is inter-ested to minimize a mismat
h be-tween the data observed and thedata modeled, and this mismat
his a basis for 
reating an obje
-tive (or 
ost) fun
tion. The obje
-tive fun
tion is a highly nonlinearfun
tion of its variables in large-s
ale appli
ations. Then, theproblems are di�
ult to solve and,therefore, a variety of data as-similation te
hniques exists, noneof whi
h is universally appli
a-ble. Additionally, the problemis non-unique, i.e. there existits many solutions that minimizethe given obje
tive. In otherwords, real-life optimization prob-lems are severely ill-posed.A variety of methods for dataassimilation has been developedfor the oil industry, [62℄. Espe
ially, within the last years emphasis has been put toprodu
e geologi
ally 
onsistent permeability and porosity �elds. Geologi
al 
onsisten
yrequires the 
hara
teristi
s of the geometri
 stru
ture of the parameters to be preservedduring the data assimilation pro
ess, [10℄, [11℄. These 
hara
teristi
s are properties of the�elds that go beyond the mean and the 
ovarian
e. Natural formations show a wide rangeof patterns like river meanders, salt domes, layer-
ake formations, faults, wind or watereddies, or moraines (Figure 1.2). Dealing with patterns and handling images is 
learlyrelated to the image pro
essing resear
h area.5



Image pro
essingThe image pro
essing dis
ipline o�ers a variety of methods for dealing with images, pat-terns, features and other stru
tures. Our goal is to 
ombine data assimilation with patternmat
hing ideas. The two areas are not far apart, and a more detailed insight reveals manysimilarities. Image pro
essing problems deal with phenomena without an underlying phys-i
al model, like a sequen
e of movie snapshots. The 
onse
utive states (snapshots) areknown and the goal is to de�ne an automati
 warping pro
ess from one image to another.The warping should be done in a natural way, i.e. in a way a human observer would doit, whi
h rea
hes as far as 
ognitive s
ien
e. An example 
ould be fa
e re
ognition whenseeing one side of somebody's fa
e would make us re
ognize a person in real life. Ourbrains interpolate that partial information in an instant but this every-day experien
e isa very 
omplex task for 
omputer fa
e re
ognition software. Pattern re
ognition problemsin
lude also 
ommon �nger-print mat
hing, as present nowadays at airports, in laptops,or a poli
e database. An e
ologi
ally oriented appli
ation is, for example, salamandermat
hing, [95℄, where a digital pi
ture of the animal needs to be 
ompared to a 
olle
tionof previously gathered images.Appli
ations like 
y
lone predi
tion, [2℄, moving �re fronts, [54℄, [6℄, pre
ipitation andthunderstorms, [42℄, [100℄, [26℄, or epidemi
 spreading, [53℄, deal with stru
tured, feature-driven �elds. These approa
hes tou
h the area of image pro
essing but at the same time
ontain dynami
 models of the underlying phenomena. There, data assimilation is per-formed with a large amount of observations, namely, the parameter �eld of interest isobserved but it is di�erent from the model output. The two images present the samefeature that might be displa
ed or aligned di�erently. The di�
ulty lies in making 
on-sistent 
orre
tions to the model predi
tions that have to be approa
hed globally whereunderlying features are taken into a

ount.In this thesis we will adopt ideas from the image pro
essing area within data assim-ilation methods for reservoir engineering appli
ations. A typi
al problem in reservoirengineering is that the observations are usually very s
ar
e and nonlinearly related tothe variables that need to be estimated. We often deal with ill-posedness due to a largeamount of unknown variables 
ompared to the number of observations. The spatial un-
ertainty would usually be represented with a small ensemble of nodes, mu
h smaller thanthe number of variables. This representation is too simple to pi
ture the 
omplex spa-tial un
ertainty. This way spurious 
orrelations arise between physi
ally or ideologi
allydistant states.We will see that in reservoir engineering the unknown variables to be estimated are
ommonly permeability �elds that are nothing else but images. Often, these images havea prede�ned stru
ture that disappears during the data assimilation and, therefore, thewhole pro
ess loses the geologi
al ba
kground and realism.Obje
tive of the thesisWe propose two resear
h dire
tions to resolve the aforementioned problems:
• diminishing the spurious 
orrelations between the sparse data and distantly lo
atedvariables through ups
aled treatment of the 
ovarian
es,6



• taking into a

ount features in the domain and redu
ing the state size through ane�e
tive reparametrization.First, a type of ensemble Kalman �lter is applied, namely, an ensemble multis
ale�lter. In reservoir engineering, ensemble sequential �ltering started with [59℄ in 2002 andsin
e then various modi�
ations were implemented, [20℄. The ensemble multis
ale �lterhas originated from multis
ale trees in image pro
essing ([22℄, [92℄, pyramidal mat
hing[2℄), and it was �rst implemented for an in
ompressible �ow model, [99℄. It ups
ales the
ovarian
e matrix on a tree stru
ture, extra
ting stronger dependen
ies and introdu
inglo
alized improvements. We develop it for the estimation of the permeability in reservoirmodels and test it thoroughly for several 
ases in reservoir engineering.Se
ond, a feature modeling te
hnique 
alled grid distortion is proposed. In reservoirengineering a number of feature-based methods have been implemented already: levelsets ([58℄, [14℄), Karhunen-Loève expansion ([72℄), dis
rete 
osine transformation ([34℄,[35℄, [36℄), 
hannel parametrization ([97℄, [84℄), training-image based sampling ([49℄ andreferen
es therein) and elasti
 gridding ([76℄, [75℄). The grid distortion method is basedon smooth grid generation te
hniques, [80℄, but it 
an equivalently be viewed as an imagewarping te
hnique, [67℄. It provides smooth distortions of images adjusting the featuresin the domain, and 
an be expressed using very few parameters, whi
h makes the problembetter-posed. We pair grid distortion with the ensemble Kalman �lter algorithm as wellas with deterministi
 sear
h methods.Overview of the thesisBefore presenting the resear
h results, an introdu
tion to the modeling of reservoirs isprovided. In Chapter 2 we des
ribe the basi
 reservoir equations, show a small example ofa forward run of an in-house reservoir simulator, and outline a 
on
ept of a forward model.Data assimilation with (ensemble) Kalman �lters and optimization methods used in thethesis 
omprise Chapter 3. There, we derive basi
 (ensemble) Kalman �lter equations,point out some improvements, and present other parameter estimation methods. Theensemble multis
ale �lter and its appli
ation are presented in Chapter 4, �rst for a simple
ase and later as a full data assimilation s
heme in the 
ontext of reservoir engineeringappli
ation. The 
ontent of this 
hapter has been published in [46℄ and [45℄. Feature-based methods are dis
ussed in Chapter 5; here, the fo
us is mainly on the grid distortionmethod developed in this thesis. The leading equations for grid distortion are derived andmultiple implementations in 2D and 3D 
ases are shown. There is an intention to publishthis resear
h soon. The 
on
lusions are �nally presented in Chapter 6.
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Chapter 2Numeri
al modeling of reservoirsIn this 
hapter, a brief des
ription of reservoir modeling is presented, followed by spe
i�-
ations of the main model used in this thesis. A detailed overview of the subje
t 
an befound in [37℄, [4℄, [5℄.2.1 Modeling of reservoirsLet us present equations for a three dimensional problem in Cartesian spa
e, where x and
y are horizontal 
oordinates, z is the verti
al 
oordinate, and t is time.Several phenomena play a role in 
reating a �ow model of a reservoir with oil andwater, namely, the mass balan
e 
on
ept, Dar
y's law, equations of state, and the 
apillarypressure 
on
ept. We explain them further here.

flux out
flux in VFigure 2.1: Representation of a volume with a �ux going through it.The mass 
onservation law gives rise to one mass balan
e equation per 
hemi
al 
om-ponent c. Let Cc be the mass 
on
entration of 
omponent c in a unit volume V . Then,there exists a �ux (a rate of 
hange of mass), F , transferring the mass through the volume(Figure 2.1). The amount of 
omponent c in the volume 
an be expressed as:

∫∫∫

V

Cc dV.The mass 
on
entration Cc 
an be expressed as Cc = φ
∑
l

ρlSlyc,l with φ - porosity, ρl -the density of phase l, Sl - the saturation of phase l, yc,l - the mass fra
tion of 
omponent
c in phase l. Saturation of phase l is a fra
tion of the volume of the pores that is o

upiedby phase l; naturally, it is a value in the interval [0, 1] and the sum over all phases is

∑

l

Sl = 1.9



The 
hange in time of mass of 
omponent c is equal to
∂

∂t



∫∫∫

V

Cc dV


 = �ux in− �ux out.The di�eren
e in �uxes is a surfa
e integral of the �ux over a boundary of V , ∂V :�ux in− �ux out = −

∫∫

∂V

F · n dA,where n denotes a normal ve
tor (in the dire
tion out of the volume), and the symbol ·indi
ates a dot produ
t. This expression, a

ording to the Divergen
e Theorem, is equalto:
−
∫∫

∂V

F · n dA = −
∫∫∫

V

∇ · F dV,where ∇ · F is the divergen
e of F . This leads to
∂

∂t



∫∫∫

V

Cc dV


 = −

∫∫∫

V

∇ · F dV,and hen
e
∂

∂t
Cc = −∇ · F .Finally, allowing additional input/output sour
es q leads to:

∂

∂t
Cc = −∇ · F + q. (2.1)Assuming dead 
omponents, i.e., 
omponents that do not travel between phases, andassuming that the various 
hemi
al 
omponents in the oil 
an be lumped into one 'pseudo
omponent', two basi
 equations arise: one for oil and one for water (subs
ript w standsfor water, o for oil):

Cw = φρwSw, Co = φρoSo. (2.2)We know that for density ρ and velo
ity v, �ux is equal to F = ρv, and we want towork out the velo
ity. Dar
y's law is based on a proportionality between the pressuregradient, ∇p , and the negative velo
ity: ∇p ∼ −v or, more pre
isely,
−k

µ
∇p = v,where k and µ denote the permeability tensor and vis
osity, respe
tively. This is anequation for the 
ase of one phase present. The two-phase Dar
y's law di�erentiatesbetween the water and oil equations:

− k

µw

krw∇pw = vw,10



− k

µo
kro∇po = vo.Relative permeabilities, krw ∈ [0, 1] for water and kro ∈ [0, 1] for oil, are fun
tions of watersaturation. These relations are found experimentally. Additionally, in 3D domains theimpa
t of gravity has to be taken into a

ount and the two-phase Dar
y's law be
omes:

− k

µw
krw(∇pw − ρwg∇d) = vw, (2.3)

− k

µo

kro(∇po − ρog∇d) = vo, (2.4)where g is the gravitational a

eleration, ρw and ρo are water and oil densities, respe
tively,and d is depth pointing verti
ally downwards.The 
ompressibilities for water cw, ro
k cr and oil co are de�ned as:
cw =

1

ρw

∂ρw
∂p

, cr =
1

φ

∂φ

∂p
, co =

1

ρo

∂ρo
∂p

.The 
apillary pressure (pc) 
onstraint is related to the interfa
ial tension between thephases and the wetting properties of the ro
k whi
h need to be determined experimentally:
pc(Sw) = pw − po,where pw and po are water and oil pressures, respe
tively.For ea
h phase we insert in Dar
y's law (2.3) and (2.4), and 
on
entration de�nitions (2.2),into Equation (2.1), given that F l = ρlvl for l ∈ {w, o}:

∂

∂t
(φρlSl) = −∇ ·

(
ρl

(
− k

µl
krl (∇pl − ρlg∇d)

))
+ ql.Using the 
hain rule gives:

φ
1

φ

∂φ

∂p︸ ︷︷ ︸
cr

∂p

∂t
ρlSl + φρl

1

ρl

∂ρl
∂p︸ ︷︷ ︸
cl

∂p

∂t
Sl + φρl

∂Sl

∂t
= ρl∇ ·

(
k

µl
krl (∇pl − ρlg∇d)

)
+ ql.It leads to two 
oupled equations that need to be solved for Sw and p, [37℄, [5℄:

φ

[
Sw(cw + cr)

∂p

∂t
+

∂Sw

∂t

]
=

∂

∂x

[
k

µw
krw

(
∂p

∂x
− ρwg

∂d

∂x

)]
+

∂

∂y

[
k

µw
krw

(
∂p

∂y
− ρwg

∂d

∂y

)]
+

∂

∂z

[
k

µw

krw

(
∂p

∂z
− ρwg

∂d

∂z

)]
+ qw, (2.5)

φ

[
(1− Sw)(co + cr)

∂p

∂t
− ∂Sw

∂t

]
=

∂

∂x

[
k

µo
kro

(
∂p

∂x
− ρog

∂d

∂x

)]
+

∂

∂y

[
k

µo
kro

(
∂p

∂y
− ρog

∂d

∂y

)]
+

∂

∂z

[
k

µo

kro

(
∂p

∂z
− ρog

∂d

∂z

)]
+ qo, (2.6)11



where p = pw = po when 
apillary for
es are negle
ted. The initial 
onditions for p(x, y, z)and Sw(x, y, z) need to be spe
i�ed and typi
ally there is a no-�ow 
ondition assumed atthe boundaries.These equations 
an be spatially dis
retized and solved numeri
ally with a �nite dif-feren
e s
heme. Typi
ally, a regular 
omputational grid is used but advan
ed simulatorsmight allow non-standard unstru
tured grids. The equations shown here are 3D, two-phase equations; gas 
an be added as a third phase. The presen
e of aquifers, faults,tra
ers 
an also be a

ounted for.2.2 simsimIn this thesis a horizontal two-dimensional, two-phase (oil-water) reservoir model is usedwhere the gravity e�e
t 
an be negle
ted. Therefore, Equations (2.5) and (2.6) be
ome:
∂

∂x

(
k

µw
krw

∂p

∂x

)
+

∂

∂y

(
k

µw
krw

∂p

∂y

)
+ qw = φ

[
Sw(cw + cr)

∂p

∂t
+

∂Sw

∂t

]
,

∂

∂x

(
k

µo

kro
∂p

∂x

)
+

∂

∂y

(
k

µo

kro
∂p

∂y

)
+ qo = φ

[
(1− Sw)(co + cr)

∂p

∂t
− ∂Sw

∂t

]
.Reservoir simulator simsim (simple simulator, [37℄) has been implemented and devel-oped at Delft University of Te
hnology.After the equations are dis
retized in spa
e for the two-phase �ow, four methods forthe time integration are available, [37℄, [5℄, [4℄: expli
it Euler, impli
it Euler with Pi
arditeration, impli
it Euler with Newton iteration, and IMPES (IMpli
it Pressure Expli
itSaturation).The reservoir domain is 2D with no-�ow through the boundaries. The wells (inje
torsor produ
ers) 
an be implemented with pres
ribed initial pressures and rate 
onstraints,or with pres
ribed initial rates and pressure 
onstraints.As an example of how simsim operates, a 49 × 49 reservoir is simulated for a year.The 
hannelized permeability �eld and homogeneous porosity �eld are shown in the toprow of Figure 2.2. There, the inje
tion (I) and produ
tion (P) wells are indi
ated aswhite dots. The initial 
ondition for reservoir pressure p0 (Pa) and water saturation

s0 is [pT
0 sT0

]T
=
[
3 · 107 · 1T

492×1 0.2 · 1T
492×1

]T , where 1 is a 
olumn ve
tor of ones. Thestreamlines, [37℄, between the three inje
tors at the left boundary and the three produ
ersat the right boundary are shown in Figure 2.3. The wells operate under pres
ribed rates(±0.001 m3/s) and no pressure 
onstraints.After one year, the pressure and saturation �elds look like in the bottom row ofFigure 2.2. The gradual saturation 
hange through time is shown in Figure 2.4.The simulated data from ea
h well 
an be 
olle
ted and plotted against time. Figure 2.5shows the bottom hole and the well grid blo
k pressures together with the �ow rates andwater saturation in wells. Cumulative produ
tion data over the whole �eld are shown inFigure 2.6. 12
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Figure 2.4: Saturation 
hange during one year at equal time intervals.
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Figure 2.5: Simulated well data where 
olors indi
ate di�erent wells.14
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2.3 State-spa
e representation of the modelLet xk be a ve
tor 
ontaining all the dynami
 model variables at a dis
rete time k.In reservoir engineering it would typi
ally be dis
retized pressure and saturation pergrid blo
k: xk =
[
pT
k sTk

]T . Stati
 variables, dis
retized permeability and porosity pergrid blo
k, are stored in ve
tor m =
[
kT φT

]T . The deterministi
 nonlinear modelrepresentation 
an be formulated as:
xk+1 = fk→k+1(m,xk). (2.7)Here, fk→k+1(m,xk) is a model operator that depends on spe
i�ed stati
 parametersm andpropagates dynami
 variables xk from time k to k+1. An initial 
ondition x0 =

[
pT
0 sT0

]Tneeds to be spe
i�ed. We assume no-�ow boundary 
onditions.

16



Chapter 3Data assimilation and parameterestimationThis 
hapter presents sequential ensemble data assimilation and parameter estimationmethods that have been implemented for appli
ations in this thesis. The des
riptions ofKalman, ensemble Kalman and ensemble square root algorithms are presented. Imple-mentation improvements and parameter estimation methods 
on
lude the 
hapter.3.1 Problem setupThe task of data assimilation is to improve the results of a numeri
al model of the phenom-ena one is interested in with the available observations. Even though the physi
s of manypro
esses may be well-understood, the numeri
al models are often un
ertain due to dis-
retization errors and modeling approximations. Therefore, the model from Se
tion 2.3,Equation (2.7), 
an in general 
ontain a sto
hasti
 term expressing the model un
er-tainty. Moreover, a measurement equation is added for a full des
ription of a state-spa
erepresentation as given by:
{

xk+1 = fk→k+1(m,xk) + εk+1,
yk+1 = h(xk+1) + νk+1.

(3.1)The initial state x0 and the model parameters m need to be spe
i�ed; h is a measurementoperator expressing the relation between the state xk+1 and observations yk+1 at a giventime; and ε and ν are model noise and observation noise, respe
tively. The noise in themodel is assumed to be normally distributed ε ∼ N(0,Q) with a model error 
ovarian
ematrix Q; the noise in the data is assumed to be normally distributed ν ∼ N(0,R)with an observation error 
ovarian
e matrix R; and the model and observation errors areindependent. The error 
ovarian
e matri
es might depend on time k.The measurement operator h 
an depend on time when di�erent data types are avail-able at di�erent times. Large s
ale measurements like seismi
 observations are expensiveand not sensitive to small s
ale 
hanges, therefore, they are 
olle
ted relatively less fre-quently than well observations, for example. In real-life appli
ations data 
ome frominstruments and 
an be 
ontaminated with noise due to human or devi
e error.Upon observation arrival we 
an assess how well the model predi
ts just a
quiredobservations, and on the basis of the mismat
h dedu
t possible improvements to the17



model state. There exist many data assimilation te
hniques and they pro
ess the data indi�erent ways. A 
ommon starting point is the spe
i�
ation of an obje
tive fun
tion. Letus de�ne a ve
tor x[k] that 
ontains states xk for all time steps k, and then the obje
tivefun
tion to be minimized is
J
(
x[k]

)
=

1

2

∑

k

(yk − h(xk))
TR−1(yk − h(xk)) +

1

2

∑

k

(xb − xk)
TB−1(xb − xk) +

1

2

∑

k

(xk+1 − f(m,xk))
TQ−1(xk+1 − f(m,xk)). (3.2)We are looking for x∗

[k] = argmin
x[k]

J
(
x[k]

), where J is a nonnegative s
alar fun
tion
J : R

nx[k] −→ R
+ ∪ {0} with nx[k]

the size of ve
tor x[k]. The fun
tion in
ludes a quadrati
data mismat
h weighted by the noise 
ovarian
e matrix R, a quadrati
 ba
kground mis-mat
h measuring how di�erent the state xk is from some ba
kground state xb, weightedby a given 
ovarian
e matrix B, and a quadrati
 model mismat
h weighted by a given
ovarian
e matrix Q.3.2 The 
lassi
al Kalman �lterKalman �ltering is a sequential optimization pro
edure that 
omprises of two steps: afore
ast step and an update step, alternatingly applied until the last update time. First,the fore
ast step integrates the model to the �rst update time to 
olle
t the predi
tedobservations, then the update is performed with the aid of the data, and the model
ontinues with the new updated parameters until the next update time.Let us 
onsider a sto
hasti
 system like in Equation (3.1) but with linear model andobservation operators: {
xk+1 = Fkxk + εk+1,
yk+1 = Hkxk+1 + νk+1,

(3.3)where, as before, ε ∼ N(0,Q) and ν ∼ N(0,R), and model parameters have beenomitted. For simpli
ity of notation, we use Fk and Hk without the subs
ripts from hereon. Then, the obje
tive fun
tion in Equation (3.2) be
omes:
J
(
x[k]

)
=

1

2

∑

k

(yk −Hxk)
TR−1(yk −Hxk) +

1

2

∑

k

(xb − xk)
TB−1(xb − xk) +

1

2

∑

k

(xk+1 − Fxk)
TQ−1(xk+1 − Fxk). (3.4)18



At ea
h update time we want to 
ompute a distribution of state xk given the data yk.This distribution 
an be shown to be Gaussian, [38℄. Then, the estimate of the mean x̄k,and the 
ovarian
e Pk 
ompletely des
ribe its shape. We want to derive the equations for
x̄k and Pk that are time and measurement updates, respe
tively, where x̄k is an optimalstate estimate and Pk is its 
orresponding minimized error at time k.We will di�erentiate between fore
asted and updated variables using supers
ripts fand a (for analyzed), respe
tively. In this way, xf

k denotes fore
asted dynami
 variablesat time k and xa
k denotes analyzed dynami
 variables at the same time after the updatestep; x̄f

k and x̄a
k denote fore
asted and analyzed mean estimates at time k, respe
tively.Sin
e the model error mean is 0, the mean estimate x̄k propagates in time as givenby:

x̄k time update
x̄k+1 = Fx̄k. (3.5)Sin
e the de�nition of a 
ovarian
e matrix 
an be written asPk = E[(xk − x̄k)(xk − x̄k)

T ],let us de�ne the fore
asted and updated 
ovarian
e matri
es:
P

f
k = E[(xk − x̄

f
k)(xk − x̄

f
k)

T ],

Pa
k = E[(xk − x̄a

k)(xk − x̄a
k)

T ],for the given mean estimates x̄f
k and x̄a

k, where E[·] denotes the expe
ted value.To estimate the forward 
ovarian
e propagation we 
ompute:
xk − x̄k

(3.3), (3.5)
= Fxk−1 + εk − Fx̄k−1 = F(xk−1 − x̄k−1) + εk,and this gives

Pk time update
Pk = FPk−1F

T +Q.Let k be a �xed observation time. A Kalman �lter aims at providing an optimal stateestimate given the obje
tive fun
tion at the observation time k. The obje
tive fun
tionin Equation (3.4) for the x̄a
k estimate be
omes:

J(x̄a
k) =

1

2
(yk −Hx̄a

k)
TR−1(yk −Hx̄a

k) +
1

2
(xf

k − x̄a
k)

T (Pf
k)

−1(xf
k − x̄a

k),where the model mismat
h term disappears due to Equation (3.5). Here the ba
kgroundmismat
h term from Equation (3.4) is a distan
e to the fore
ast xf
k , and P

f
k denotes theerror in this fore
ast mismat
h.A ne
essary 
ondition for �nding the obje
tive fun
tion's minimum is that the fun
-tion's gradient vanishes:

∇x̄a
k
J = 0.We 
ompute the estimate x̄a

k. Following [38℄, we get:
−HTR−1(yk −Hx̄a

k) + (Pf
k)

−1(x̄a
k − x̄

f
k) = 0,19



and hen
e
x̄a
k =(

HTR−1H+ (Pf
k)

−1
)−1 (

HTR−1yk + (Pf
k)

−1x̄
f
k

)
=

(
RH−THTR−1H+RH−T (Pf

k)
−1
)−1

yk +
(
P

f
kH

TR−1H+P
f
k(P

f
k)

−1
)−1

x̄
f
k =

(
H+RH−T (Pf

k)
−1
)−1

yk +
(
P

f
kH

TR−1H+ I
)−1

x̄
f
k . (3.6)We want to work out the terms in front of yk and x̄

f
k in Equation (3.6). We have

(
H+RH−T (Pf

k)
−1
)−1

=
[(

H(H−T (Pf
k)

−1)−1 +R
)(

H−T (Pf
k)

−1
)]−1

= P
f
kH

T (HP
f
kH

T+R)−1,(3.7)and we want to show that
(Pf

kH
TR−1H+ I)−1 = I−P

f
kH

T (HP
f
kH

T +R)−1H (3.8)by simple multipli
ation:
(
P

f
kH

TR−1H+ I
)(

I−P
f
kH

T (HP
f
kH

T +R)−1H
)
=

I+P
f
kH

TR−1H−P
f
kH

T (HP
f
kH

T +R)−1H−P
f
kH

TR−1HP
f
kH

T (HP
f
kH

T +R)−1H =

I+P
f
kH

TR−1H−P
f
kH

TR−1R(HP
f
kH

T +R)−1H−P
f
kH

TR−1HP
f
kH

T (HP
f
kH

T +R)−1H =

I+P
f
kH

TR−1H−P
f
kH

TR−1(R+HP
f
kH

T )(HP
f
kH

T +R)−1H = I.Substituting Equations (3.7) and (3.8) in Equation (3.6), we obtain an expression forthe update equation in the Kalman �lter, [38℄:
x̄k measurement update

x̄a
k =(

H+RH−T (Pf
k)

−1
)−1

yk +
(
P

f
kH

TR−1H+ I
)−1

x̄
f
k =

P
f
kH

T
(
HP

f
kH

T +R
)−1

yk +
(
I−P

f
kH

T (HP
f
kH

T +R)−1H
)
x̄
f
k =

x̄
f
k +P

f
kH

T (HP
f
kH

T +R)−1(yk −Hx̄
f
k). (3.9)The term

K = P
f
kH

T (HP
f
kH

T +R)−1 (3.10)is 
alled the Kalman gain.The updated 
ovarian
e matrix Pa
k = E[(xk − x̄a

k)(xk − x̄a
k)

T ] for the given meanestimate x̄a
k 
an now be 
omputed from

xk − x̄a
k

(3.9)
=

xk − x̄
f
k −K(yk −Hx̄

f
k)

(3.3)
=

xk − x̄
f
k −K(Hxk + νk −Hx̄

f
k) =

(I−KH)(xk − x̄
f
k)−Kνk,whi
h gives 20



Pk measurement update
Pa

k =

(I−KH)Pf
k(I−KH)T −KRKT =

(I−KH)Pf
k − (I−KH)Pf

kH
TKT −KRKT =

(I−KH)Pf
k −K(K−1P

f
k −HP

f
k +RH−T )HTKT (3.10)

=

(I−KH)Pf
k −K

(
(HP

f
kH

T +R)H−T (Pf
k)

−1P
f
k −HP

f
k +RH−T

)
HTKT =

(I−KH)Pf
k.Kalman �ltering, [40℄, was originally developed for linear, Gaussian problems. It pro-vides the optimal estimate of the state of the system and the 
ovarian
e of the estimationerror. It is also able to propagate these statisti
s in time. Models are, however, rarelylinear and variables are Gaussian only in some spe
i�
 
ases. Lately, for 
omputationalreasons and to allow for nonlinear models, the ensemble Kalman �lter (EnKF) was intro-du
ed, [16℄, [20℄, and be
ame a new standard for sequential data assimilation.3.3 The Ensemble Kalman Filter - EnKFWe present a sequential ensemble-based algorithm for nonlinear Gaussian pro
esses, re
allEquations (3.1): {

xk+1 = fk→k+1(m,xk) + εk+1,
yk+1 = h(xk+1) + νk+1.The ensemble Kalman �lter, [16℄, represents the distribution of the state ve
tor xk ∈ R

ns×1by a sample (a sample from the distribution of interest), i.e., a 
olle
tion of possiblerealizations, also known as an ensemble, with ne members:
X = [x1 x2 ... xne] ∈ R

ns×ne.The time index has been omitted for 
larity sin
e all the variables 
onsidered here aretaken at the same time step, namely, a dis
rete update step.Let Y be a matrix holding ne 
opies of the observation ve
tor:
Y = [y y ... y] ∈ R

no×ne ,where no is the number of observation points. The ve
tor of observations y is an input tothe data assimilation algorithm.Let Ŷ be a matrix holding an ensemble of predi
ted measurements from ea
h repli
ate:
Ŷ = [h(x1) h(x2) ... h(xne)] ∈ R

no×ne.This 
olle
tion of ve
tors is a result of integrating the given model to the 
urrent up-date time for ea
h ensemble member, ne-times, and 
omputing the fore
asted observationvalues. For 
ompli
ated models this fore
ast step 
an be very time 
onsuming for largeensemble sizes. 21



The ensemble Kalman update is expressed as:
Xa = Xf +K(Y − Ŷ),and the Kalman gain K ∈ R

ns×no is equal to:
K = Cov(Xf , Ŷ)[Cov(Ŷ, Ŷ) +R]−1,where Cov(·, ·) denotes a sample (
ross-)
ovarian
e matrix.This algorithm was initially des
ribed in [16℄ in 1994. The original formulation waswrong and its 
orre
tion was published in [8℄ where it is explained that to preserve 
orre
tstatisti
s the observations need to be perturbed. Sin
e then a number of improvementshave been introdu
ed of whi
h many were applied to reservoir engineering, [1℄. Let Y bean ensemble of perturbed measurements:

Y = [y + ν1 y + ν2 ... y + νne ] ∈ R
no×ne,where ν is a measurement error sampled from a normal zero mean distribution with a given
ovarian
e matrix R that expresses our belief in the un
ertainty of the measurements.The setup of the ensemble Kalman �lter, where the distribution of a variable is rep-resented by a sample, is easy to implement. Even though it has been used su

essfullyin many appli
ations, it is known to 
ause 
ompli
ations and some of them are dis
ussedhere further.The square root implementation of the ensemble Kalman �lter is presented sin
e it isthe version used throughout this work. The basi
 idea of the ensemble Kalman �lter isan introdu
tion to almost every major se
tion for the sake of 
ompleteness. It might alsobe presented from di�erent (but equivalent) angles.3.3.1 The Ensemble Square-Root Filter - EnSRFIn the 
lassi
al ensemble Kalman �lter as formulated in the previous se
tion, the 
on-stru
tion of the ensemble of perturbed measurements Y 
ontains noise that 
an be anadditional sour
e of sampling error for small ensemble sizes, [19℄. Therefore, square rootalgorithms were developed to avoid the use of perturbed measurements. Note that theversion presented here in
ludes a matrix of perturbations as a sample representation of a
ovarian
e matrix, [18℄, whi
h lowers the 
omputational burden.Square root algorithms use an ensemble representation like the EnKF, but updatethe mean and deviations from the mean separately as in the traditional Kalman �lter.In fa
t, both equations, the update of the mean and the update of the perturbations,
ould be dire
tly derived from the 
lassi
al Kalman �lter equations but with the modi�-
ations regarding the ensemble representations. A square root version of the �lter is usedthroughout this thesis. The basis of the algorithm was taken from [18℄, Se
tion 7.4.21therein, and improved as des
ribed in [70℄ and [51℄. Other versions of square root �ltersexist, see for example [83℄.Let us again de�ne:

• X = [x1 x2 ... xne ] ∈ R
ns×ne - an ensemble of state ve
tors,1Implementation thanks to Dr. B. Jafarpour. 22



• Y = [y+ν1 y+ν2 ... y+νne] ∈ R
no×ne - an ensemble of perturbed measurements,

• Ŷ = [h(x1) h(x2) ... h(xne)] ∈ R
no×ne - an ensemble of predi
ted measurements.Additionally, we need:

• 1n ∈ R
n×n - a matrix where ea
h element is equal to 1

n
,

• I - identity matrix of a proper size,
• X̄ = X1ne

∈ R
ns×ne - a matrix storing the ensemble mean ne-times,

• X′ = X−X1ne
= X− X̄ - an ensemble-perturbation matrix,

• E = [ν1 ν2 ... νne ] - an ensemble of measurement perturbations,
• S = Ŷ − Ŷ1ne

- a matrix holding perturbations of the predi
ted measurements.We want the above variables to be understood as (derived from) fore
asted variables,for the ease of notation omitting the supers
ript f . The EnSRF de�nes the updatedensemble as a sum of updated ensemble mean and updated ensemble perturbations, thatis:
Xa = (X̄)a + (X′)aand

(X̄)a = X1ne
+X′STX1(I+Σ2

1)
−1XT

1 (Y1ne
− Ŷ1ne

),

(X′)a = X′V2

√
I−ΣT

2Σ2V
T
2 .The last multipli
ation by VT

2 provides the unbiasedness of the �lter, [70℄, [51℄, [19℄,sin
e it was shown that the original algorithm without the last multipli
ation does not
onserve the mean. To 
ompute these equations we need to know matri
es: Σ1, X1, Σ2,and V2. Let the operator tSVD
= denote the thin singular value de
omposition, [27℄, thenthe following sequen
e of equations 
ompletes the EnSRF update step:1. S

tSVD
= U0Σ0V

T
0 ,2. X0 = Σ−1

0 UT
0E,3. X0

tSVD
= U1Σ1V

T
1 ,4. X1 = U0(Σ

−1
0 )TU1,5. X2 = (I+Σ2
1)

−
1
2XT

1 S,6. X2
tSVD
= U2Σ2V

T
2 .Note that the equation for the perturbation update (X′)a 
omes from the 
ovarian
emeasurement update in the 
lassi
al Kalman �lterPa = (I−KH)Pf sin
ePa = (X′)a[(X′)a]T ,

Pf = X′(X′)T and we 
an write, [19℄: 23



Pa = (I−KH)Pf

Pa = Pf −PfHT (HPfHT +R)−1HPf

(X′)a[(X′)a]T = X′(X′)T −X′(X′)THT (HX′(X′)THT +R)−1HX′(X′)T

(X′)a[(X′)a]T = X′
[
I− (X′)THT (HX′(X′)THT +R)−1HX′

]
(X′)Twhere we used Equation (3.10) for the Kalman gain. Then, if we write

I− (X′)THT (HX′(X′)THT +R)−1HX′ = TTTwe obtain
(X′)a[(X′)a]T = X′TTT (X′)T = X′T(X′T)T .Finally, the square root perturbation update in a general form is:

(X′)a = X′T.Matrix T is 
alled a square root transformation matrix and it is not unique, see [51℄ and[70℄ for a detailed dis
ussion.3.4 Implementation issues of the Ensemble Kalman Fil-terThe EnKF or EnSRF even in the most e�
ient form will almost never give satisfa
toryresults when implemented for the �rst time in a new appli
ation. To be able to apply itsu

essfully, di�erent modi�
ations, [1℄, [3℄, [19℄, 
an be used that depend on the problemsen
ountered in a given setup. A number of improvements used in our implementations ispresented in this se
tion.In today's resear
h we want not only the dynami
 model variables xk to be esti-mated but also additional un
ertain parameters m. When xk follows the model equation
xk+1 = fk→k+1(m,xk), m does not 
hange in time, i.e., mk+1 = Imk where I is an identitymatrix.Updating all variablesTypi
ally, all variables, dynami
 and stati
, are updated and they 
omprise the stateve
tor. Then, the state-spa
e representation is of the form:






 xk+1

mk+1


 =


 fk→k+1(mk,xk)

Imk


+


 εk+1

0


 ,

yk+1 = h(xk+1) + νk+1.The measurement operator h works on the model outputs, where the model runs fromtime k to k + 1. 24



In reservoir engineering the reservoir simulator is 
onsidered to 
ontain no randomness.It is assumed that the model represents the physi
s of the �uid dynami
s perfe
tly, andthat all un
ertainty is in the model parameters. Therefore, the state-spa
e representation
an be written as: 




 xk+1

mk+1


 =


 fk→k+1(mk,xk)

Imk


 ,

yk+1 = h(xk+1) + νk+1.A 
ommon problem in data assimilation for this 
ase is the un-physi
al updates of thevariables. The laws of physi
s that determine the shape of pressure or saturation �eldsare not taken into a

ount when a linear update is performed. The �elds represent adynami
 state at a given point in time that is used for simulation initialization and mustbe physi
ally meaningful.Parameter updateOne way to avoid un-physi
al updates of the dynami
 variables is updating the 
onstantparameters only, and leaving the dynami
 variables un
hanged at the update time step.Then, the state-spa
e representation is rewritten as:




mk+1 = Imk,

yk+1 = h (fk→k+1(mk,xk)) + νk+1.In this 
ase, the model pro
ess 
ontinues with dynami
 variables that were the resultof a forward model xk = fk−1→k(mk−1,xk−1), therefore, they are physi
ally meaningful.Nevertheless, the dynami
 variables xk are now in
onsistent with the 
onstant variables
mk sin
e the latter are a result of a linear update. The in
onsisten
y might not allow theforward model to 
ontinue. The solution to this problem 
ould be using reruns.RerunsReruns, [62℄, [96℄, are used if one 
an a�ord running the model from time zero after ea
hanalysis time using spe
i�ed initial 
onditions, and updated 
onstant variables from thelast update step. The advantage is that the model starts with the updated 
onstantvariables from an initial state su
h that no in
onsisten
y appears, and it is unlikely tointrodu
e physi
ally-impossible relations. Then, the state-spa
e representation is of theform: 




mk+1 = Imk,

yk+1 = h (f0→k+1(mk,x0)) + νk+1.Alternatively, one 
an rerun the model only after sele
ted update steps. These 
an be theupdate steps with more observations available or update steps ful�lling a given 
riterium,[15℄. 25



Asyn
hronous s
hemeIn the 
ase when observations are obtained very frequently, it be
omes ine�
ient to updatethe state at ea
h measurement time step. The model would need to be run and stoppedvery often whether we pro
eed in between time steps or use reruns. The asyn
hronousEnKF [71℄ was proposed to improve data assimilation for this kind of 
ase studies.Let us divide the time domain into assimilation windows indexed by K. Window
K 
ontains nK measurement times. Index kK runs through the measurement times inwindow K. The predi
ted data for time window K + 1 be
omes a 
olle
tion of nK+1predi
ted data sets and the state-spa
e representation be
omes:





mK+1 = ImK ,

yK+1 =




h
(
f·→kK+1=1(mK ,x·)

)

h
(
f·→kK+1=2(mK ,x·)

)...
h
(
f·→kK+1=nK+1

(mK ,x·)
)



+ νK+1,

where x· is a dynami
 variable from a 
hosen earlier point in time.Variable transformationAt the update step, a magnitude of the updated variable might ex
eed its feasible bound-aries, [63℄, and the variable be
omes physi
ally meaningless. One solution is to '
rop' theoutliers to stay within the boundaries of the interval of feasible values. It 
an, however,
reate non-smooth 
hanges in the variable's values whi
h is not always desirable. Anothersolution is to proje
t the variable values to a spa
e with in�nite bounds, update it, andproje
t ba
k to its bounded spa
e. Let [minu, maxu] be an interval of possible values forvariable u, and let T be a bije
tion su
h that:
T : [minu, maxu] −→ R,and then its inverse fun
tion is T−1 : R −→ [minu, maxu].At any update time (time subs
ript omitted for 
larity) the following steps are taken:

• forward-transformation T on the fore
asted variable:
T (uf) = ũf ,

• the update
update(ũf) = ũa,

• ba
kward-transformation T−1 on the update:
T−1(ũa) = ua.26



Note that variable u is understood as a single physi
al notion. If one wishes to updatevariables with di�erent magnitudes, values or physi
al interpretation, several T fun
tionsare needed.If the transformation is applied in this work, it is the one introdu
ed in [24℄. Let
mm = maxu+minu

2
and mr =

maxu−minu

2
. Then the forward transformation is:

T (uf) = ũf = ln
uf −minu

maxu − uf
.The ba
kward transformation after the update is:

T−1
α (ũa) = ua = mm +mr

exp(αũa)− 1

exp(αũa) + 1
,and it is illustrated in Figure 3.1 for several α values. For the implementations in thisthesis we simply pi
k α = 1. Di�erent values of α re�e
t a tradeo� between the smoothnessand the a

ura
y of the ba
kward-transformation.
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α=1/3Figure 3.1: The ba
kward transformation with di�erent values of α.Lo
alizationOften, small ensembles 
an introdu
e false (mu
h too large or mu
h too small) spatial
orrelations between variables. These 
orrelations 
an trigger an ensemble Kalman �lterto misjudge the magnitude of a measurement update. It in turn might lead to ensemble
ollapse in the sense that it would 
onverge to a state di�erent from the true state.To 
orre
t for a misrepresented un
ertainty, a 
ovarian
e lo
alization has been pro-posed and a review of possible methods is presented in [1℄. In general, the lo
alizationaims at 
orre
ting an ensemble 
ovarian
e matrix Pe with an element-by-element multi-pli
ation by a 
ovarian
e-lo
alization matrix ρ:

ρ ◦Pe : (ρ ◦Pe)i,j = (ρ)i,j · (Pe)i,j,and using the latter in pla
e of Pe in the ensemble Kalman measurement update equa-tions. Provided that the 
ovarian
e-lo
alization matrix ρ is positive-de�nite, and sin
ethe ensemble 
ovarian
e Pe is always positive-semide�nite with positive main diagonal27



entries, the S
hur produ
t ρ ◦ Pe is positive-de�nite, a

ording to the S
hur produ
ttheorem, [1℄. That is, the S
hur produ
t is again a 
ovarian
e.Di�erent lo
alization te
hniques are used depending on the problem at hand. Most
ertainly, a lo
alization is ne
essary if only a small ensemble 
an be used or there is a vastamount of spatially distributed data available.3.5 Parameter estimation problemIn reservoir engineering the model parameters m, 
ontaining for example permeability orporosity �elds, are un
ertain. Therefore, often one wants to estimate their value givenobservations, and the obje
tive fun
tion in (3.2) turns into:
J
(
x[k](m)

)
=

1

2

∑

k

(yk − h(xk(m)))TR−1(yk − h(xk(m))) +

1

2

∑

k

(xb − xk(m))TB−1(xb − xk(m)) +

1

2
(m0 −m)TP−1

0 (m0 −m),where we do not 
onsider the model noise, and add a prior term where m0 is an initialguess and P0 its error. Sin
e m has no underlying dynami
s, the problem turns into aparameter estimation problem and one wants to estimate m∗ su
h that
m∗ = argmin

m

J(x[k](m)).The obje
tive is a s
alar fun
tion, J : Rnm −→ R
+∪{0}, whose domain is a set of possiblevalues of parameters m for whi
h J(x[k](m)) makes sense, and nm is the size of ve
tor m.Minimizing a fun
tion of several variables might be 
hallenging espe
ially if nm is verylarge. In reservoir engineering appli
ations nm 
an rea
h 106 and even more for real lifelarge �elds.To �nd the obje
tive fun
tion's minimum m∗ we start from investigating its gradientwith respe
t to the sought parameters, ∇mJ. Using the 
hain rule, the formula for thegradient 
an be 
omputed and it is equal to:

∇mJ =

−
∑

k

(
∂xk

∂m

)T (
∂h

∂xk

)T

R−1(yk − h(xk(m)))

−
∑

k

(
∂xk

∂m

)T

B−1(xb − xk(m))

−P−1
0 (m0 −m).This gradient is not always available or easy to 
ompute, therefore, gradient-basedminimization methods (e.g. BFGS [24℄, variational methods [12℄, [47℄, [52℄, steepest28



des
ent) might be prohibitive. It 
omes from the fa
t that it is di�
ult to 
ompute thederivatives in the gradient formula. If the observation operator is simple, ∂h
∂xk


ould be easyto 
ompute. The main di�
ulty are usually the derivatives ∂xk

∂m
whi
h are the derivativesof the forward model with respe
t to the model parameters. Variational te
hniques,[47℄, implement adjoints that are used to e�
iently 
ompute the gradient; for 
omplexnonlinear models they are di�
ult to derive, too. Additionally, due to a high nonlinearityof a 
ost fun
tion they might be ine�e
tive in �nding a global minimum. The gradients
ould alternatively be 
omputed using a simple �nite di�eren
e s
heme but for the largesizes of m it is not feasible.Another approa
h to solving the minimization problem is the use of gradient-freemethods (e.g. Kalman �ltering [40℄, [1℄, parti
le �lters [85℄, [86℄, pattern sear
h methods[48℄, or geneti
 algorithms [66℄, [73℄). In this thesis only gradient-free methods wereimplemented and they are presented in detail in the following se
tions.In the 
ase when the parameter spa
e is very large and the observations are s
ar
e,there are many degrees of freedom while �tting the data, and the solution is most 
ertainlynon-unique. Then it might be advantageous to 
onstrain the parameter spa
e to only sometype of solutions, and express it using a smaller set of variables via a given transformation.Let us redu
e the parameter spa
e m = m(α) and rewrite the obje
tive as a fun
tion of

α:
J(x[k](m(α))) =

1

2

∑

k

(yk − h(xk(m(α))))TR−1(yk − h(xk(m(α)))) +

1

2

∑

k

(xb − xk(m(α)))TB−1(xb − xk(m(α))) +

1

2
(α0 −α)TP−1

0 (α0 −α).Analogi
ally, the prior term 
ontains an initial guess α0 and its error P0. Here we arelooking for the minimum
α∗ = argmin

α

J(x[k](m(α))),where J : Rnα −→ R
+∪{0} and nα ≪ nm for nα being the size of ve
tor α. The problemposed this way might still be too 
ompli
ated to solve with gradient-based methods eventhough the size of the parameter spa
e has been redu
ed. It is often due to a high degreeof nonlinearity asso
iated with the redu
ed spa
e.The problem setup in this thesis always 
on
erns estimation of permeability parame-ter (impli
itly α or expli
itly m), that is, only 
onstant un
ertain parameters are sought.Not only Kalman �ltering 
an be applied to �nd the desired parameters but also otherparameter estimation te
hniques 
ould be e�
ient. We 
hoose to use dire
t sear
h meth-ods, [48℄, for a redu
ed-parameter sear
h spa
e sin
e they are 
omputationally e�
ientonly if the number of variables is small and this is the 
ase in our studies. Dire
t sear
hmethods are slow but less prone to stu
k in a lo
al minimum. They are global optimiza-tion s
hemes that are appropriate for fun
tions with 
ompli
ated dependen
ies like in theexamples 
onstru
ted in this thesis. Not for all the dire
t sear
h methods there exists a29




onvergen
e proof but many su

essful implementations en
ourage their use. They sear
hthrough the parameter spa
e along spe
i�ed paths (
alled meshes or latti
es) and are notbased on gradients. The algorithm 
omputes the obje
tive fun
tion value for ea
h pointand 
ompares it to the best solution so far. It rede�nes the mesh when a better solu-tion is found or all the points in the 
urrent mesh have been visited. The dire
t sear
halgorithms di�er with respe
t to the way the mesh is being de�ned. The advantage ofsear
h methods is that they are relatively easy to implement 
ompared to gradient-basedte
hniques. They 
an also form a hybrid with gradient-based te
hniques, for example, asan initial-guess estimator.In Se
tion 5, a Latin hyper
ube sear
h, [56℄, is applied. The algorithm samples pointsfrom permutations of a �nite set of n 
onse
utive natural numbers where n is the numberof variables in the sear
h spa
e. The permutation values are perturbed slightly ands
aled to �t the domain of interest. This way with every draw we obtain points thatare nearly uniformly distributed over the feasibility interval. One iteration 
omprises of
15n draws, therefore, the more variables to be estimated, the slower the algorithm. Ingeneral, 
onse
utive draws are not related to ea
h other and hen
e the algorithm does notget stu
k in lo
al extrema. The disadvantage is that sin
e the points have a pres
ribedform (almost uniformly distributed), the extremum might be impossible to �nd.
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Chapter 4Ensemble Multis
ale Filter - EnMSFThis 
hapter des
ribes the study that has been made on the ensemble multis
ale �lterfor reservoir models. Se
tion 4.1 presents one update time step on the EnMSF 
omparedto the 
lassi
al ensemble Kalman �lter, without a

ounting for model dynami
s. TheEnMSF algorithm itself is des
ribed in Se
tion 4.1.2. Se
tion 4.2 in
ludes the reservoirdynami
s and details the study of the 
ovarian
e matrix in EnMSF.4.1 Multis
ale ensemble �ltering for measurement up-date14.1.1 Introdu
tionHistory mat
hing (HM) is a pro
ess of adjusting the variables in a reservoir simulationmodel until it 
losely reprodu
es the past behavior of the reservoir. The a

ura
y ofthe history mat
hing depends on the quality of the reservoir model and the quality andquantity of the data available. There are gradient based HM methods whi
h require aminimization of a 
ost fun
tion over the entire time domain. In a real and large s
aleappli
ation it is an expensive pro
edure and it 
an be stu
k in lo
al minima. Due to thepresen
e of un
ertainties in both, the data and the model, it is hard and expensive.One way to solve these problems is to use sequential data assimilation s
hemes (Kalman�ltering). In the past years su

essful appli
ations of Kalman �lter theory were reportedin many areas of resear
h: the meteorologi
al appli
ations, [25℄, [12℄, nonlinear shallow-water storm-surge models, [88℄, atmospheri
 
hemistry and transport modeling, [74℄, [89℄,[30℄.The ensemble Kalman �lter (EnKF) has also entered the world of reservoir engineering.Several publi
ations have dis
ussed the use of EnKF with oil reservoir models: [59℄, [60℄,[61℄, [28℄, [23℄, [50℄, [90℄, [77℄, showing promising results and at the same time indi
atingpossible drawba
ks.The EnKF is based on the representation of the probability density of the state esti-mate by a �nite number N (N being mu
h smaller than the number of elements in thestate ve
tor) of randomly generated system states (ensemble members). This method falls1This se
tion is based on the arti
le in Computational Geos
ien
es, 13:245-254, 2009 where the
oauthors are: R.G. Hanea, A.W. Heemink, D. M
Laughlin.31



into the Bayesian inversion approa
h and may provide a solution to the 
ombined param-eter and state estimation problem. The result is an ensemble of analyzed solutions (the
ombination between the measurements and the reservoir model) whi
h approximates theposterior probability density fun
tion for the model parameters in the best way.The ensemble size limits the number of degrees of freedom used to represent fore
astand analysis errors. It makes the 
al
ulation of the error 
ovarian
es pra
ti
al for modest-sized ensembles. One important 
onsequen
e of the use of small-sized ensembles is thesampling error problem. After a 
ertain number of assimilation steps the ensemble losesits varian
e and leads to �lter divergen
e. In [32℄ they 
on
lude that the use of a smallnumber of members in an ensemble often produ
es spuriously large magnitude ba
kgrounderror 
ovarian
es between greatly separated grid points (unphysi
al 
orrelations). Theynoted that the EnKF analysis s
heme 
ould be improved by ex
luding observations atgreat distan
es from the grid point being analyzed by performing a 
ovarian
e lo
aliza-tion. Examples of this approa
h in
lude methods based on 
ovarian
e �ltering with S
hurprodu
ts, [29℄, [33℄, and methods that perform updates in small blo
ks of grid 
ells ,[55℄,[65℄. These methods improve 
omputational e�
ien
y and suppress the negative e�e
t ofsampling errors. The 
ovarian
es that are used for lo
alization will have an impa
t onthe des
ription of the physi
al 
orrelation 
arried by the fore
ast 
ovarian
e. Therefore,there is a risk of introdu
ing 
orrelations that are physi
ally not possible. A number ofresear
hers have observed and dis
ussed the imbalan
es introdu
ed by the lo
alizations
hemes in the meteorologi
al appli
ations, [52℄, [57℄.In this 
hapter we fo
us on data assimilation with the ensemble multis
ale �lter (En-MSF), [99℄, for estimation of oil reservoir permeability. This new approa
h solves someof the limitations of EnKF by allowing spatial lo
alization.Multis
ale estimation is based on the 
on
ept of using a multis
ale tree that des
ribesthe spatial 
orrelations. The method is based on an algorithm, [92℄, inspired by imagepro
essing resear
h. The degree of freedom to 
hoose a 
ertain tree and to set up theparameters for the update of the ensemble makes the method very appealing. At thesame time, one should be aware of the strong dependen
e of the method performan
e onthe 
hoi
es mentioned above.An interesting feature of the algorithm will be shown. An in�uen
e of its setup on thequality of the estimates in 
ase of a reservoir engineering appli
ation will be investigated.Due to the 
omplexity of the method we look only at a one time step update of theensemble. In Se
tion 4.1.2 the theoreti
al ba
kground for the EnKF and for the EnMSFis presented, and the assumptions that need to be made are des
ribed. In Se
tion 4.1.3 a2D, two-phase example is presented with seismi
 data. The numbering of the 
ells in thenumeri
al grid is dis
ussed. The 
on
lusions follow in Se
tion 4.1.4.4.1.2 EnKF and EnMSF - theoreti
al ba
kgroundThe problem 
an be formulated as follows. There is noisy data at every point in thedomain. Given the data we want to estimate what the true state is. In our 
ase, thedata and the state represent the same variable. There is no dynami
 model involved.Nevertheless, we talk about fore
asted and analyzed states to remain in the 
ontext ofthe sequential data assimilation. The fore
asted state is simply the state without themeasurements, and the analyzed state is the state where the measurements are already32



a

ounted for.The state ve
tor x needs to be de�ned and it is a 
olle
tion of variables representingthe model result. Supers
ripts for x are used in the equations: f representing the fore
aststate and a representing the analysis state.All the available data are stored in ve
tor y. The way to 
ompare the measured valueswith the state ve
tor is to use a fun
tion from the state spa
e to observation spa
e 
alledthe observation operator H:
y = Hx. (4.1)Through the observation operator H, a fore
ast for the observed data 
an be made fromthe fore
ast of the state. Un
ertainties in the measurements need to be spe
i�ed as well.Therefore, Equation (4.1) modi�es to:

y = Hx+ ν.The observation operator H is often a 
olle
tion of interpolation operators from the stateto the observation points (
onversions from state variables to the observed parameters);
ν is the observation noise, ν ∼ N(0,R). The 
ovarian
e matrix R needs to be spe
i�ed.Measurement update of the ensemble Kalman �lterThe Ensemble Kalman �lter was introdu
ed by [16℄ and has been su

essfully used in manyappli
ations, [21℄, [32℄. This Monte Carlo approa
h is based on the representation of theprobability density of the state estimate by an ensemble of possible states, x1,x2, . . . ,xN .Ea
h ensemble member is assumed to be a single sample from a distribution of the truestate. Whenever ne
essary, statisti
al moments are approximated with sample statisti
s.

• Fore
asted state ensemble: x1,f , x2,f , . . . , xN,f .
• Analysis step:

x̄f = 1
N

∑N
i=1 x

i,f ,

Ef = [x1,f − x̄f , x2,f − x̄f , . . . , xN,f − x̄f ],

Pf = 1
N−1

Ef(Ef)T ,

K = PfH⊤[HPfH⊤ +R]−1,

xi,a = xi,f +K[y −H(xi,f) + νi],where i = 1, . . . , N . Here, νi are realizations of the noise pro
ess ν.Measurement update of the ensemble multis
ale �lterThe ensemble multis
ale �lter, [99℄, provides an alternative way to perform the updatestep. The original ensemble 
ovarian
e is represented by a tree stru
ture and physi
allylong distan
e dependen
ies are kept through the relations between the tree nodes.It 
onsists of three basi
 steps: 33



1. assigning grid 
ells (pixels) to the �nest s
ale nodes and 
omputing the tree param-eters from sample propagation through the tree (tree 
onstru
tion);2. upward sweep (moving information upwards in the tree);3. downward sweep (spreading information downwards in the tree to the �nest s
ale).The ensemble members are partitioned with respe
t to grid geometry and settings(like the pixel numbering and the tree spe
i�
ation). The multis
ale algorithm pla
es thepartition at the �nest s
ale nodes (leaf nodes) and 
omputes the parameters at the uppertree nodes. Now, the upward and downward steps 
an be performed and the output is aset of updated repli
ates. ExampleSin
e the ensemble multis
ale algorithm is more 
omplex than EnKF, �rst, a littleexample is shown. The example greatly simpli�es the method but allows to grasp thegeneral idea.

Figure 4.1: The initial grid division.
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ale nodes).

Figure 4.3: The middle s
ale representationon the grid.
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Figure 4.4: Pixels sele
ted for the middles
ale of the tree.Ea
h pair of Figures: 4.1-4.2, 4.3-4.4, 4.5-4.6, shows a grid and 
orresponding treestates. This is the �rst stage of the EnMSF - tree 
onstru
tion. The 4 × 4 grid is arepresentation of permeability where grey is high permeability and bla
k is low.34



Figure 4.5: Root node representation on thegrid.
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Figure 4.6: Pixels sele
ted for the root (top)node of the tree.The grid 
ells (pixels) are numbered and ea
h group of four is assigned to a leaf nodeof a binary tree (Figures 4.1 and 4.2). Here it should be noted that having an ensembleof size N :
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,the �rst leaf node, for example, 
ontains a matrix with the �rst four states of ea
h ensemblemember:
x1
1

x1
2

x1
3

x1
4

,

x2
1

x2
2

x2
3

x2
4

, · · · ,

xN
1

xN
2

xN
3

xN
4

.

The state at ea
h higher s
ale node is a linear 
ombination of states at its dire
t
hildren. At the middle s
ale four most in�uential states are kept at ea
h of the two nodes(Figures 4.3 and 4.4). They happen to be the high permeability 
hannel. These eightvalues are used to 
ompute the four states at the root node (Figures 4.5 and 4.6) whi
his the 
enter of the high permeability 
hannel. This is the end of the tree 
onstru
tionpart when all the nodes 
ontain sets of parameters needed to perform the upward anddownward sweeps.Assume that a measurement is available in pixel no. 1. It is pla
ed at the node whi
hhad pixel no. 1 assigned to it, the �rst leaf node (a 
ir
le in Figure 4.7). Going up the treea Kalman-based update is performed and at the end the root node 
ontains the knowledgefrom the measurement. Downward sweep (Figure 4.8) spreads the knowledge from theroot node to all the other nodes. In 
onsequen
e, the �nest s
ale 
ontains the analyzedstates xia (xa
i ), i = 1, 2, ..., 16. 35



Figure 4.7: A s
heme of the upward sweep.
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aFigure 4.8: A s
heme of the downwardsweep and �nal updated values.Clearly, the ensemble �lter operates on an ensemble representing a distribution ofthe truth. For simpli
ity, the example shows one grid representation. It should be 
learthough that the states at the tree nodes 
ome from the dependen
ies in the ensemble.
Some mathemati
s in the algorithmThe most 
omplex is step 1 
ontaining 
ru
ial assumptions and many �exible variables.Steps 2 and 3 are based on Kalman �lter theory. Some mathemati
al details are presentedhere to enri
h the simple example shown above. The full detailed des
ription 
an be foundin [99℄.Some ne
essary notation is shown in Figure 4.9.

sγ

s

sα
1

sα
2

0

m(s)=1

m(s)+1
=M=2Figure 4.9: Notation: sαi - the ith 
hild of node s, sγ - the parent of node s, m(s) - the s
alewhere s is pla
ed, M - �nest s
ale, 0 - the root node.Additionally, some symbols used in the text are:36



NOTATION
χ(s) State ve
tor at node s.

χM(s) The ve
tor of �nest-s
ale states des
ended from s.
χ(s|s) The state at node s after the upward sweep.
χ(s|S) The state at node s after the downward sweep.
χ(sγ|s) Proje
ted state at node sγ.

j Supers
ript indi
ating an ensemble member.Any other symbols are explained in the text.The whole pro
ess starts with assigning the grid 
ells (pixels) to the leaf nodes of thetree. The 
ells 
an be numbered in various ways what determines the assignment. Two
hoi
es are shown in the next se
tion. Assigned pixels provide states at the �ne s
alenodes of the tree.A state at ea
h non-�ne-s
ale node s is a linear 
ombination of the states at its 
hildren:
χ(s) = V (s)




χ(sα1)...
χ(sαq)


 , (4.2)where matri
es V (s) are obtained as follows.We sear
h for a set of V (s)'s that provides the s
ale-re
ursive Markov property on thetree, i. e. de
orrelates q + 1 following sets of one s
ale: �rst q sets are all the 
hildrenof the node s, and the set q + 1 
ontains all the other nodes in this s
ale that are not
hildren of s. The de
orrelation is a minimization of 
onditional 
ross-
ovarian
es betweenthe mentioned sets, given node s.The tree that will approximate the fore
ast 
ovarian
e matrix well should be basedon the s
ale-re
ursive Markov property. The set of V (s)'s providing the s
ale-re
ursiveMarkov property perfe
tly would have a very high dimension sin
e it would keep the totaldependen
e between the �nest states on the upper s
ale. Therefore, for pra
ti
al purposethe state dimensions in 
oarser s
ales will be 
onstrained. This is easier if V (s)'s are blo
kdiagonal ; ea
h blo
k 
orresponds to a di�erent and only one 
hild of s.The way V (s)'s are built

V (s) has the form:
V (s) = diag[V1(s), ..., Vq(s)],where Vi(s) is a matrix 
orresponding to the ith 
hild of s, sαi, for i = 1, ..., q.There are two 
onstraints hidden here. The �rst one limits the number of rows inmatri
es Vi(s) to di(s). The se
ond one, if ne
essary, 
oarsens the number of rows in V (s).
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Constru
ting matri
es Vi(s)To obtain Vi(s)'s, q 
onditional 
ovarian
es need to be minimized, for ea
h non-�ne-s
ale node s. Those are the 
onditional 
ross-
ovarian
es between 
hild i (i = 1, ..., q) andthe rest of the nodes in the same s
ale, given the parent. Sin
e dire
t minimization isin
onvenient, the algorithm uses a predi
tive e�
ien
y method.Predi
tive e�
ien
y methodThe method is more e�
ient to 
ompute than all the 
onditional 
ross-
ovarian
es. Itpi
ks Vi(s)'s whi
h minimize the departure from optimality of the estimate:
ẑic(s) = E[zic(s)|Vi(s)zi(s)],where zi(s) is a ve
tor of states at node sαi (= χ(s)) and zic(s) is a ve
tor of states onall nodes at s
ale m(s) + 1 ex
ept node sαi. It was proved, [22℄, that they are given bythe �rst di(s) rows of:
V ′

i (s) = UT
i (s)Cov[zi(s)]

−1/2,where Ui(s) 
ontains the 
olumn eigenve
tors of:
Cov−1/2[zi(s)]Cov[zi(s), zic(s)]CovT [zi(s), zic(s)]Cov−T/2[zi(s)].Here it should be noted that di(s) are 
hosen by the user. The pi
ked rows have the high-est 
orresponding eigenvalues. The reason is that we assume that the 
olumn eigenve
torsof Ui(s) are lined in a de
reasing (
orresponding eigenvalue) order.The size of χ(s) in Equation (4.2) is 
ontrolled by the setup of V (s), that is, it was

V (s) that allowed keeping four states at the upper s
ale nodes in the example.When all the states are 
omputed and the measurements are pla
ed at the tree nodes,the upward and downward sweeps 
an be 
arried out.Going up the tree the algorithm updates the states at the nodes. Then ea
h node sgets the value χj(s|s), where χj(s|s) is the state ve
tor updated with all the measurementsin the subtree rooted at s. At the top of the tree the value for the root node is obtained,
χj(0|0). This is the basis to perform the downward sweep of the algorithm. χj(0|0) is theinitial point, namely χj(0|S). Going down the tree the value χj(s|S) is assigned to ea
hnode s. That is the state value 
ontaining the knowledge from all given measurements.This way at the end of the sweep we get updated ensemble states at the �nest s
ale whi
h
an be used to perform the next fore
ast step.The equations leading the upward and downward sweeps are:The upward sweep equation

χj(s|s) = χj(s) +K(s)[Y j(s)− Ŷ j(s)]The states χj(s) at ea
h node s are updated with perturbed measurements Y j(s)using weighting fa
tor K(s) and predi
ted measurements Ŷ j(s), and:
K(s) = Ĉov[χ(s), Ŷ (s)][Ĉov[Ŷ (s)] +R(s)]−1,38







R(s) = r(s), m(s)=M;
R(s) = diag[K(sα1)R(sα1)K

T (sα1), ..., K(sαq)R(sαq)K
T (sαq)], m(s)<M;





Y j(s) = y(s) + ej(s), m(s)=M;
Y j(s) =




K(sα1)Y
j(sα1)...

K(sαq)Y
j(sαq)

y(s) + ej(s)



, m(s)<M;





Ŷ j(s) = h(s)χj
M(s), m(s)=M;

Ŷ j(s) =




K(sα1)Ŷ
j(sα1)...

K(sαq)Ŷ
j(sαq)

h(s)χj
M(s)



, m(s)<M.

The downward sweep equation
χj(s|S) = χj(s|s) + J(s)[χj(sγ|S)− χj(sγ|s)]Previous states χj(s|s) at ea
h node obtain the knowledge from all measurementsthrough the weighting parameter J(s):

J(s) = Ĉov[χ(s|s)]F T (s)Ĉov
−1
[χ(sγ|s)],

F (s) = Ĉov[χ(sγ)]A(s)T Ĉov
−1
[χ(s)],

A(s) = Ĉov[χ(s), χ(sγ)]Ĉov
−1
[χ(sγ)].The state χj(0|S) = χj(0|0) is initially known from the upward sweep and proje
tedrepli
ates χj(sγ|s) 
an be 
omputed based on matri
es V (s) and:

χj(sγ|s) = F (s)χj(s|s) + w′j(s).Matrix F (s) is like above and w′j(s) is a zero-mean random perturbation with
ovarian
e Q′(s):
Q′(s) = Ĉov[χ(sγ)]− F (s)A(s)Ĉov[χ(sγ)].The whole pro
edure explained above, with the three steps, is able to approximate thefore
ast error 
ovarian
e by 
onstru
ting the tree and then to get the updated ensembleby moving up and down the tree assimilating the available measurements. At the end,the updated ensemble is obtained at the �nest s
ale.39



4.1.3 Appli
ationIn real-life appli
ations the data are 
olle
ted in the �eld; in theoreti
al appli
ations (so-
alled twin experiments) the data is simulated with the aid of a setup that is 
alled thetruth or the referen
e 
ase. A twin experiment is prepared here for the algorithm to
he
k its performan
e. The results are 
ompared to the ensemble Kalman �lter's as it isdes
ribed in [18℄. All shown results are one update time results.

Figure 4.10: The training image 250 × 250.Given the training image2 (Figure 4.10) an ensemble was generated using SGeMS(The Stanford Geostatisti
al Modeling Software). Algorithm snesim, [10℄, generated 2Dsamples of permeability �elds with grid size 64×64 from the training image with grid size
250 × 250. Ea
h of 100 repli
ates is built of two values of permeability: high 10,000 mD(yellow) and low 500 mD (red). The �rst repli
ate was assumed to be the truth (Figure4.11) and removed from the ensemble.

 

 

Figure 4.11: The true permeability 64 × 64.The values of the observations are the perturbed values of the truth. It means that thepermeability �eld is updated with permeability measurements. In pra
ti
e these values2A training image is an image representing the features and the distribution of ensemble members,[10℄. 40




annot be measured anywhere ex
ept for at wells. Therefore, this example is not realisti
but allows to test almost any possible setup.Throughout the tests the tree is a quadtree (four 
hildren for every parent), there are16 pixels assigned to ea
h �nest-s
ale node and 16 states preserved at 
oarser s
ale nodes.The task is to assimilate large s
ale data. We assume it is possible to obtain the mea-surement in every pixel of the �eld, and that the data are very noisy. The number of datapoints in spa
e is very large. It is known that EnKF is not an e�
ient tool to assimilatea very large amount of observations. The standard deviation of the measurement noiseis, therefore, equal to a large value of 9. The data are shown in Figure 4.12.
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Figure 4.12: The permeability data.The ensemble multis
ale �lter will be run twi
e. Ea
h time with a di�erent gridnumbering. The numbering s
hemes are shown in Figures 4.13 and 4.14.
1 2 5 6 17 18 · · ·

3 4 7 8 19 20

9 10 13 14

11 12 15 16...Figure 4.13: A square manner numberingof the pixels in the numeri
al grid.
1 2 3 4 5 6 · · ·

65 66 67 68 69 70 · · ·

129 130...Figure 4.14: A row wise numbering of thepixels in the numeri
al grid.The numbering 
an express our belief in the dependen
ies in the a
tual �eld. Thesquare manner numbering (Figure 4.13) keeps groups of pixels 
lose in the grid 
lose inthe tree. It is not a perfe
t mapping though. For example, pixels 6 and 17 are dire
tneighbors but they are pla
ed at di�erent nodes.The other approa
h (Figure 4.14) numbers the pixels row wise as if one believes thatthe 
hannels are horizontal. It 
an be improved if there is some prior knowledge available,for example, about the 
hannel pla
ement. 41



It is visible in the results that interesting artifa
ts 
ome from those two di�erentapproa
hes.The plots of the prior, EnKF estimation and EnMSF with square and row wise num-bering estimations are shown in Figures 4.15 - 4.18. The prior is relatively smooth and it isthe best estimate if no data is given (the mean of the ensemble). Any proper assimilationshould give an improvement to the prior whi
h is the 
ase in here.
 

 

Figure 4.15: A mean of the ensemble mem-bers - the prior.  

 

Figure 4.16: Assimilation with EnKF.

 

 

Figure 4.17: Assimilation with EnMSF andnumbering s
heme like in Figure 4.13.  

 

Figure 4.18: Assimilation with EnMSF andnumbering s
heme like in Figure 4.14.The 
omparison of the performan
es is based on a root mean square error (RMSE)values and visual judgment. If two matri
es of size N ×M are AN×M = {aij}, BN×M =
{bij} then:

RMSE(A,B) =

√√√√ 1

N ·M

N∑

i=1

M∑

j=1

(aij − bij)2.Table 4.1 
ontains RMSE between the truth and: the prior, EnKF, EnMSF + squarenumbering, EnMSF + row wise numbering.The RMSE measures, roughly, the mean di�eren
e between respe
tive pixels. It is apoint not global measure, it 
annot give information on large s
ale features. Additionally,one update step should not only rely on the RMSE. Hen
e, the visual 
omparison is alsouseful. It might suggest a need to sear
h for a 
ompletely di�erent measure of similarity.42



Prior EnKF EnMSF+square EnMSF+row wise1.4002 1.3356 1.0795 1.0773Table 4.1: RMSE between the truth and di�erent results.The plot of EnKF in Figure 4.16 is smooth and it seems like it sharpens a 
ontrast inthe prior. Its RMSE is not satisfa
tory either. The two versions of EnMSF (Figure 4.17and Figure 4.18) show artifa
t, lines whi
h 
ome from the numbering s
hemes used. Nev-ertheless, the plots extra
t the high permeability 
hannels quite well. The two approa
heswere going to show that EnMSF 
an be adjusted to a given problem, espe
ially when someprior knowledge is available about the 
hannel orientation or lo
ation.4.1.4 Con
lusionsThe ensemble multis
ale �lter is a new te
hnique for reservoir engineering. The methodhas been developed from image pro
essing. The goal is to show an appli
ation of this�lter to a simple reservoir engineering problem and to analyze its potential.It is known that large data sets 
ause 
omputational problems for Kalman �lters. Also,with more data, the stru
ture of the system noise is less important. Therefore, there is aneed for e�
ient tools to handle this kind of appli
ations.Multis
ale �ltering is a way of representing the 
ovarian
e matrix in the assimilationpro
ess by a tree stru
ture. This simpli�
ation preserves the strongest 
orrelations be-tween the grid 
ells. The most 
ompli
ated part of the method is the de�nition of thetree; it 
ontains 
ru
ial assumptions and �exible parameters. There are features thatin�uen
e �lter's performan
e that 
an be adjusted to solve parti
ular problems. Here, wefo
used on the numbering s
hemes whi
h 
an represent our belief in the �eld dependen-
ies. Certainly, it is very e�
ient to manipulate when some prior knowledge about the�eld is available.The two numbering s
hemes shown represent di�erent ideas. The �rst one, square like,might be universal to keep 
lose pixels on the grid 
lose in the tree. The se
ond, row wise,
an be suggested by horizontal �ow information. Both s
hemes show good performan
e
ompared to EnKF in 
ase of large data sets. The perfe
t mixture would be 
reated whenan approximate position of the 
hannel was known. The shape or way of numbering 
ouldbe adjusted to the feature.Sin
e the EnMSF is a 
omplex and interesting algorithm it needs further experimentsand investigation. Full runs with a reservoir simulator and more tests are required.
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4.2 Towards the use of the ensemble multis
ale �lterfor history mat
hing34.2.1 Introdu
tionThe EnMSF, [99℄, was introdu
ed in Se
tion 4.1.2 and here we present a sensitivity analysisof the EnMSF with respe
t to several algorithm parameters. We learnt that the numberings
heme has a strong in�uen
e on update performan
e with 
oarsened tree. We pro
eedwith presenting the related 
ovarian
e study and an interpolation problem with s
ar
erdata set.The numbering s
heme is a feature that o

urs to have the strongest impa
t on the�lter's performan
e but additionally we de
ide to investigate the tree 
oarsening propertiesthat have been kept default to that point. For several numbering s
hemes we manipulatealgorithm 
oarsening parameters, namely, tree shape, upper-s
ale state 
oarsening (
dim),and the de
orrelating neighborhood radius. First, the 
ovarian
e study is shown that
onsiders several parameter setups. Then, the full history mat
hing experiments arepresented where a reservoir simulator models the time 
hange of the variables. Here, forthe �rst time, the EnMSF is shown as a parameter estimator in a sequential updatings
heme where the estimated and the observed variables are di�erent physi
al notions.Now, a full state-spa
e representation 
an be formulated following Se
tion 3.4:




mk+1 = Imk,

yk+1 = h (fk→k+1(mk,xk)) + νk+1.A permeability parameter m is stati
, and the observations y are obtained through theobservation fun
tion h extra
ting simulated data from the results of the reservoir simulator
f , where x represents the dynami
 variables, grid-blo
k pressure and saturation.4.2.2 Pixel numbering s
hemeWe want to investigate the performan
e of the �lter given several options for numberingthe pixels in the grid and assigning them to the tree stru
ture. Sin
e the EnMSF extra
tsstrong dependen
ies from pixels belonging to parti
ular subtrees, it is expe
ted that adi�erent assignment pattern might modify the result.The sensitivity analysis presents a 
omparison of 
ovarian
es: the fore
asted ensemble
ovarian
e and the 
ovarian
e used in the EnMSF. The approximated 
ovarian
e in theEnMSF will be 
alled the tree 
ovarian
e.A tree applied in the EnMSF for this example is presented in Figure 4.19. There arefour 
hildren per node and four pixels at ea
h leaf node. Ea
h middle s
ale node 
an keepup to 16 states, the root node 
an keep up to 64 states.3This se
tion is based on the pro
eedings of 11th European Conferen
e on the Mathemati
s of OilRe
overy - Bergen, Norway, 8-11 September 2008 where the 
oauthors are: R.G. Hanea, A.W. Heemink,D. M
Laughlin, J.D. Jansen. 44



The true 
ovarian
e between pixel 
oordinates (xi, yi) and (xj , yj) is given by:
C(i, j) = exp

(
−
√

(xi − xj)2

42
+

(yi − yj)2

92

)
,for i, j = 1, ..., 8. The 
orrelation is stronger along the x-axis. Figure 4.20 shows thesample 
ross-
ovarian
e between the pixel in the 
enter (the lightest) and all the otherpixels in the grid.

4

max 64

max 16

Figure 4.19: The tree for 8× 8 example. Figure 4.20: The prior sample 
ross-
ovarian
e.Figure 4.21 shows four tree 
ross-
ovarian
es analogous to the one in Figure 4.20. Allof them were 
omputed using the same tree (Figure 4.19) and severe 
oarsening (therewas only one state kept at ea
h 
oarser s
ale node). Ea
h 
ovarian
e is 
oarsened in adi�erent way depending on the numbering s
heme. Verti
al and horizontal numbering(4.21(a) and 4.21(b)) keep stronger 
orrelations along the respe
tive dire
tions. Pixelsnumbered in the 
lusters like in Figure 4.1 preserve the 
orrelation within the 
luster,Figure 4.21(
). The last randomly numbered �eld (Figure 4.21(d)) is not able to showany stru
ture.If all the states were kept at the higher s
ales of the tree, the 
ovarian
e would betotally re
onstru
ted independently of the numbering s
heme. So, the numbering s
hemegains importan
e only if a 
oarsening is applied. No prior information 
arried by theensemble is 
ut o� or prioritized by the �lter if there is no trun
ation.The 
oarsening 
an be advantageous if there is some additional knowledge about thegrid. For example, that some areas are of a 
ommon nature whi
h is not in
luded in theprior ensemble.To see the a
tual data assimilation results, appli
ations are shown in the next se
tion.
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(a) Pixels numbered verti
ally. (b) Pixels numbered horizontally.
(
) Pixels numbered in groups. (d) Pixels numbered randomly.Figure 4.21: The tree 
ross-
ovarian
e for severely 
oarsened tree and di�erent numberings
hemes.
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4.2.3 Interpolation problemThe numbering s
hemes dis
ussed in the previous se
tion appeared to have a big impa
ton the 
ovarian
e representation in the EnMSF. Here, a simple one time assimilation witha trun
ated tree is going to show how a 
oarsened tree 
ovarian
e in�uen
es the result.The true permeability �eld is given as in Figure 4.22(a), 64×64. The high permeability
hannels are light yellow and the low permeability ba
kground is dark red. A prior
hannelized ensemble with 100 members is given and its mean is shown in Figure 4.22(b).The 
orrelation is stronger in horizontal dire
tion sin
e the 
hannels are mostly horizontal.The permeability observations are taken along three verti
al lines: one in the middle andtwo at the edges (Figure 4.22(
)). Sin
e the permeability is a measured and estimatedparameter, the problem is a simple interpolation problem.
(a) The true permeability.  

 

(b) The prior of 100 permeabilityrepli
ates. (
) The measurements along thethree verti
al lines.Figure 4.22: The setup of the interpolation problem.The multis
ale tree has four 
hildren per node, 16 pixels at the �nest s
ale nodes andonly 4 states kept at ea
h 
oarser s
ale node. Four numbering s
hemes were applied andthe EnMSF results are shown in Figure 4.23.Sin
e the state trun
ation was severe the results di�er signi�
antly. Verti
al numbering(4.23(a)) assimilates the data only along the observation lines, it does not have a powerto rea
h in the horizontal dire
tion. When pixels are numbered along the rows (4.23(b))the data is interpolated horizontally. If this numbering is additionally 
onsistent with the
hannel orientation, then the assimilation is advantageous.The 
lustered numbering (4.23(
)) spreads the data to a 'nearby' group of pixels. It iseasy to noti
e that the pixels in line with the middle observations have been assigned tothe tree together with their left neighbors; middle observations are not proje
ted to theright plane of the grid.The last numbering s
heme (4.23(d)) was based on the truth like in Figure 4.22(a).Low pixel numbers are assigned to the high permeability 
hannels �rst and then the restof the pixels is numbered row wise. Therefore, the numbering exa
tly mirrors the truth.The data should then be spread with respe
t to the true shapes. It 
an be handy whenprior geologi
al knowledge (not in
luded in the initial ensemble) is available.4.2.4 Coarsening parameters in the EnMSFThere are many parameters driving the EnMSF. These parameters need to be understoodand studied to dis
over their in�uen
e, importan
e and sensitivity of the �lter. Some47



(a) Verti
al numbering (b) Horizontal numbering.
(
) Pixels numbered in groups. (d) Numbering along the feature.Figure 4.23: The EnMSF assimilation results with di�erent numbering s
hemes.
on
lusions will be drawn from studies done in this se
tion. We want to investigate thetree shape, the state 
oarsening at the upper tree s
ales (
dim), and the 
onditioningneighborhood radius, and test the parameters versus di�erent numbering s
hemes.The resear
h is based on the 
ovarian
e matrix re
onstru
tion. It is investigatedhow well the so-
alled tree 
ovarian
e matrix represents the true and sample 
ovarian
ematri
es (the true 
ovarian
e matrix might be given - as it is in this 
ase - or 
omputedfrom a very large sample; sample 
ovarian
e matrix is a 
ovarian
e of a given ensemble).The tree 
ovarian
e matrix is a 
ovarian
e matrix that is used by the EnMSF in anassimilation algorithm. It is 
omputed on the basis of parameters assigned to the nodesof the tree after the tree 
onstru
tion step.On the root (top) node of the tree an ensemble is sampled from a normal distributionwith zero mean and the 
ovarian
e matrix 
omputed for that node in the tree 
onstru
tionstep. The ensemble has as many members as there are repli
ates used initially for thetree 
onstru
tion. It is propagated to the �nest s
ale nodes with the downward transitionmatri
es atta
hed to ea
h node. The matri
es 
ome from the tree 
onstru
tion step aswell. A 
ovarian
e matrix of the ensemble from the �nest s
ale is the tree 
ovarian
ematrix.In this experiment the true 
ovarian
e matrix is again given by:

C(i, j) = exp

(
−
√

(xi − xj)2

42
+

(yi − yj)2

92

)
, (4.3)for i, j = 1, ..., 8. C(i, j) means that the 
ovarian
e is 
omputed between the points (xi, yi)and (xj , yj) in the Cartesian 
oordinates. The grid size is 8 × 8. The tests are restri
tedto that size sin
e it is 
omputationally di�
ult to handle larger grids.The 
ovarian
e in Equation (4.3) has its denominators (42, 92) 
hosen su
h that the48




orrelation of ea
h grid blo
k is longer in the horizontal than in the verti
al dire
tion.For illustration, the 
ross-
ovarian
e of one grid blo
k with all the other grid blo
ks ispresented. The true 
ross-
ovarian
e is shown in Figure 4.24 (
onsistently with furtherplots, it is the 
ross-
ovarian
e between a pixel in the 7th row, 3rd 
olumn with all theremaining pixels).
Figure 4.24: The true 
ross-
ovarian
e like in Equation (4.3).The results were 
ompared by 
omputing root-mean-square errors (RMSE) between
ovarian
e matri
es. If two matri
es of size N × M are AN×M = {aij}, BN×M = {bij}then again:

RMSE(A,B) =

√√√√ 1

N ·M

N∑

i=1

M∑

j=1

(aij − bij)2.The RMSE values are multiplied by 103.The tree 
ovarian
e matrix has been 
ompared to the true and sample 
ovarian
ematri
es. Sin
e the di�eren
e between 
omparisons is negligible (not shown here), onlythe results against the true 
ovarian
e are presented. Ea
h simulation was run 1000times. An average RMSE distan
e between a 
ovarian
e matrix of a sample of 10, 100repli
ates and the true 
ovarian
e matrix is equal to 12.2478, 3.4772, respe
tively. It 
anbe, therefore, assumed that a di�eren
e of around 10 should not be signi�
ant.4.2.5 The design of the tree and its impa
tThe 64 pixels were distributed over the �ne s
ale nodes of the tree in Figure 4.25 in groupsof four. Ea
h 
oarser s
ale node has four 
hildren (a quad tree). A number of states at a
oarser s
ale node will be 
alled 
dim. The smaller its value the more 
oarsened the originalsample 
ovarian
e matrix. An additional 
oarsening fa
tor is a neighborhood radius (inhere equal to: 1, 2, 4, 8, 16, 64 as marked on the plots). It denotes a de
orrelation radiuslength within one tree s
ale. The following results will show an impa
t of the two typesof 
oarsening on a small (10 members) and on a large (100 members) ensemble.Figures 4.27 and 4.28 pi
ture the RMSEs for two di�erent numbering s
hemes. Figure4.27 had the numbering s
heme adjusted to a feature and we will 
all it a '
hannel'numbering s
heme. If one expe
ts there is a 
hannel (like in Figure 4.26 in this example)running through the �eld, one 
ould 
hoose to �rst number the pixels horizontally insidethe 
hannel and then 
ontinue numbering outside it. That is how the numbering s
hemefor the runs in Figure 4.27 is 
onstru
ted. A random numbering s
heme was used forthe results in Figure 4.28. Figures 4.27 and 4.28 
ontain six plots ea
h, for six values49



Figure 4.25: The quad tree used for the tests. There are 4 pixels in every �nest s
ale node. Itimplies a maximum of 16 states at the nodes in the middle s
ale, and a maximum of 64 at theroot node (depending on the middle s
ale).
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8Figure 4.26: The assumed 
hannel.of 
dim: 64, 32, 16, 8, 4, 1, pla
ed in the reading order. Every plot is s
aled to interval
[0, 65] in the x-axis (neighborhood radius) and to [0, 220] in the y-axis (RMSE).The algorithm while 
omputing the states at 
oarser s
ale nodes takes the minimumbetween 
dim and a total number of states at its 
hildren. The 
ase cdim = 64 represents afull 
ovarian
e matrix re
onstru
tion and, therefore, is equivalent to an ensemble Kalman�lter. The RMSE is very small, negligible, and the ensemble with 100 members (solidline) is more 
orre
t then the one with 10 (dashed line). The same observations apply to
cdim = 32. Then, the states are 
oarsened only at the root node of the tree.When cdim = 16, the RMSE is still low for both ensembles. For smaller neighborhoods(more severe 
oarsening) the larger ensemble performs worse. Still, the di�eren
e is notsigni�
ant.Interesting results are obtained for cdim = 8. For the 
hannel numbering (Figure 4.27)the error in
reases mildly, espe
ially for the large ensemble and the small neighborhoods.The random numbering s
heme shows a signi�
antly worse performan
e for the ensembleof 100. The remaining plots in Figure 4.28 show a similar trend of preferring the smallensemble results.The 
hannel numbering s
heme shows a di�erent performan
e. With cdim = 4 both
urves, for 10 and 100 ensemble members, are 
lose to ea
h other even though for smallneighborhoods the small ensemble performs better. The largest mismat
h 
an be seenwith cdim = 1. It 
an be expe
ted sin
e the 
oarsening is severe and a greater ensemblemight introdu
e a larger mis�t.We will investigate what the impa
t of the 
oarsening is on the 
ovarian
e matrix.Examples with the 
urrent and additional numbering s
hemes will be shown.50
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’CHANNEL’ NUMBERINGFigure 4.27: The plots of 103·RMSEs versus the neighborhood radius for di�erent number ofstates kept at the 
oarser s
ales of the tree (
dim), '
hannel' numbering s
heme.
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ales of the tree (
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4.2.6 Covarian
e matrix approximationFor the EnMSF to be 
omputationally feasible a trun
ation has to be implemented. It isdue to the fa
t that a full tree stru
ture requires storage of several large matri
es at everynode. Therefore, it needs to be reviewed how the trun
ation in�uen
es the 
ovarian
ematrix and what the result of this 
oarsening is.Having in mind the true 
ross-
ovarian
e from Figure 4.24, �ve trun
ated tree 
ross-
ovarian
es are shown in Figure 4.29. All the plots are kept in a 
onvention used in Figure4.24. Plots in Figure 4.29 were generated with 10 repli
ates, 
dim and neighborhood radiusequal to 4.
(a) 'Channel' numbering. (b) Random numbering.

(
) Row wise numbering. (d) Column wise numbering. (e) Square numbering (see Fig-ure 4.1).Figure 4.29: Cross-
ovarian
es for di�erent numbering s
hemes.Ea
h 
ross-
ovarian
e shows a di�erent pattern oriented with respe
t to the underly-ing numbering s
heme. The numbering proves important and may dominate the initialdependen
e stru
ture with signi�
ant trun
ation.The ensemble multis
ale �lter o

urs to be an interesting approa
h to sequential up-dating with build-in lo
alization possibilities. Sin
e reservoir engineering appli
ations arenot ri
h in measurements, the full potential of the method 
annot be investigated. We
on
lude that the �lter 
ould be bene�
ial when used in a data-ri
h �eld.Coming se
tion presents the ensemble multis
ale �lter applied to a reservoir engineer-ing problem versus the ensemble square root �lter for 
omparison. It is presented in thelight of this se
tion's results.
53



4.2.7 History mat
hing using EnMSFThis se
tion presents the results from di�erent EnMSF runs in two problems where anensemble square root �lter is a ben
hmark.The true permeability for the �rst simulation is shown in Figure 4.30(a). The pressuremeasurements were obtained from �ve wells: a 
enter inje
tor and four produ
ers in the
orners of the �eld.The true permeability for the se
ond simulation is shown in Figure 4.30(
). Thepressure measurements were obtained from the wells lo
ated along the left (inje
tors) andthe right (produ
ers) edge of the �eld, in total 42 wells. The domains' size is 21×21 
ells.In ea
h example the data was 
olle
ted on
e a month, 12 times. Both examples use150 repli
ates of the permeability �elds and a measurement error of 104Pa. A set of initialrepli
ates for ea
h example has 
hara
teristi
s similar to the 
orresponding truth.
truth
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(a) The truth (non-binary).
permeability(150), RMSE = 0.22759
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(b) EnSRF for truth 4.30(a),150 repl., RMSE = 0.22759.
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(
) The truth (binary).
permeability(150), RMSE = 0.40819
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(d) EnSRF for truth 4.30(
),150 repl., RMSE = 0.40819.Figure 4.30: The true permeability �elds and EnSRF results for the two study 
ases.On the right from the true �elds in Figure 4.30 there are the results of assimilationusing the EnSRF. The root mean square error is indi
ated. In both examples the �lterperforms very well.The EnMSF uses a tree where ea
h 
oarser s
ale node has three 
hildren and thereare 49 pixels at ea
h �ne s
ale node. All updates are done on values of permeability aftera log-transformation, [24℄.Let us �rst look at the results where 
dim and the numbering s
heme have beenmanipulated. Figures 4.31 and 4.32 
ontain several assimilation results using di�erentsettings in EnMSF. Both Figures are organized as follows:
• 4.31(a), 4.32(a) - no 
dim trun
ation + feature based numbering templates,
• 4.31(b), 4.32(b) - cdim = 20 + feature based numbering templates,54



• 4.31(
), 4.32(
) - cdim = 20 + numbering along 
olumns,
• 4.31(d), 4.32(d) - cdim = 1 + feature based numbering templates.It will test what is the impa
t of the same 
oarsening operations on problems with di�erent
hara
teristi
s.The feature based numbering template varies for ea
h problem (it is 
onstru
ted onthe basis of the respe
tive true permeability). The binary problem uses a template wherethe pixels are �rst numbered in the 
hannel row wise from left to right, and then outsidethe 
hannel. To 
onstru
t a feature based numbering s
heme for the non-binary problem,a threshold for permeability was set. Then, all the greater true permeability pixels takea value '
hannel o

urs' and the rest - 'no 
hannel'. Now, the template 
an be built likefor the digital 
ase.

permeability(150), RMSE = 0.23617
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(a) No trun
ation, fea-ture based numbering,
RMSE = 0.23617.

permeability(150), RMSE = 0.26066
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(b) cdim = 20, feature basednumbering, RMSE = 0.26066.
permeability(150), RMSE = 0.23093
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(
) cdim = 20, 
olumn wisenumbering, RMSE = 0.23093.
permeability(150), RMSE = 0.32719
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(d) cdim = 1, feature basednumbering, RMSE = 0.32719.Figure 4.31: EnMSF for the non-binary truth 4.30(a).For both 
ases when the tree used no trun
ation (4.31(a), 4.32(a)) the results arealmost identi
al to the EnSRF as expe
ted. For example, in the non-binary 
ase, per-meability on the right boundary 
loser to the south-east well is smoothed unlike thetrue pattern. (Note: A numbering s
heme for a non-trun
ated tree does not make anydi�eren
e (no plots shown).) The trun
ation cdim = 20 using the template breaks thispattern, 4.31(b), making it more similar to the truth; the 
olumn wise numbering, 4.31(
),is not as good. Nevertheless, the results in general are very good. Additionally, the mostseverely 
oarsened 
ase, 4.31(d) with cdim = 1, performs well. It might be due to strong
orrelations between the permeability and pressures in this 
ase.The binary 
ase appears to be more sensitive to the trun
ation. In 4.32(b) and 4.32(
)the pla
ement of the 
hannel is approximately dete
ted but the values of permeability arenot 
orre
t. For cdim = 1, 4.32(d), it has only a vague re
ognition of the feature.55



permeability(150), RMSE = 0.35341
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(a) No trun
ation, fea-ture based numbering,
RMSE = 0.35341.

permeability(150), RMSE = 0.5675
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(b) cdim = 20, feature basednumbering, RMSE = 0.5675.
permeability(150), RMSE = 0.60914
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(
) cdim = 20, 
olumn wisenumbering, RMSE = 0.60914.
permeability(150), RMSE = 0.7655
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(d) cdim = 1, feature basednumbering, RMSE = 0.7655.Figure 4.32: EnMSF for the binary truth 4.30(
).Sin
e this example is larger, another tree 
ould be 
onstru
ted for 
omparison. Table 4.2
ontains the tree parameters used for assimilations, results of whi
h are Figures 4.33(a)and 4.33(b). Both trees 
oarsen the middle s
ale to about 1
7
th but the root nodes havedi�erent trun
ations applied. Both use the same feature based numbering s
heme. Mostlikely the trun
ation at the root node 
aused the results to vary, and not the topology ofthe tree. 4.33(a) 4.33(b)

♯ 
hildren 3 7
♯ pixels × ♯ �nest s
ale nodes = 441 49×9 9×49(♯ states × ♯ nodes) at the middle s
ales 20×3 9×7
♯ states at the root node 20 9Table 4.2: Tree parameters for two di�erent 
ases.Sin
e the neighborhood radius is not signi�
ant (or expensive) when the tree is nottrun
ated or is mildly trun
ated (not shown here), the neighborhood trun
ation to 1 with

cdim = 1 is shown as an extreme 
ase. It is not realisti
 to use these settings in anyappli
ation but it is presented here for the sake of 
ompleteness.The plots in Figure 4.34 were generated using cdim = 1. Figures 4.34(a) and 4.34(b)weregenerated without the neighborhood 
oarsening but use di�erent numbering s
hemes.56



permeability(150), RMSE = 0.5675
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(a) Again Figure 4.32(b):
cdim = 20, feature basednumbering.

permeability(150), RMSE = 0.6811

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20
−13.8

−13.6

−13.4

−13.2

−13

−12.8

−12.6

−12.4

−12.2

(b) cdim = 9, feature basednumbering.Figure 4.33: EnMSF with di�erent trees, the details of the tree parameters are 
ontained inTable 4.2.Here, it is visible that the 
olumn wise numbering prefers the features in north-southdire
tion. Figures 4.34(
) and 4.34(d) use the respe
tive numbering s
hemes and addi-tionally a severe neighborhood trun
ation was applied. The 
olumn numbering 
learlyindi
ates the division into three nodes of the tree.
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permeability(150), RMSE = 0.32719
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(a) Again Figure 4.31(d):
cdim = 1, full neighborhood,feature based numbering.

permeability(150), RMSE = 0.25328
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(b) cdim = 1, full neighbor-hood, 
olumn wise numbering.
permeability(150), RMSE = 0.33203
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(
) cdim = 1, neighborhood 1,feature based numbering.
permeability(150), RMSE = 0.29103
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(d) cdim = 1, neighborhood 1,
olumn wise numbering.Figure 4.34: EnMSF with the neighborhood 
oarsening.4.3 Con
lusionsChapter 4 des
ribed 
omprehensive resear
h results on the appli
ation of the ensemblemultis
ale �lter. The �lter is a Kalman type �lter that builds the sample 
ovarian
ematrix on the basis of a tree stru
ture given an ensemble of realizations. After the tree isbuilt, the measurements 
an be pla
ed at the nodes and the update performed. Typi
ally,a 
ovarian
e derived from a sample 
ontains spurious 
orrelations due to a �nite samplesize, and even physi
ally very distant areas 
an show dependen
ies. We investigated howensemble multis
ale �lter deals with spurious 
orrelations with built-in lo
alization tools.First, Se
tion 4.1, presented the �lter as an interpolation method (no time update)where very noisy measurements of the true domain were available together with an ensem-ble of initial realizations. We 
ompared the ensemble multis
ale �lter with the 
lassi
alensemble Kalman �lter that a
ted as a ben
hmark. We showed that the multis
ale methodperformed updates di�erently, depending on the numbering s
heme used, and extra
tedthe information in varying ways.In Se
tion 4.2 the same setup of the interpolation problem but with di�erent measure-ments was used. Here, less noisy measurements were available along three equally-spa
edverti
al lines. It was 
learly visible how the ensemble multis
ale �lter propagates infor-mation to pixels that are 
lose to ea
h other in the tree whi
h does not have to re�e
tphysi
al 
loseness. We 
on
luded that the numbering of the pixels is important and pro-
eeded with more te
hni
al aspe
ts of the investigated �lter. We looked at the parametersof the tree that determine the level of the 
oarsening applied to the 
ovarian
e matrix.Our 
on
lusion was that the ensemble multis
ale �lter's performan
e will depend moreon the level of 
oarsening (mostly parameter 
dim) than the tree topology. More impor-58



tantly, the 
oarsening with an appropriate numbering s
heme 
an a
t as a lo
alizationmethod.The �lter 
an be 
omputationally 
hallenging due to its 
lassi
al ensemble Kalman�lter update s
heme that is built into the algorithm. Then, if the tree has few 
hildrenper node or many s
ales, the 
omputation of the lo
al 
ovarian
e matri
es or building theupward/downward 
onne
tions might be expensive. Nevertheless, sin
e the EnMSF neverstores the full 
ovarian
e matrix, it is expe
ted to be more e�
ient than the traditionalEnKF.We re
ommend the EnMSF as a lo
alization and update tool in several 
ases. First, in
ase where there is some knowledge available about lo
al dependen
ies that will lead to anedu
ated pixel-to-tree assignment pro
edure. Then, during the tree trun
ation important
orrelations will be extra
ted and kept in the update. Se
ond, in 
ase where there is a vastamount of spatially distributed data available that will need lo
alization te
hniques due toa possible ensemble 
ollapse. In any 
ase, a trun
ation in the �lter has to be implemented.Feature-based or 
orrelation-based numbering is ne
essary. Additionally, for large datasets we expe
t the artefa
ts 
reated by the tree stru
ture to be less pronoun
ed.
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Chapter 5Feature-based methodsIn this 
hapter a method is developed for global feature deformation. This method isapplied in reservoir engineering and groundwater modeling data assimilation. Combiningknowledge from image pro
essing and grid generation we 
ome up with a grid deformationmethod parameterizing an image domain. First, some basi
 notions are de�ned. Then,the method is explained and applied to a 2D 
ase. Finally, a straightforward extension toa 3D 
ase is shown.5.1 Grid distortion for a 2D reservoir model5.1.1 Introdu
tionData assimilation (or 
omputer-assisted history mat
hing) 
ombines theoreti
al knowl-edge about a physi
al pro
ess with observed data. Di�erent data assimilation te
hniques
an be 
lassi�ed into two main groups: variational or sequential methods. Variationalmethods assimilate all the available data over the whole time interval at on
e through aminimization of an obje
tive fun
tion. Sequential methods assimilate data at a parti
ulartime, pro
eed forward in time and assimilate the next available data; they 
an be derivedby minimizing a varian
e estimate of a 
onditional probability density of a model givendata. Both approa
hes have advantages and drawba
ks, [52℄, [91℄.A spe
ial 
ase of data assimilation is parameter estimation problem where only stati
variables are estimated. Then, additionally, dire
t sear
h methods (or zero order meth-ods, [48℄) 
an be implemented. These algorithms sear
h through the obje
tive fun
tion'sdomain of feasible solutions not taking into a

ount lo
al gradients. This methodologyshould be espe
ially pro�table in our appli
ation due to obje
tive fun
tion's high nonlin-earity.Data assimilation is widely used in many bran
hes of industry. It 
an be appliedwhenever it is possible to model the underlying physi
s of a pro
ess, and obtain theo-reti
al estimates of variables that are measured in reality. Appli
ations in
lude weatherpredi
tion, o
ean dynami
s and hydrology, [88℄, [7℄, [16℄, or in�uenza spread, [39℄.Reservoir engineering uses data assimilation to improve estimates of subsurfa
e prop-erties from available measurements, [62℄. Typi
ally, one wants to estimate a reservoirpermeability or porosity �eld. The measurements 
an be spatially small-s
ale (like bot-tom hole pressures or �uid rates measured in the wells) or large-s
ale (�eld-wide seismi
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ele
tromagneti
 or gravity observations).Data assimilation for reservoir engineering needs to take into a

ount requirements(
onstraints) that have to be met due to geologi
al or e
onomi
al reasons. Geologi
alrealism, [49℄, [10℄, is one of them. The parameter �elds obtained from data assimilationshould look geologi
ally 
orre
t, that is, the initial subsurfa
e 
hara
teristi
s should bepreserved in the history mat
hed estimate. The reason for this requirement is the generallya

epted belief that 'geologi
ally realisti
' reservoir models have a larger probability toprodu
e reliable fore
asts than 'geologi
ally unrealisti
' models. Therefore, the maininitial geologi
al features should be displa
ed or bent but not broken. Nevertheless, theprior geologi
al information is often lost, [31℄, due to negle
t of higher order statisti
s inthe data assimilation s
heme. Furthermore, the geologi
ally in
orre
t estimates are oftenstill able to mat
h the produ
tion history a

urately. Therefore, additional 
onstraints areneeded to keep the geologi
al information 
onsistent during the history mat
hing pro
ess.Feature-based methods are used to over
ome the problem of geologi
ally unrealisti
history mat
hes. They a

ount for shapes/features in a domain of interest and have beeninvestigated from di�erent points of view and for various problems. Here, we fo
us onreservoirs 
ontaining 
hannels (high-permeable passages where liquids travel relativelyeasily).The most intuitive approa
h to the task is to parameterize a 
hannel. If the 
hannel issimple enough, its length, width, starting point and orientation might provide a 
ompletedes
ription of the domain, [97℄, [84℄. This kind of parametrization limits the number ofvariables (degrees of freedom) and ensures a 
ertain 
onsisten
y of the stru
ture.Permeability might also be seen as an image to whi
h di�erent image pro
essing tools
an be applied. Several methods reviewed below have been proposed to solve the problemof feature estimation, very often restri
ted to estimation of a 
hannelized �eld.
• A dis
rete 
osine transform (DCT) originates from jpg �le 
ompression; it de
om-poses an image into a sum of produ
ts of basis 
osine fun
tions and 
orrespondingDCT 
oe�
ients. The appli
ation of the DCT has been introdu
ed to data assimi-lation in reservoir engineering in [34℄, [35℄, [36℄, and later also implemented in [94℄.An e�
ient parametrization of a variable �eld is provided through DCT 
oe�
ient
oarsening.
• A level-set method has been applied to a reservoir engineering data assimilationproblem, [58℄, [14℄, [93℄, to update 
ontour positions of features. The edges of thefeatures are then modeled as a horizontal 
ross-se
tion of a surfa
e and an evolutionof the level-set fun
tion modi�es the shape position.
• Field alignment (FA), [67℄, 
hanges an image by deforming its grid with a ve
tor �eld.The deforming ve
tor �eld is regularized by gradient and divergen
e 
onstraints inan obje
tive fun
tion.The main fo
us in this 
hapter is a grid distortion method. It was inspired by the gridgeneration resear
h des
ribed in [82℄, [81℄, [80℄, where the goal is to automati
ally generatesmooth grids for solving di�erential equations. The method deforms a grid smoothly (likeFA) to �t it to given data but does it through a simpli�ed (
ompared to FA) partialdi�erential equation. The approa
h to the problem resembles FA, as both methods use62



deforming ve
tor �elds and were 
reated to allow relo
ation of patterns and their possibledeformation. However, unlike FA, grid distortion uses a limited number of parameters.Grid distortion is implemented here within the ensemble Kalman �lter framework andalso within a pattern sear
h method.All the methods mentioned above are feature-based methods. Sin
e the �eld alignmentand grid distortion methods are 
losely related, FA is dis
ussed in more detail in Se
tion5.1.3. Optimization methods, in parti
ular the ensemble Kalman �lter and the patternsear
h method, are des
ribed in Se
tion 5.1.4. Se
tion 5.1.5 introdu
es the feature-basedmethod developed in this thesis - grid distortion. Results follow in Se
tion 5.1.6, dis
ussionand 
on
lusions in Se
tion 5.1.7.5.1.2 Basi
 notionsVe
tor �eldsWe want to dis
uss images and their deformations 
aused by ve
tor �elds, and there areseveral ways of looking at this type of problems. One 
an think of a ve
tor �eld whosedomain are the nodes of a regular grid holding the pixels. Then, the deformation ofthe grid triggers pixel deformation whi
h in turn leads to the image deformation. Aninterpolation to a regular pixel values is then ne
essary. This type of warping is shown inFigure 5.1 and was implemented for the grid distortion method.

Figure 5.1: A node displa
ing �eld (applied in the grid distortion method).Another approa
h is demonstrated in Figure 5.2. Here, every pixel 
ontains a ve
tor.The ve
tor �eld is a sear
h �eld sin
e it seeks new values for the lo
ations to obtain adeformation of a ba
kground image. The lo
ation 
an be a pixel (like in the �gure) ora grid node. Alternatively, multiple ve
tors 
an be atta
hed at a single pixel lo
ationto propagate the pixel's value to several destinations (Figure 5.3). Variations of theapproa
hes 
ould also be 
onsidered.
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InterpolationIn grid distortion method an interpolation has to be implemented to obtain the values ofpixels in a regular Cartesian grid after the deformation. The simulator in this 
ase 
annothandle irregular unstru
tured grids. Various types of interpolation methods exist. Thebasi
 interpolants are: nearest-neighbor, linear, polynomial and spline.For the 2D grid distortion in Se
tion 5.1, an additional interpolation fun
tion is writ-ten. It pres
ribes values to the grid nodes and maps them onto regular pixels after thedistortion. In the 
ase when a pixel has not re
eived a value from a node, a weightedmean of neighboring pixel values is assigned. Sin
e the realizations in our appli
ationsare binary, there is a threshold value spe
i�ed.For the 3D grid distortion in Se
tion 5.2, the nearest-neighbor interpolation is imple-mented. Even though it makes the problem more non-smooth, it keeps the realizationslooking like geologi
al features whi
h is desirable in the presented examples.Problem formulationLet us formulate a data assimilation problem in the form of minimization problem wherethe obje
tive fun
tion J is
J(q) = (f∗ − f(q))T (f∗ − f(q)).

J is a fun
tion of a ve
tor �eld q and 
ontains only a squared measurement mismat
hterm in the simplest form. The a
tual data are represented as a ve
tor f∗, f(q) is a ve
torof predi
ted data.The 
onne
tion between the data and the ve
tor �eld, i.e. fun
tion f , 
an have di�erentforms. If one wants to solve an image re
ognition problem, f(q) represents the distortedimage values at pixel lo
ations, [95℄. It is the simplest appli
ation one 
an start with sin
eit does not in
lude any aditional transformation or time.Complexity 
an be added by making f a fun
tion of a parameter �eld (for example, apressure response in a steady-state system to a permeability �eld). One step further is adata assimilation appli
ation where observations are 
olle
ted over time.5.1.3 Field AlignmentField alignment, [67℄, is a method developed for image deformation purposes. It 
an beused for image re
ognition, [95℄, or feature-based data assimilation.Let us have a dis
rete Cartesian grid (ξ, η), Figure 5.4. Ea
h grid node j has adispla
ement ve
tor (all ve
tors are 
olumn ve
tors) q
j
with 
oordinates [q1j , q

2
j ]

T , j =

1, . . . , N . A 
olle
tion of the ve
tors for all the grid nodes j gives a dis
rete ve
tor �eld q:
q =




q
1

q
2...

q
N



.

65



Figure 5.4: Cartesian grid (ξ, η) with displa
ement ve
tor q
j
= [q1j , q

2
j ]

T at node j.One wants to minimize an obje
tive fun
tion 
ontaining an observation mismat
h anda ba
kground mismat
h:
J(x(q)) =

1

2
(y − h(x(q)))TR−1(y − h(x(q))) +

1

2
(x(q)− xb)TB−1(x(q)− xb),where xb is a ba
kground image and B is a ba
kground error 
ovarian
e matrix. Themeasurements are denoted as the ve
tor y, x(q) is a distorted template (base 
ase) image,

h(x(q)) are predi
ted measurements that depend impli
itly on the distorting ve
tor �eld
q, R is a measurement error 
ovarian
e matrix of the zero-mean noise term ν su
h that:

y = h(x(q)) + ν.In 
ase of an image re
ognition appli
ation, the observations y are the target imageand h is an identity. If the method is used for data assimilation in a physi
al pro
ess thena dynami
 model needs to be in
luded. In that 
ase h(x(q)) in
ludes a physi
al modelthat predi
ts the values of observations.To regularize the ve
tor �eld q two quadrati
 penalty terms 
an be added to the ob-je
tive fun
tion. The �rst one 
onstrains gradients of the ve
tor �eld, the se
ond oneits divergen
e. Constraining the gradients will not allow sharp jumps from one ve
torto its dire
t neighbor. Minimizing divergen
e should ensure no ex
essive lo
al expan-sion/
ontra
tion of the image. The regularization terms are of the form, [67℄:
L(q) =

w1

2

N∑

j=1

tr





[
∂q

j

∂(ξ, η)

][
∂q

j

∂(ξ, η)

]T


+
w2

2

N∑

j=1

[∇ · q
j
]2.Here, w1 and w2 are weights, summation is done over all grid nodes indexed by j, tr isthe tra
e of a matrix, · denotes the inner produ
t, and

∂q
j

∂(ξ, η)
=




∂q1j
∂ξ

∂q1j
∂η

∂q2j
∂ξ

∂q2j
∂η


 , ∇ · q

j
=

∂q1j
∂ξ

+
∂q2j
∂η
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represent the gradients and the divergen
e, respe
tively. Using �nite di�eren
e approxi-mation it is easy to derive a fully dis
rete version of these expressions that 
omes into theobje
tive fun
tion as:
J(x(q)) =

1

2
(y−h(x(q)))TR−1(y−h(x(q)))+

1

2
(x(q)−xb)TB−1(x(q)−xb)+L(q). (5.1)Equation (5.1) 
an be solved through a so-
alled two-step method, [67℄, by 
omputinggradients of J with respe
t to q and x(q) and setting them equal to zero. The �rststep of the method aligns features by deforming the grid. The se
ond step introdu
es anamplitude adjustment, in other words a pixel-based update on the aligned �eld.Even though the two-step approa
h 
an be implemented as an ensemble s
heme inhistory mat
hing, it needs a model derivative if used with a physi
al simulationmodel, [67℄.This 
ould be a major obsta
le to implementing the �eld alignment method. Therefore,gradient-free approa
hes are 
hosen for the implementation of the grid distortion method.5.1.4 Ensemble sequential data assimilation and dire
t sear
hA sequential data assimilation s
heme and a pattern sear
h method are applied in thiswork due to a relatively simple implementation pro
ess that does not require a derivativespe
i�
ation. This se
tion des
ribes the problem formulation, the ensemble sequentialapproa
h and the pattern sear
h.Most data assimilation formulations are based on a state-spa
e approa
h. Let xk bea state ve
tor of dynami
 variables. Then:





xk+1 = fk→k+1(m,xk) + εk+1,

yk+1 = h(xk+1) + νk+1,

(5.2)where subs
ript k indi
ates dis
rete time, fk→k+1 is a model for time-evolution that de-pends on the stati
 parameters m, and ε is a model error term. Initial 
ondition x0 and aset of initial parameters are given, yk indi
ates the measurements, h is the measurementoperator that 
ould depend on time, and ν is a zero mean normally distributed randomvariable representing noise with error 
ovarian
e matrix R.Let the state ve
tor 
ontain dynami
 variables and/or stati
 model parameters. As-sume that the model error 
an be ignored, that is, εk+1 = 0 for all k, and that oneis interested in estimating the stati
 variables m only. Then the state-spa
e approa
hmodi�es to: 



mk+1 = Imk,

yk+1 = h(fk→k+1(mk,xk)) + νk+1.

(5.3)If the stati
 variable 
an be represented by a smaller set of parameters α, m = m(α),then: 



αk+1 = Iαk,

yk+1 = h(fk→k+1(m(αk),xk)) + νk+1.

(5.4)Here, I is an identity matrix that indi
ates that the state is 
onstant in time, and
h(fk→k+1(m(αk),xk)) denotes a series of operations: �rst the model stati
 variables are67




omputed from a given parameter set, then the model fk→k+1 propagates the dynami
variables in time, and �nally h extra
ts the observations. Formulation (5.4) will furtherbe applied in our study.The main idea behind the ensemble Kalman �lter is to represent a probability distribu-tion of state variables by an ensemble. The ensemble is a 
olle
tion of possible realizations(repli
ates) of the variables in the data assimilation pro
ess and is used to 
ompute a sam-ple (
ross-)
ovarian
e matrix. Sequentially, �rst the pro
ess is integrated in time, then,the data are assimilated, and updated repli
ates are forwarded in time again. Variousensemble Kalman �lter �avors 
an be found in the literature, [1℄, [20℄. The ensemblesquare root �lter (EnSRF) implementation, [18℄, [70℄, is used due to its 
omputationale�
ien
y. In the 
urrent setup the EnSRF be
omes a parameters estimator sin
e all thedynami
 variables have been ex
luded from the state ve
tor.For 
omparison, a pattern sear
h (Latin Hyper
ube Sampling) te
hnique is imple-mented (see Matlab do
umentation) that is espe
ially suitable for estimating a smallnumber of variables. It is not based on lo
al gradient 
hanges (hen
e the straightforwardimplementation) but usually requires a 
onsiderable time to �nd a minimum.5.1.5 Grid distortionThe notion of a grid is ubiquitous in mathemati
s and engineering. Any equation used formodeling must �rst be dis
retized on a numeri
al grid. In more advan
ed reservoir simu-lators �ow equations 
an be solved on various types of grids: Cartesian, unstru
tured, et
.A grid 
an also be deformed to �t a given shape, like in [80℄ where the goal is to generatea smooth 'orthogonal' grid for engine 
ombustion 
hamber simulation (Figure 5.5).
Figure 5.5: Fitting a grid to a shape of an engine 
ombustion 
hamber, [80℄.Similarly, in reservoir engineering appli
ations, [76℄, a grid 
an be adjusted to �t thetop and bottom reservoir horizons, or spe
ify the position of a fault, [75℄.Looking at a digital image, we a
tually look at a set of pixels. This set of pixels 
anbe seen as embedded in (held by) a grid and the image 
ould be deformed by perturbingthe grid. Figure 5.6 shows an example of a simple image deformation by 
hanges in thegrid. Figure 5.6(a) is an image to be deformed (whi
h will be referred to as a base 
ase).Figure 5.6(b) is a deformed grid. Figure 5.6(
) is a deformed grid with the deformed imageon top of it. Finally, Figure 5.6(d) represents the deformed image mapped ba
k ontothe original Cartesian grid. This ba
ktransformation is ne
essary be
ause our simulatorrequires a Cartesian grid. The base 
ase is an image generally representing one of thefeatures that is expe
ted to be seen in the feature �eld. To allow independent feature68



 

 

(a) Image to be deformed. (b) Distorted grid.

(
) Distorted grid with deformed image.  

 

(d) Deformed image mapped ba
konto the original undistorted Cartesiangrid.Figure 5.6: An image deformed by a grid.
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distortion, ea
h shape has one base 
ase representing it. The base 
ases are not subje
tto estimation pro
edures and are set 
onstant beforehand.The aim of the deformation is to translate the grid smoothly to assure a seamlesstransition of features. The grid then behaves like an elasti
 net, and deformations do not
orrupt the shapes. Below, the grid distortion method is des
ribed in detail. First, themotivation and the relevant equations are presented. Then, grid distortion in the 
ontextof data assimilation is des
ribed.MotivationGrid generation is a well resear
hed area, [82℄, where the task is to automati
ally generate
urvilinear grids for solving di�erential equations on variously shaped domains and withspe
i�ed boundary requirements, for whi
h it is advantageous to have orthogonal smoothgrids. First, we present several grid generation equations in in
reasing order of 
omplexity,and then we 
ompare the grid distortion method to the �eld alignment method.Let us 
onsider two-dimensional grids where ξ and η are Cartesian 
oordinates, and
X and Y are 
urvilinear 
oordinates. The same type of reasoning would apply to athree-dimensional grid. In 2D Lapla
e's equations are:

∆X =
∂2X
∂ξ2

+
∂2X
∂η2

= 0,

∆Y =
∂2Y
∂ξ2

+
∂2Y
∂η2

= 0,where boundary 
onditions are given and the equation solves for smooth grid 
oordinatelines that be
ome orthogonal away from the boundaries. The boundary 
onditions 
an beDiri
hlet (in whi
h 
ase the lines are �xed at the boundary and their angle 
an vary) orNeumann (in whi
h 
ase the lines move along the boundary and have a spe
i�ed angle).The boundary 
onditions 
an also be mixed, but it is not possible to spe
ify both thelo
ation and the angle.Poisson's equation,
∆X = P,

∆Y = Q,is used to 
ontrol the 
oordinate line spa
ing through the 
ontrol (or distortion) fun
tions
P and Q, with the same rules for the boundary 
onditions. In [81℄ P and Q are, for exam-ple, spe
i�ed in the form of exponentials to 
reate points of attra
tion in the 
urvilinearor Cartesian 
oordinates. There, it is also noted that a modi�
ation to Poisson's equation
an be used in the form of a general di�usion equation:

∇ · (K ∇X ) = 0,

∇ · (K ∇Y) = 0,where K is responsible for 
ontrolling the 
oordinates. The equations give:
∆X = − 1

K (∇K · ∇X ), (5.5)70



∆Y = − 1

K (∇K · ∇Y),that is
∂2X
∂ξ2

+
∂2X
∂η2

= − 1

K

(
∂K
∂ξ

∂X
∂ξ

+
∂K
∂η

∂X
∂η

)
,

∂2Y
∂ξ2

+
∂2Y
∂η2

= − 1

K

(
∂K
∂ξ

∂Y
∂ξ

+
∂K
∂η

∂Y
∂η

)
.The right hand side is determined by K, the slopes of K and the slopes of the 
oordinates.In [80℄ a 
ovariant Lapla
e operator was proposed:

∂

∂ξ

(
K∂X

∂ξ

)
+

∂

∂η

(
1

K
∂X
∂η

)
= 0,

∂

∂ξ

(
K∂Y

∂ξ

)
+

∂

∂η

(
1

K
∂Y
∂η

)
= 0,where K is given and depends on the magnitudes of the slopes of X and Y . The equations
an be rewritten as:

∂2X
∂ξ2

+
1

K2

∂2X
∂η2

= − 1

K

(
− 1

K2

∂K
∂ξ

∂X
∂ξ

+
∂K
∂η

∂X
∂η

)
,

∂2Y
∂ξ2

+
1

K2

∂2Y
∂η2

= − 1

K

(
− 1

K2

∂K
∂ξ

∂Y
∂ξ

+
∂K
∂η

∂Y
∂η

)
.Here, the left hand side of the equations is not the Lapla
ian. It might be more di�
ultto implement but is 
ertainly an interesting alternative to 
onsider.We want to show how the grid generation methodology is similar to �eld alignmentin image pro
essing. Note that X = ξ + q1[j], where q1[j] are x-
oordinates of a distortingve
tor �eld q as de�ned for the �eld alignment method in the previous se
tion (q2[j] willdenote y-
oordinates). This gives ∂2X

∂ξ2
=

∂2q1
[j]

∂ξ2
, ∂2X

∂η2
=

∂2q1
[j]

∂η2
and therefore ∆X = ∆q1[j].Note, however, that the boundary 
onditions for these problems di�er. We will show howa Poisson's-type equation arises naturally in the �eld alignment 
ontext as des
ribed in[67℄. Re
all the obje
tive fun
tion from Equation (5.1):

J(x(q)) =
1

2
(y− h(x(q)))TR−1(y − h(x(q))) + L(q),where the ba
kground mismat
h term is ignored. Let the fun
tion L(q) be rewritten as:

L(q) =

w1

2

N∑

j=1

tr





[
∂q

j

∂(ξ, η)

][
∂q

j

∂(ξ, η)

]T
+

w2

2

N∑

j=1

[∇ · q
j
]2 =

1

2

∫∫ 

(
∂q1[j]
∂ξ

)2

+

(
∂q1[j]
∂η

)2

+

(
∂q2[j]
∂ξ

)2

+

(
∂q2[j]
∂η

)2

 dξdη,71



where we take w1 = 1 and w2 = 0 for simpli
ity. This gives
J(x(q)) =

1

2
(y − h(x(q)))TR−1(y − h(x(q))) +

1

2

∫∫ 

(
∂q1[j]
∂ξ

)2

+

(
∂q1[j]
∂η

)2

+

(
∂q2[j]
∂ξ

)2

+

(
∂q2[j]
∂η

)2

 dξdηand hen
e:

∂J

∂(q1[j])
= −

(
∂x

∂(q1[j])

)T (
∂h

∂x

)T

R−1(y− h(x(q))) +
∂2q1[j]
∂ξ2

+
∂2q1[j]
∂η2

,

∂J

∂(q2[j])
= −

(
∂x

∂(q2[j])

)T (
∂h

∂x

)T

R−1(y− h(x(q))) +
∂2q2[j]
∂ξ2

+
∂2q2[j]
∂η2

.Letting the derivatives of the obje
tive fun
tion be equal to zero leads to:
∆q1[j] =

(
∂x

∂(q1[j])

)T (
∂h

∂x

)T

R−1(y − h(x(q))),

∆q2[j] =

(
∂x

∂(q2[j])

)T (
∂h

∂x

)T

R−1(y − h(x(q))).Following [67℄, ∂x
∂(q1

[j]
)
and ∂x

∂(q2
[j]

)

omprise the gradient ∇x of x, and �nally we get:

∆q = (∇x)T
(
∂h

∂x

)T

R−1(y− h(x(q))). (5.6)Equations (5.5) and (5.6) are not Poisson's equations sin
e their right-hand sidesdepend on the unknown variable. Nevertheless, in [67℄ it is shown that Equation (5.6)
an be solved iteratively as Poisson's equation holding the right-hand side �xed to thevalue from the previous iteration.We want to simplify the solution pro
ess and aim to �nd a right-hand side of Poisson'sequation in a form that is easy to parameterize.Grid distortion equationsLet again X and Y be 
urvilinear 
oordinates, and ξ and η Cartesian 
oordinates. Thena distorted grid is a solution for X and Y to the equations
∂2X
∂ξ2

+
∂2X
∂η2

= P, (5.7)
∂2Y
∂ξ2

+
∂2Y
∂η2

= Q. (5.8)72



Fun
tions P and Q on the right hand sides of the equations are 
alled distortion fun
-tions (
ontrol fun
tions) and they drive the 
oordinate transformation. They representthe type of smooth deformation one wants to a
hieve through the 
oordinate transforma-tion. The distortion fun
tions are parameterized to redu
e the number of variables to beestimated.If Equations (5.7) and (5.8) are dis
retized on a regular Cartesian grid, distortion fun
-tions be
ome distortion matri
es (referred to as P and Q). The se
ond order derivativesare approximated by
∂2X
∂ξ2

=
X (i+ τ, j)− 2X (i, j) + X (i− τ, j)

τ 2
,where τ = 1 sin
e integer grid 
oordinates are used and (i, j) travels through all the gridnodes. The other terms in (5.7) and (5.8) are dis
retized in a similar fashion.Consider an image of size (Nη + 1)× (Nξ + 1) pixels in η- and ξ-axis dire
tion, respe
-tively. There are (Nη + 2)× (Nξ + 2) grid nodes in the grid representing the given image.Let us assume that the grid at its boundaries is �xed and that one needs to �nd the
urvilinear 
oordinates of the remaining Nη ×Nξ nodes. Equation (5.7) 
an be expressedin the form:

AX = bx, (5.9)where X ∈ R
(Nη ·Nξ)×1 is the unknown 
olumn ve
tor of 
urvilinear 
oordinates X . Theorigin is 
hosen at the lower left 
orner of the node domain. The �xed boundary valuesare: zeros at the left edge, Nξ + 1 at the right edge, while at the top and bottom thevalues in
rease from left to right from zero to Nξ + 1 with in
rement one. Let us de�ne amatrix Bx that a

ounts for the boundary 
ondition:

Bx =




1 2 · · · Nξ − 1 2Nξ + 1

0 0 · · · 0 Nξ + 1... ... ... ... ...
0 0 · · · 0 Nξ + 1

1 2 · · · Nξ − 1 2Nξ + 1




.

Matrix Bx is of the same size as the distortion matrix P: Nη × Nξ. Let us de�ne Pand Bx to be 
olumn ve
tors of size (Nη · Nξ) × 1 reshaped from matri
es P and Bx,respe
tively. During the dis
retization the �xed boundary values are moved to the right-hand side of the equation where one gets bx = P−Bx. At the left-hand side A is a sparse
(Nη ·Nξ)× (Nη ·Nξ) pentadiagonal �nite-di�eren
e matrix.For Equation (5.8) the only di�eren
e is the boundary 
ondition. We want to solve

AY = by. (5.10)Let Q be a 
olumn ve
tor reshaped from the distortion matrix Q. Let By be a 
olumnve
tor reshaped from Nη ×Nξ matrix: 73



By =




2Nη + 1 Nη + 1 · · · Nη + 1 2Nη + 1

Nη − 1 0 · · · 0 Nη − 1... ... · · · ... ...
2 0 · · · 0 2

1 0 · · · 0 1




.

Then by = Q−By.Grid Distortion in Data AssimilationThe ensemble Kalman �lter is dire
tly appli
able to reservoir engineering problems inthe form of Equations (5.3). Typi
ally, the ensemble of states 
ontains un
ertain stati
variables like permeability. Ea
h 
ell value in the permeability �eld 
an be estimated inthe data assimilation pro
ess (here referred to as pixel-based estimation). Unfortunately,in reservoir engineering appli
ations there are few data available. There might be onlyseveral measurements available to estimate hundreds or thousands of state values, whi
hmakes the problem severely ill-posed.Additionally, Kalman �lters 
onsider only �rst and se
ond moments of the given distri-bution. This results in smooth estimates that might not always be desirable. One mightwant to a

ount for spe
i�
 features introdu
ed in the initial permeability ensemble whi
hthe �lter loses during the history mat
h. Both problems (ill-posedness and not-preservedinitial information) are approa
hed by the feature-based methods.Let us explain how grid distortion �ts into the sequential ensemble data assimilationframework. The state ve
tor in Equation (5.4) 
ontains the distortion parameters. Un-
ertainty is assumed in the initial estimate of the distortion parameters only. Operator
m(α) represents a sequen
e of operations that 
reate a permeability �eld from the distor-tion parameters. To 
ompute predi
ted measurements, several steps are required. First,the distortion parameters (α) need to be 
onverted to distortion matri
es P and Q. Theequations are solved for 
urvilinear 
oordinates, base 
ases are distorted and mapped ba
kto a Cartesian grid. The margins from grid embedding need to be 
ut o� and the resultsfrom di�erent base 
ases need to be merged. The resulting images of permeability are theinput for the reservoir simulator f . Operator h extra
ts the measurement predi
tions forthe next update time step. The measurements are 
ontaminated with noise. The distor-tion parameters are updated every measurement time step to 
reate an updated ensembleof 
hannel �elds. The base 
ases do not 
hange throughout the whole pro
ess.To generate an ensemble of possible permeability realizations, the grid distortion withrandomly generated 
oe�
ients is repeatedly applied to the base 
ases. Figure 5.7 repre-sents the repli
ate generation pro
ess for one base 
ase. On top is the base 
ase whi
h,together with the distortion parameters, 
reates realizations of �elds with a horizontal
hannel.
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Figure 5.7: Generation of repli
ates with the grid distortion method.The full sequential data assimilation algorithm is des
ribed below.Algorithm 1 - Sequential ensemble data assimilation for parameterestimation in grid distortion
• Initialize - load measurements, initial distortion parameters α for all en-semble members, and Nf base 
ases.Repeat for the total number of measurement times, for all ensemble members:1. 
reate distortion matri
es P(α), Q(α),2. solve Equations (5.9) and (5.10) for X and Y for ea
h of the Nf base 
ases,3. distort the base 
ases with 
omputed distorted grids,4. map distorted images to Cartesian grid,5. 
ut o� the margins from embedding,6. merge the results from di�erent base 
ases,7. simulate the forward reservoir model with the new permeability �elds andget predi
ted data at the next measurement time, Equation (5.4),8. assimilate data to the parameters (using, for example, EnSRF).Additionally to pixel- and feature-based sequential data assimilation, a pattern sear
hmethod was implemented. Pattern sear
h requires a de�nition of an obje
tive fun
tionand an initial 
ondition. The obje
tive fun
tion is a weighted measurement mismat
hover the whole time interval, the initial 
ondition is zero for all the parameters. The base75




ase is identi
al to the one used in the sequential method. The pattern sear
h s
heme ispresented below. Note that points 1-6 are identi
al with Algorithm 1.Algorithm 2 - Pattern sear
h for grid distortion
• Initialize - load measurements, initial distortion parameters α and Nf base
ases.Repeat until stopping 
riteria have been met:1. 
reate distortion matri
es P(α), Q(α),2. solve Equations (5.9) and (5.10) for X and Y for ea
h of the Nf base 
ases,3. distort the base 
ases with 
omputed distorted grids,4. map distorted images to Cartesian grid,5. 
ut o� the margins from embedding,6. merge the results from di�erent base 
ases,7. simulate the forward reservoir model with the new permeability �eld andget predi
ted data at all measurement times, Equation (5.4),8. 
ompute the obje
tive fun
tion value.Pattern sear
h has been applied only for the grid distortion parametrization sin
eit 
annot handle as many variables as there are in the pixel domain. Therefore, it ispresented in the grid distortion result se
tion.5.1.6 Twin ExperimentThe se
tion is organized as follows. First, the study 
ase is des
ribed. Then, the data as-similation results are presented in two subse
tions following �rst the pixel-based approa
hand then the feature-based approa
h.As an example we 
onsider a domain with Nf features. Then, the grid distortion needsto be able to handle Nf separate 
hara
teristi
s. Ea
h feature is distorted by Poisson'sequations with its own set of distortion fun
tions P and Q. From the image pro
essingand grid generation literature we 
on
lude that we 
an 
onstru
t (and parameterize)the distortion fun
tions su
h that they re�e
t the type of deformation of the underlyingfeatures. We want the deformation to be global and smooth sin
e small lo
al 
hangesmight be insigni�
ant for the given type of data. We 
hoose ea
h distortion fun
tion, Pand Q in Equations (5.7) and (5.8), to be an independent paraboloid a(ξ − c)2 + b(η − d)2,where ξ and η are Cartesian 
oordinates, a and b are independent normally distributedparameters with zero mean and standard deviation 6 · 10−5, and c and d (deviationsfrom the 
enter of the domain) are independent normally distributed with zero meanand standard deviation 10. Higher standard deviations for the parameters led to shapesbeing removed from the domain. We want to mention here that the sear
h interval in thepattern sear
h method for the distortion parameters is set to [−33 · 10−5, 33 · 10−5] for76



margin

original
domain

Figure 5.8: Grid embedding provides �exibility at the boundaries of the original grid domain.
a's and b's, and [−33, 33] for c's and d's. The intervals are wider than twi
e the standarddeviation that was used to generate the repli
ates in the initial ensemble.Paraboloids are simple enough to re�e
t only 
urving and smooth bending whi
hshould be able to �t the position of the feature. We 
an think of it as a lo
al shape�tting problem, a part of a larger domain. For larger domains more elaborate distortionfun
tions should be used, for example higher order polynomials or spline interpolation.The initial grid is embedded in a larger grid (outer grid) with a given margin equalto Nm pixels in ea
h dire
tion, Figure 5.8. This outer grid is �xed at its boundaries.It provides �exibility at the edges of the original grid and does not introdu
e any moreparameters (the margin width is �xed).Sin
e there are Nf features (e.g., 
hannels) to be estimated, ea
h one of them ismodeled separately. That is, there are Nf base 
ases, ea
h assigned to model one of the
hannels with a separate set of parameters. That gives in total only 8 · Nf parameters
oming from the distortion fun
tions that are estimated in the data assimilation pro
essin Equation (5.4).The realizations of ea
h of the Nf features are merged before being used as input to areservoir simulator. That is, the shapes are gathered in one domain and given an arbitraryinside value, while the ba
kground value is also pres
ribed; note that overlapping featuresdo not add up their values.Data assimilation for physi
al pro
esses always requires a model/simulator of the un-derlying phenomenon. An in-house reservoir simulator, [37℄, is used for the results in thisse
tion. It is based on mass balan
e equations and a two-phase version of Dar
y's law forslightly 
ompressible two-phase (oil-water) �ow, negle
ting gravity and 
apillary pressuree�e
ts. The ba
kground of reservoir simulation 
an be found in, e.g., [63℄, [5℄.An oil saturated 2D reservoir is water�ooded and produ
ed for 24 months, waterbreakthrough o

urs later. The wells operate on a �xed rate (0.001 m3/s for all wells).Porosity is assumed known, 
onstant and equal to 0.3. All the other reservoir and �uidproperties 
an be found in Table 5.1.The domain size is 49 × 49 pixels. Bottom hole pressure in Pa is measured in thesix wells displayed in Figure 5.9, where the true permeability is shown. Low log10-permeability (bla
k) is equal to −13.5 and high is equal to −12.06 m2. The truth wasgenerated with the help of the snesim algorithm, [79℄. The six measurement points inspa
e provide data every month for two years. The noise standard deviation is assumed to77



Variable Value SI unitsGridblo
k height 2 mGridblo
k length/width 1500/49 mOil dynami
 vis
osity 0.5 · 10−3 Pa · sWater dynami
 vis
osity 1.0 · 10−3 Pa · sOil 
ompressibility 1.0 · 10−9 Pa−1Ro
k 
ompressibility 1.0 · 10−9 Pa−1Water 
ompressibility 1.0 · 10−9 Pa−1Initial reservoir pressure 3 · 107 PaEndpoint relative 0.9 −permeability of oilEndpoint relative 0.6 −permeability of waterCorey exponent, oil 2.0 −Corey exponent, water 2.0 −Residual oil saturation 0.2 −Connate water saturation 0.2 −Porosity 0.3 −Well bore radius 4.5 · 0.0254 mfor all wellsTable 5.1: Reservoir and �uid properties for the twin experiment.
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be 7 · 106 Pa. The ensemble 
ontains ne = 50 repli
ates. Their prior mean and �rst nineprior repli
ates are shown in Figures 5.10 and 5.11, respe
tively. The prior ensemble wasgenerated with the grid distortion method and is used in both pixel- and feature-basedsequential methods.
truth

Figure 5.9: The true permeability �eld. Three inje
tors at the left-hand side boundary, threeprodu
ers at the right-hand side boundary.Ea
h prior repli
ate is simulated in time without data assimilation. Bottom holepressures are 
olle
ted at observation times from ea
h well. Figure 5.12 
ontains six plots,ea
h representing one well. The left 
olumn is for the inje
tors, and the right 
olumn isfor the produ
ers. Simulated pressure observations from 50 repli
ates (blue dashed lines)are plotted against the true measurements (red 
ontinuous line).Figure 5.13 displays prior water-produ
tion (in [m3/s℄) predi
tions for ea
h of the 50ensemble members. Colors indi
ate di�erent produ
ers. The thi
k dashed line is the truewater-produ
tion in ea
h of the three produ
ers. The �rst water breakthrough o

urs afterthe last assimilation time (24 months indi
ated on the graph with a verti
al dashed line).A root mean square (rms) error of the water breakthrough time (expressed in months)is 
omputed for ea
h well:
Erms =

√√√√ 1

ne

ne∑

i=1

(twb,t − twb,i)2,where twb,t and twb,i are true water breakthrough time and simulated water breakthroughtime [month] of repli
ate i, respe
tively. Ea
h water-produ
tion plot indi
ates 
orrespond-ing root mean square errors of the water breakthrough times of the underlying ensemble.If water breakthrough did not o

ur until month 70, the water breakthrough time is takento be equal to 70.
prior mean

 

 

Figure 5.10: Prior permeability mean.79



prior ensemble

Figure 5.11: First 9 prior permeability repli
ates.
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Figure 5.12: Prior ensemble. Bottom hole pressure from six wells; left 
olumn: inje
tors; right
olumn: produ
ers. Red 
ontinuous line - true bottom hole pressure. Blue dashed lines - priorensemble bottom hole pressure fore
ast. 80
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Figure 5.13: Water-produ
tion [m3/s℄ in three wells for the prior ensemble. Thi
k dashed: truth.Thin solid: ensemble. Verti
al line: last assimilation time. Erms(red) = 32.8, Erms(green) =9.86, Erms(blue) = 14.34.
permeability(50), RMSE = 0.79534

 

 

Figure 5.14: Pixel-based posterior mean.Pixel-based approa
hThe pixel-based approa
h is the ensemble square root �lter, [18℄, applied dire
tly to pixelvalues of permeability. It is assumed that the permeability is the only un
ertain parameter,that is, the state ve
tor 
ontains permeability values only. Variable transformation [24℄is applied to keep the values of permeability within reasonable bounds during Kalman�ltering.The posterior permeability mean and the �rst nine repli
ates are shown in Figures 5.14and 5.15, respe
tively. The posterior estimate 
learly shows the lowest 
hannel. The upperfeatures are more pronoun
ed in the near-well area. This is due to the fa
t that the lowest
hannel 
ontains the lowest produ
er and the water travels faster towards it, even thoughthe water breakthrough does not o

ur in the assimilation time. The 
ontinuity of shapesis not kept in general.The posterior repli
ates are run from time 0, bottom hole pressure is 
olle
ted atobservation times and plotted against the true observations, see Figure 5.16, whi
h shouldbe 
ompared to the prior runs in Figure 5.12. The un
ertainty of the estimates is visiblyde
reased.Figure 5.17 displays water-produ
tion for the posterior pixel-based ensemble. The�lter estimated the �rst water breakthrough to o

ur at least 8 months too late.81



Figure 5.15: Pixel-based posterior repli
ates.
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Figure 5.16: Pixel-based posterior estimate. Bottom hole pressure from six wells; left 
olumn:inje
tors; right 
olumn: produ
ers. Red 
ontinuous line - true bottom hole pressure. Blue dashedlines - posterior ensemble bottom hole pressure fore
ast.82
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Figure 5.17: Water-produ
tion [m3/s℄ in three wells for the posterior pixel-based ensemble. Thi
kdashed: truth. Thin solid: ensemble. Verti
al line: last assimilation time. Erms(red) = 26.35,
Erms(green) = 12.09, Erms(blue) = 7.57.

 

 

Figure 5.18: Base 
ase permeability �eld.Feature-based approa
hThe feature-based approa
h is the ensemble square root �lter applied to the distortionparameters. It is assumed that the parameters 
arry the only un
ertainty (and thereforeindire
tly the permeability is un
ertain). It makes the state ve
tor to be of size 8 ·Nf =
8 · 3 = 24 (Nf = 3 there are three 
hannels and 8 parameters from the grid distortionfun
tions).There are Nf = 3 base 
ases, ea
h one representing one 
hannel. The margin for gridembedding is equal to Nm = 10. The horizontal lines in the base 
ases are between therows: 9-13, 23-27, 37-41 in the original domain whi
h is 49 × 49 pixels. The whole base
ase template is 69 × 69 pixels. Figure 5.18 shows a realization with all the parametersequal to zero. It is the initialization for the pattern sear
h method.The posterior permeability estimates are shown in Figure 5.19 (permeability ensemblemean), Figure 5.20 (distortion parameter mean applied to the base 
ase), and Figure 5.21(repli
ates). The method always maintains 
ontinuity of the stru
tures from the left tothe right boundary of the domain. Figure 5.22 shows how the �rst repli
ate evolved intime along the sequential data assimilation pro
ess.The posterior repli
ates are run from time 0 and the bottom hole pressure is 
olle
tedat observation times and plotted against the true observations, Figure 5.23. Figure 5.23should be 
ompared to the prior runs in Figure 5.12 and the pixel-based method inFigure 5.16. The posterior un
ertainty is de
reased for both methods and for all the wells,83



permeability(50), RMSE = 0.63197

 

 

Figure 5.19: Feature-based posterior mean.
permeability − mean parameters

 

 

Figure 5.20: The mean of posterior param-eters applied to the base 
ase.

Figure 5.21: Feature-based posterior repli
ates.
84



Figure 5.22: In reading order, the evolution of the �rst repli
ate in time along the sequentialdata assimilation pro
ess, initial and 24 updated permeability states.
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Figure 5.23: Feature-based posterior estimate. Bottom hole pressure from six wells; left 
olumn:inje
tors; right 
olumn: produ
ers. Red 
ontinuous line - true bottom hole pressure. Blue dashedlines - posterior ensemble bottom hole pressure fore
ast.but the pixel-based method better mat
hed the produ
tion data.Figure 5.24 shows the water-produ
tion for the posterior feature-based ensemble. Thewater breakthrough 
ontains the truth within the ensemble bounds and it does not seemover-
on�dent about the estimate.Figure 5.25 shows the obje
tive fun
tion values for the 50 ensemble members. Priorlarge values (
ir
les) 
an be 
ompared to the posterior pixel- and feature-based values.Here, the pixel-based posterior estimates (squares) are smaller in some 
ases than thefeature-based posterior estimates (stars). For example, posterior feature-based repli
atesnumber 3 and 6 are the ones with larger obje
tive values. They are pi
tured in Figure 5.21row 1 
olumn 3, and row 2 
olumn 3, respe
tively. The large obje
tive value in the repli
ate3 is 
aused by the mismat
h in the lower right 
orner where the 
hannel does not rea
hthe produ
er; for repli
ate 6, the 
enter produ
er is in a high permeability area unlike inthe truth. In Figure 5.25 'ensemble member' number 51 represents the obje
tive fun
tionvalue of the mean. We 
an see the obje
tive fun
tion value for the prior mean fromFigure 5.10 (
ir
le), the posterior pixel-based mean from Figure 5.14 (square) (whi
his the smallest value in this plot), the posterior feature-based permeability mean fromFigure 5.19 (small star), and the posterior feature-based parameter mean from Figure 5.20(big star). The large value of the big star indi
ates how nonlinear the relationship isbetween the observations and the distortion parameters and how for severely nonlinearproblems a mean is not ne
essarily a good estimate. For pixel-based results the mean is agood estimate due to the larger number of degrees of freedom whi
h 
an give a better �t.This high nonlinearity makes the problem more appropriate for dire
t parameter sear
h86
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Figure 5.24: Water-produ
tion [m3/s℄ for the posterior feature-based ensemble. Thi
k dashed:true. Thin solid: ensemble. Verti
al line: last assimilation time. Erms(red) = 12.93, Erms(green)= 9, Erms(blue) = 5.51.methods.The grid distortion parametrization 
ontains only a few parameters to be estimated.Additionally, sin
e the parameters are stati
 and they are the only sour
e of un
ertainty,the formulated problem is suitable for dire
t sear
h methods. For 
omparison, we showhow pattern sear
h works with grid distortion parametrization, Figure 5.26. The obje
tivefun
tion goes down to 0.815 in the 
ase presented here. Pattern sear
h methods involveslight perturbations along the minimization pro
edure, therefore, the results might dif-fer for multiple runs. The obje
tive fun
tion values for the posterior realizations fromsequential data assimilation ensembles are of a similar magnitude.The 
hannels in the permeability �eld obtained by the pattern sear
h method with griddistortion, Figure 5.26, are not as smooth as expe
ted. The kinky edges of the shapes
ome from the fa
t that the grid is strongly stret
hed and the interpolation pro
edureprodu
es artefa
ts. If we look at the three grids (one for ea
h feature) before interpolation,Figure 5.27, we 
an see that the transformation itself is smooth. There, the full grids withthe margin equal to 10 are shown, therefore, after interpolation and margin trimming, were
eive images from the 
enter of these grids. Pre
isely, the grid for x- and y-
oordinatesfrom the interval [11, 60].The obje
tive fun
tion for the pattern sear
h method is a measurement mismat
h,therefore, the pressure data are almost perfe
tly �tted. The water produ
tion 
urves forthe estimated permeability �eld in Figure 5.26 are shown in Figure 5.28. The estimatedparameters indi
ate a late water breakthrough.Both te
hniques, pixel- and feature-based, improved the bottom hole pressure mat
hin the wells. The �rst water breakthrough time was better estimated by the grid distortionmethod. The advantage of the feature-based method over the pixel-based method is thatthe 
hannels are preserved in the posterior permeability repli
ates. Moreover, they 
an beparameterized with just a few parameters whi
h makes the estimation problem feasiblefor alternative minimization te
hniques.
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Figure 5.25: The values of the obje
tive fun
tion for prior and posterior permeability repli
ates.
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(a) Obje
tive fun
tion, pattern sear
h method for grid distortion.  

 

(b) Posterior permeability esti-mate with obje
tive value equal to0.815.Figure 5.26: Pattern sear
h method with grid distortion.
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Figure 5.28: Water-produ
tion [m3/s℄ in three wells for the posterior feature-based permeabilityestimated using dire
t sear
h, Figure 5.26. Thi
k dashed: truth. Thin solid: estimate. Verti
alline: last observation time. Erms(red) = 8, Erms(green) = 5, Erms(blue) = 5.
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5.1.7 Dis
ussion and Con
lusionsIn this se
tion a new feature-based method based on grid warping is developed. It pa-rameterizes the un
ertain parameter �eld su
h that the parameter ve
tor to be estimatedbe
omes about 1% of its original size, and keeps the initially introdu
ed features. Thegrid distortion method was applied to a 2D syntheti
 reservoir problem with ensembleKalman �ltering. The positions of three 
hannels present in the domain were estimatedand the water-produ
tion response was improved. The estimated 
hannels run 
ontinu-ously from one boundary of the domain to the other without breaks that o

ur in thestandard approa
h. The variability between the posterior repli
ates is re�e
ted in thevariability in the bottom hole pressure and water-produ
tion pro�les.The implementation with the ensemble Kalman �lter is not essential. Due to thesigni�
ant redu
tion in the dimensionality of the problem, grid distortion 
an be 
ombinedwith a pattern sear
h minimization method.Poisson's equations in (5.7) and (5.8) are the basis of the distortion method. Theright-hand-side distortion fun
tions 
an be adjusted to the requirements of an appli
ation.Here, the domain is relatively small and it is su�
ient to use paraboloids with 
onstrainedmagnitude that adjust the 
hannels globally. For larger, more 
ompli
ated domains,it might be worth 
onsidering higher order polynomials for the distortion fun
tions orlo
alization if only regional in�uen
e is expe
ted.The distortion fun
tions 
annot have too large values to prevent the domain from�ipping over. That was the reason to use small standard deviations of 6 · 10−5 for theparameters in the paraboloids. More rigorous rules for de�ning the fun
tions should bethe topi
 of follow-up resear
h that 
an still gain from insights in grid generation andimage pro
essing te
hniques. Further, the method should be applied to di�erent types ofproblems to determine its strengths and faults. A 3D appli
ation is developed next.5.2 Grid distortion for a 3D groundwater �ow modelThis se
tion extends the grid distortion method to three dimensions. In Se
tion 5.2.1the 3D extension is presented. Thereafter, two appli
ations are shown. First, a 3Dgroundwater �ow model is used to test the 
on
ept. Thereafter, the grid distortion methodis used with a 3D multiphase reservoir simulator. In both 
ases, we 
hoose to use a patternsear
h method, Se
tion 3.5, to estimate the grid distortion parameters.For an alternative method of feature estimation with the ensemble Kalman �lter in thegroundwater problem see [98℄. Here, the authors propose a method termed normal s
oreensemble Kalman �lter that transforms 
hannelized 
ondu
tivity �elds into univariateGaussian variables before the update step is performed. After updating the output isba
ktransformed to the feature domain.5.2.1 The 3D grid distortion methodHere, we present the grid distortion method for a 3D problem. Analogi
ally to Se
tion 5.1.5,let X , Y and Z be 
urvilinear 3D 
oordinates, and ξ, η and ζ Cartesian 
oordinates. Then,a distorted grid is a solution for X , Y and Z to Poisson's equations:91



∂2X
∂ξ2

+
∂2X
∂η2

+
∂2X
∂ζ2
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∂2Y
∂ξ2

+
∂2Y
∂η2

+
∂2Y
∂ζ2

= Q,

∂2Z
∂ξ2

+
∂2Z
∂η2

+
∂2Z
∂ζ2

= R.Fun
tions P , Q and R on the right hand sides of the equations are distortion fun
tionsand they drive the 
oordinate transformation. They are parameterized to redu
e thenumber of variables to be estimated. The parametrization re�e
ts a belief in a typeof deformation that 
ould drive the 
hange of features in the domain. This allows themethod to be adjusted to di�erent types of appli
ations. The boundary 
onditions needto be given. The setup is analogous to the 2D version of the method. Therefore, theboundary is �xed at the Cartesian grid nodes and the domain is embedded in a largergrid with given margin to remove the boundary e�e
ts.5.2.2 3D groundwater �ow modelWe 
hoose to start the 3D grid distortion experiments with a 3D model that is easilya

essible and relatively simple 
ompared to 
omplex reservoir models. A 3D groundwater�ow model, [69℄, is presented here.Let a voxel be a 1 × 1 × 1 three-dimensional pixel. Consider a re
tangular 
uboid
omposed of nx × ny × nz voxels (in x-, y- and z-axis dire
tion, respe
tively), where a
ondu
tivity value is pres
ribed in ea
h voxel. If voxel v1 has 
ondu
tivity K1 and voxel
v2 has 
ondu
tivity K2, and v1 and v2 share a fa
e, then the 
ondu
tivity between thetwo voxels is equal to: K12 =

√
K1 ·K2. Let us 
all Kx, Ky and Kz a 
ondu
tivity in x-,y- and z-axis dire
tion, respe
tively. Then, the head h = h(x, y, z, t) at point (x, y, z) attime t 
an be expressed by the following equation:

∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂

∂z

(
Kz

∂h

∂z

)
= Ss

∂h

∂t
,where Ss is a spe
i�
 storage 
oe�
ient.Boundary 
onditions have to be spe
i�ed for the domain. Figure 5.29 depi
ts a 
uboidwith two indi
ated fa
es for whi
h high or low head is pres
ribed. The other fa
es workunder no-�ow 
onditions.

HIGH
HEAD

LOW
HEADFigure 5.29: Representation of the domain.Initial 
ondition for the head has to be given.92



A sour
e/sink term Q representing a well (or wells) 
an be introdu
ed:
∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂

∂z

(
Kz

∂h

∂z

)
+Q = Ss

∂h

∂t
.Verti
al wells pump and/or 
olle
t data (in the 
ase of monitoring wells) from ea
h layer.The equation is dis
retized on a re
tangular grid and after dis
retization, Kx, Ky and

Kz are de�ned at the fa
es of voxels, and h is de�ned in the voxels. The equation is solvedexpli
itly with 
entral and forward �nite di�eren
e s
hemes.The groundwater �ow model is a single-phase model and 
an be derived dire
tly fromEquation (2.5) with no gravity:
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∂x
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k
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∂
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k
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∂p
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+Qw =

φ

[
Sw(cw + cr)

∂p

∂t
+

∂Sw

∂t

]
,where we are interested only in the motion of water with no oil present, therefore, Sw = 1and krw = 1. The groundwater �ow equation arises naturally given the relationships:

k

µ
=

K

ρg
,

h =
p

ρg
+ h∗,

ρgφ(cw + cr) = Ss,where ρ is the water density, g is the gravity a

eleration, and h∗ is a height above adatum.5.2.3 Experiment setupA list in Table 5.2 summarizes the experimental setup of the 3D groundwater model.Figure 5.30 shows the true head 
ontours mapped on the x-y plane at the last timestep. The verti
al pumping well is lo
ated in the 
enter of the domain and it is open to �owin all the 18 inner horizontal layers (top and bottom layers are no-�ow). There are eightmonitoring wells spread over the domain, 
ir
les in Figure 5.31, ea
h 
olle
ting head datafrom every inner horizontal layer at all the 500 time steps. There is no measurement noise.The data over time from all the wells is shown in Figure 5.32. Finally, the true 
ondu
tivityinner layers are shown in Figure 5.33. It was 
onstru
ted using the 3D grid distortionmethod with 18 parameters per shape (in total 18 · 2 in this 
ase) where the distortionfun
tions are three dimensional se
ond order polynomials. The initial 
ondu
tivity (whi
his also a base 
ase) is shown in Figure 5.34.
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• Domain size is 900× 900× 250 [m×m×m].
• Number of gridblo
ks is 30× 30× 20.
• Voxel size is 30× 30× 12.5 [m×m×m].
• Spe
i�
 storage 
oe�
ient is 10−2.2 [m−1].
• Pumping rate per well opening is 2.1/302/12.5/18 [s−1].
• Ba
kground low 
ondu
tivity is 3.2 · 10−5 [m/s].
• Channel high 
ondu
tivity is 3 · 10−4 [m/s].
• Horizontal 
ondu
tivity is equal to 10% of verti
al 
ondu
tivity,
Kz = 0.1 ·Kx.

• Head boundary 
ondition is equal to 200 and 100 at high head and lowhead end, respe
tively, see Figure 5.29.
• Initial head is a steady-state head for homogeneous 
ondu
tivity, hen
e thehead initial 
ondition is in
onsistent with the underlying 
ondu
tivity.
• There are 500 time steps ea
h equal to 1 hour.Table 5.2: Variable setup for the groundwater problem.

Figure 5.30: The true head 
ontoursmapped on the x-y plane at the last timestep. Figure 5.31: The lo
ation of the 8 moni-toring wells (
ir
les). Contour lines are notrelevant.94
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Figure 5.32: Head observations over time from all the wells [m]. The stronger head de
lineobservations 
ome from the produ
er (towards the bottom of the plot). The observations withsmaller variability 
ome from the monitoring wells (towards the top of the plot).
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(a) The layers in reading order starting from the bottom.

(b) The 3D view.Figure 5.33: The true 
ondu
tivity.
96



(a) The layers in reading order starting from the bottom.

(b) The 3D view.Figure 5.34: The initial 
ondu
tivity. The base 
ase with zero distortion.
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5.2.4 Dis
ussion and resultsCurrent 
hapter begins with Se
tion 5.1 where the 2D grid distortion method is intro-du
ed, developed and thoroughly investigated. An extension of the dimension in the 3Dmethod is simple, on the one hand, sin
e it does not introdu
e any 
ompli
ations in themethod itself, only an additional derivative term. On the other hand, in three-dimensionalspa
e the dependen
e between 
ells be
omes more 
omplex and there are more degrees offreedom when seeking the solution. Therefore, even though we might be 
ertain that thegrid distortion is an e�e
tive method, we need to investigate if the additional dimensionis not making the stated problem too di�
ult to solve.The 3D grid distortion method is applied to the 3D groundwater �ow model. The taskis to �nd the true 
ondu
tivity pattern that lies within the span of possible solutions giventhe head response in 9 wells, eight of whi
h are monitoring wells. A pattern sear
h method(Latin Hyper
ube Sampling, refer to Matlab do
umentation) is implemented to �nd thegrid distortion parameters where a sear
h interval is de�ned to have radius equal to abouttwo around the true solution. The obje
tive fun
tion is a sum of squared measurementmismat
h terms.
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Figure 5.35: Obje
tive fun
tion de
ay in pattern sear
h method.Figure 5.35 presents the obje
tive fun
tion values whi
h go down to 23344 startingat 6 · 106. (Note that, sin
e there is no measurement noise, it would be possible for theobje
tive fun
tion to rea
h 0.) The posterior 
ondu
tivity is shown in Figure 5.36. Theposition of the 
hannels is 
orre
t but it is not identi
al on a pixel-by-pixel basis. Thesesmall di�eren
es in�uen
e the value of the obje
tive fun
tion. The pattern sear
h methodhas not been able to �nd the exa
t solution due to the nature of the sear
h algorithm butstill it has performed very well.We need to note that this result has been obtained with relatively narrow sear
hinterval. It 
omes from the fa
t that Latin hyper
ube sampling aims at drawing almostuniformly distributed points in the sear
h interval. Sin
e the true solution was randomlysampled from a Gaussian zero-mean distribution with small varian
e, we expe
t to seerather zero 
on
entrated small numbers, and we allow the sear
h algorithm to be able to98



(a) The layers in reading order starting from the bottom.

(b) The 3D view.Figure 5.36: The posterior 
ondu
tivity estimate.
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�nd similar solutions. Therefore, even though the true solution is in the sear
h spa
e andthe problem seems to be easily solvable, it might not be possible to �nd the exa
t answer.Either way, the performan
e of the method is ex
ellent. In the next appli
ation we willstudy a more realisti
 
ase where the true solution is not in the sear
h spa
e.
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5.3 Grid distortion for a 3D reservoir modelThis se
tion presents the resear
h �ndings on the 3D grid distortion method implementedin a 3D 2-phase reservoir simulator. We use 3D bla
k oil simulator for water �ooding.Given the true permeability �eld, modeled with 480m × 480m × 28m, 60 × 60 × 7 gridblo
ks where the layers are shown from the bottom in reading order in Figure 5.37, wesimulate1 observations of bottom hole pressure, liquid rate, oil rate and water rate fortwo hundred time steps of one day ea
h. A 3D view with a
tive 
ells, and well lo
ationsis shown in Figure 5.38, the low permeability value is 300 mD, and high 6100 mD inthe horizontal, and ten times less in the verti
al dire
tion. Table 5.3 summarizes otherreservoir and �uid properties of this experiment.

Figure 5.37: The true permeability layers.We 
hoose the obje
tive fun
tion to be a sum of squared di�eren
es between theobserved and predi
ted data. One evaluation of the obje
tive fun
tion given the griddistortion parameters takes a few minutes (3-6 minutes) and its most time-
onsumingpart is the 
onstru
tion of the permeability �eld. It is due to the fa
t that for onepermeability �eld to be built we need to solve Poisson's equation for ea
h dimension andfeature. The grid distortion uses four base 
ases, ea
h one with one horizontal 
hannel,trying to follow our expe
tations with respe
t to the true shapes. This gives 3 · 4 = 12Poisson's equations for large domains. Even though the grid is 60 × 60 × 7, a margin isadded for the �exibility at the permeability boundaries. The margin is equal to 7 whi
hgives �elds of size 74 × 74 × 21 to be solved for in Poisson's equation, whi
h might be
onsidered 
omputationally intense.To show that the model is sensitive to small permeability 
hanges we run it with thetrue permeability where the two bottom layers have been made uniformly low permeable,Figure 5.39. In this 
ase the obje
tive fun
tion value equals to 4.33 ·106. It indi
ates that1Thanks to G. van Essen, M. Kaleta and M. Glegola.101



Variable Value SI unitsGridblo
k height 4 mGridblo
k length/width 8 mOil dynami
 vis
osity 5 · 10−3 Pa · sWater dynami
 vis
osity 1 · 10−3 Pa · sOil 
ompressibility 1.0 · 10−10 Pa−1Ro
k 
ompressibility 0 Pa−1Water 
ompressibility 1.0 · 10−10 Pa−1Initial reservoir pressure 4 · 107 PaEndpoint relative 0.9 −permeability of oilEndpoint relative 0.75 −permeability of waterCorey exponent, oil 1 −Corey exponent, water 1 −Residual oil saturation 0.1 −Connate water saturation 0.1 −Porosity 0.2 −Table 5.3: Reservoir and �uid properties for the 3D experiment.
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Figure 5.38: The true permeability in 3D with indi
ated wells.values of the obje
tive fun
tion with a similar magnitude should not be 
onsidered verylarge.We want ea
h of the four base 
ases represent one horizontal 
hannel wider at the topand narrower towards the bottom. Let ea
h distortion fun
tion be a 
onstant. This way,we estimate 3 parameters (one for ea
h X -, Y- and Z-
oordinate) for ea
h of the 4 base
ases, that gives only 12 parameters in total. The problem is simple and the questionis if the parametrization is su�
ient for the level of 
omplexity of the permeability �eld.The initial guess for the parameter values is 0 and Figure 5.40 shows the 
orrespondinginitial permeability �eld with the obje
tive fun
tion value 1.037 ·1010. We run the patternsear
h method, Se
tion 3.5, with sear
h interval [−5, 5]. The algorithm terminates due toa small mesh size and inability to pro
eed. The obje
tive fun
tion is shown in Figure 5.41and a 
orresponding posterior estimate in Figure 5.42. Clearly, the algorithm does notseem very e�e
tive.
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4.33e6Figure 5.39: True permeability with uniform two bottom layers giving the obje
tive value of
4.33 · 106. Compare to Figure 5.37.

1.037e10Figure 5.40: The base 
ase permeability and initial guess giving the obje
tive value of 1.037·1010 .
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Figure 5.41: Pattern sear
h method obje
tive fun
tion with simple 
onstant distortion fun
tions.

1.6e9Figure 5.42: Pattern sear
h method �nal estimate from the obje
tive in Figure 5.41 with value
1.6 · 109 with simple 
onstant distortion fun
tions.
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Now we modify the distortion fun
tions slightly to allow more feature deformation. We
hoose 9 parameters per 
oordinate dire
tion, that is a total of 27 parameters that 
ontrolone single feature. This gives 108 (four 
hannels give 27·4) parameters fully des
ribing the3D permeability �eld, 
ompared to 25200 total number of all grid 
ells. The 9 parametersmake up a right-hand-side distortion fun
tion; they are assigned to verti
al panels of the3D domain. We want to estimate the 108 grid distortion parameters through dire
t sear
hspe
ifying the feasible interval for parameter values to be [−1
2
, 1
2
]. The initial guess forthe parameter values is 0. Figure 5.43 shows the pattern sear
h obje
tive fun
tion, andFigure 5.44 is the result of the �nal iteration with value 9.359 · 107. The sear
h took aboutseven days2 but 
ould have been stopped earlier sin
e the last iterations did not improvethe obje
tive value any more. The posterior permeability estimate 
ontains the 
hannelstru
ture that bends in a similar way as the true features due to the distortion fun
tionparametrization. The 
hannel lo
ations are not found exa
tly but it seems the algorithmdistinguishes the north and south part of the stru
ture and some well 
onne
tions arerestored, lowering the obje
tive fun
tion value.

2The experiments have been run on a single desktop workstation with 3200MHz pro
essor and 24GBRAM. 106
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Figure 5.43: Pattern sear
h method obje
tive fun
tion with more 
omplex distortion fun
tions.

9.359e7Figure 5.44: Pattern sear
h method �nal estimate from the obje
tive in Figure 5.43 with value
9.359 · 107.
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5.3.1 Dis
ussion and 
on
lusionsWe 
ompare the results from two experiments, one with the simplest possible distortionfun
tion forms, and the other with slightly more 
omplex representation. We see thatthe former does not allow signi�
ant 
hannel distortion and gives not satisfa
tory results.The latter distortion fun
tion representations allow multiply-bending 
hannels. Theseprove to be more e�e
tive and take the obje
tive fun
tion values down to a small number.Even though the 
hannels seem to have a wrong orientation, they 
reate a relatively goodpermeability �eld as far as the obje
tive fun
tion is 
on
erned.The grid distortion performs well with images that represent fa
ies of a homogeneousnature sin
e it has not yet been developed to a point where it 
ould represent hetero-geneous �elds. Some knowledge about the shape 
hara
teristi
s appears to be useful forspe
i�
ation of the distortion fun
tions. The distortion fun
tions and the base 
ases fullydes
ribe the domain, they need to allow a 
onstru
tion of geologi
al features we look for.Due to a time 
onsuming grid distortion pro
edure for the large 3D 
ases, it is noteasy to implement the 
lassi
al ensemble Kalman �lter algorithm in these large examples.It takes around 3 minutes to 
reate one permeability �eld in the grid distortion methodand run it forward in the large reservoir model. Assuming 100 possible ensemble membersand 200 time steps, the time to run the full experiment is 3 · 100 · 200min = 1000h ≈
41.7days. Clearly, in the 
urrent 
omputational 
onditions it is not a feasible methodology.An alternative 
ould be the asyn
hronous ensemble Kalman �lter, [71℄, or the ensemblesmoother, [78℄, or the possibility to implement the ensemble 
omputation in parallel.
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Chapter 6Con
lusions and re
ommendationsThis thesis 
ombined resear
h in image pro
essing, data assimilation and reservoir engi-neering. Two di�erent image pro
essing studies led to two main dire
tions in this thesis,both embedded in parameter estimation for reservoir engineering appli
ations, both stillworth exploring further. The leading topi
 was feature-based modeling, whi
h is parti
u-larly suited for �elds that show leading patterns and shapes.First, an ensemble multis
ale �lter was investigated. The ensemble multis
ale �lter isan update tool that partitions the domain and assigns it to leaf nodes of a tree. The treerepresents the 
onne
tions and expe
ted dependen
ies between the parts of the domain.The upper s
ales are built from the strongest relationships between the 
hildren nodes.This ups
aling (pyramid) is 
ommon in image pro
essing te
hniques. It was shown thatthe tree stru
ture used in the 
ovarian
e representation is an e�
ient lo
alization tool.We investigated several numbering s
hemes, i.e. pro
edures of assigning the variablesto the tree nodes. It revealed that the order with whi
h the assignment is performed isan important fa
tor for 
ovarian
e representation. Moreover, it 
an a

ount for stronger
orrelations along features whi
h means that the stru
tural information 
an be embeddedin the �lter.Still, it would be bene�
ial to test EnMSF in a larger appli
ation with more variablesand/or measurements. The tree assignment 
ould be made automati
, based for exampleon the features in the �eld. Then, the subtrees 
ould dire
tly re�e
t separate features thatwould be 
onne
ted higher up the tree. Additionally, the numbering inside the features
ould be made in 
lusters.Se
ond, the grid distortion method for reservoir history mat
hing was developed inthis thesis. We were looking for a te
hnique that would smoothly distort some pres
ribedfeatures without breaking them. It is an important issue in reservoir engineering historymat
hing where there is usually few data available and many variables to estimate, whi
h
reates many degrees of freedom. Therefore, we wanted our te
hnique to parameterize thefeature �eld with very few parameters. We 
hose to work with the mesh instead of the pixelvalues dire
tly, and used Poisson's equation for grid deformation. The parametrizationof distortion fun
tions in Poisson's equations provided an indire
t parametrization of thepermeability �elds. These parameters were estimated by optimization algorithms. Weshowed that grid distortion e�
iently de�nes the domain with just a few parameters.The shapes are preserved along the optimization, and their deformation is global ratherthan pixel based. This small number of parameters made the grid distortion suitable109



for parameter estimation methods based on the obje
tive fun
tion minimization. In ourappli
ations the drawba
k of having a small number of parameters from grid distortion isthe severe nonlinearity that is 
reated between the parameters and observations.The grid distortion method 
ould be enri
hed with an additional amplitude adjust-ment pro
edure possibly allowing heterogeneous �elds. Other partial di�erential equations
ould be used in pla
e of Poisson's equation investigated in this thesis. For even larger�elds, the grid distortion method 
ould be used lo
ally to perform smooth small-s
ale
hanges. Other feature types and distortion fun
tion representations 
ould be imple-mented. On top of the parametrization, various optimization te
hniques 
an be tested.To 
ombine the two ideas from this thesis, EnMSF update 
ould be applied as anamplitude adjustment method along features spe
i�ed in grid distortion. This fo
usedupdate inside the feature driven �elds would make the methods bene�t from ea
h other.
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SummaryA reservoir simulator mimi
s the movement of �uids in the presen
e of ea
h other througha porous medium under some spe
i�ed 
onditions (e.g. temperature, depth, initial pres-sure or initial saturation). It is a numeri
al model of a real-life physi
al pro
ess, therefore,subje
t to un
ertainty. Some un
ertainties 
an be lowered by improving model-parameterestimates. This is where data assimilation plays an important role. Automated data as-similation, using sophisti
ated te
hniques, is a widely resear
hed topi
 in today's applieds
ien
e.We investigated two resear
h topi
s in data assimilation that are 
losely 
onne
ted tothe area of image pro
essing. Images are an integral part of reservoir engineering appli-
ation in the form of property or variable �elds. Reservoir engineering, image pro
essingand data assimilation are the leading themes of this thesis.First, we applied an ensemble multis
ale �lter as a permeability estimator forone update step and later as a full data assimilation experiment. We summa-rized by investigating properties of di�erent 
ovarian
e matrix approximationsobtained from the ensemble multis
ale �lter. We 
on
luded that the �lter 
anbe an e�
ient lo
alizing tool espe
ially for spatially large observations.The ensemble Kalman �lter is a sequential Monte-Carlo approa
h that uses an ensem-ble of reservoir models. For realisti
 large s
ale appli
ations the ensemble size needs tobe kept small due to 
omputational ine�
ien
y. Consequently, the error spa
e is not well
overed (poor 
ross-
orrelation matrix approximations) and the updated parameter �eldbe
omes s
attered and loses important geologi
al features. The prior geologi
al knowledgepresent at the initial time is not found in the �nal updated parameter any more.We propose a new approa
h to over
ome some of the ensemble Kalman �lter limita-tions. We show the spe
i�
ations and results of the ensemble multis
ale �lter for auto-mati
 history mat
hing. The ensemble multis
ale �lter repla
es, at ea
h update time, theprior fore
asted 
ovarian
e with a multis
ale tree. The global dependen
e is preserved viathe parent-
hild relation in the tree. After 
onstru
ting the tree the Kalman update isperformed.The ensemble multis
ale �lter is a di�erent way to represent the 
ovarian
e of anensemble. The 
omputations are done on a tree stru
ture and are based on an ensembleof possible realizations of the states and/or parameters of interest. The original ensembleis partitioned between the nodes of the �nest s
ale in the tree. A 
onstru
tion of the treeis led by the eigenvalue de
omposition. Then, the state 
ombinations with the greatest
orresponding eigenvalues are kept on the higher s
ales.119



The properties of the ensemble multis
ale �lter were presented with a 2D, two phase(oil and water) twin experiment, and the results are 
ompared to the ensemble Kalman�lter. The advantages of using the ensemble multis
ale �lter are: lo
alization in spa
eand s
ale, adaptability to prior information, and e�
ien
y in 
ase many measurementsare available. These advantages make the ensemble multis
ale �lter a pra
ti
al tool fordata assimilation problems. The updated states/parameters using the ensemble multis
ale�lter are believed to keep geologi
al stru
ture due to lo
alization property.A 
omparison of 
ovarian
e matri
es obtained with di�erent setups used in the EnMSFis presented. This sensitivity study is ne
essary sin
e there are many parameters in thealgorithm whi
h 
an be adjusted to the needs of an appli
ation; they are 
onne
ted tothe tree 
onstru
tion part.The lo
alization property is dis
ussed based on the example where the �lter is runwith a simple simulator and a binary ensemble is used (the pixels in the repli
ates ofpermeability 
an have one of only two values).Se
ond, we developed a grid deformation te
hnique inspired by grid generationand image warping methods. Our implementation was de�ned su
h that thedeformation was smooth, global and led by just a few parameters. The griddistortion was used to adjust a position of high-permeable 
hannels in thepermeability �eld through data assimilation or a dire
t sear
h method. Wepresented two- and three-dimensional versions of the method in reservoir andgroundwater �ow models, and 
on
luded that the grid distortion proved 
oste�
ient and e�e
tive in terms of time and performan
e.Data assimilation in hydro
arbon reservoir engineering involves adjusting the reservoirmodel parameters su
h that the simulated model response mat
hes the measured histor-i
al response within the pres
ribed un
ertainty bounds. During this pro
ess the modelparameters are often 
hanged to su
h an extent that the resulting model la
ks geologi
alrealism. This is in parti
ular the 
ase when the original model 
ontains high-permeability
hannels, i.e. elongated features extending over large distan
es, whi
h are broken up afterthe parameter update.We propose to avoid su
h a loss of geologi
al realism with a parameterization based ongrid deformation whi
h maintains the 
ontinuity of geologi
al features in the initial model.The parameters determine a smooth distortion of the grid that de�nes the original geolog-i
al pattern, using deformation fun
tions in the form of Poisson's equation de�ned on thegrid 
oordinates. The grid distortion drives the underlying geologi
al-image distortion.We tested the method using a twin experiment involving history mat
hing of pro-du
tion data generated during water�ooding of a simple two-dimensional two-phase (oil-water) reservoir with high-permeable streaks extending over the entire domain. We 
om-pared the results against those obtained by using a pixel-based updating method in whi
hthe 
onne
tivity of the original 
hannels was destroyed during the parameter updatingpro
ess. On the 
ontrary, in our method geologi
al 
ontinuity was su

essfully maintained.Moreover, we found an improved 
apa
ity of the geologi
ally realisti
 models to predi
tthe future reservoir response 
ompared to a poor predi
tive 
apability of the geologi
allyunrealisti
 models obtained through the pixel-based updating.120



SamenvattingEen reservoirsimulator modelleert de vloeistofbeweging in de aanwezigheid van elkaar dooreen poreus medium onder bepaalde voorwaarden (bijv. temperatuur, diepte, initiële span-ning of initiële verzadiging). Het is een numeriek model van een real-life fysieke pro
es,dus onzeker. Sommige onzekerheden kunnen worden verlaagd door betere s
hattingenvan modelparameters. Dit is waar data-assimilatie een belangrijke rol speelt. Geau-tomatiseerde data-assimilatie, gebruikmakend van geavan
eerde te
hnieken, is een zeeronderzo
ht onderwerp in tegenwoordige toegepaste wetens
happen.We onderzo
hten twee onderzoekthema's in data-assimilatie, die nauw met het ge-bied van beeldverwerking verbonden zijn. Beelden zijn een integraal onderdeel van reser-voirengineering toepassing in de vorm van eigens
hap of variabele velden. Reservoirengi-neering, beeldverwerking en data-assimilatie zijn hoofdthema's van deze s
riptie.Ten eerste pasten we toe een ensemble multis
ale �lter als een permeabiliteits
hat-ter voor één bijwerkingstap en later als een volledige data-assimilatie exper-iment. We vatten samen met onderzoeking van eigens
happen van vers
hil-lende s
hattingen van 
ovariantiematrix afkomstig van het ensemble multis
ale�lter. Wij 
on
ludeerden dat het �lter een e�
iënte lokalisatiemiddel kan zijnvooral voor ruimtelijk grote observaties.Het ensemble Kalman �lter is een sequentiële Monte-Carlo benadering die gebruikteen ensemble van reservoirmodellen. Voor realistis
he groots
halige toepassingen moethet ensemblegrootte klein worden gehouden door rekenine�
iëntie. Als gevolg van isde foutruimte niet goed gedekt (sle
hte s
hattingen van 
ross-
orrelatie matrix) en debijgewerkte parameterveld wordt verspreid en verliest belangrijke geologis
he kenmerken.De prior geologis
he kennis aanwezig op de initiële tijd wordt in de laatste bijgewerkteparameter niet meer gevonden.We stellen een nieuwe benadering voor om een aantal beperkingen van ensembleKalman �lter te overwinnen. We tonen de spe
i�
aties en resultaten van het ensem-ble multis
ale �lter voor automatis
he ges
hiedenis mat
hing. Het ensemble multis
ale�lter vervangt, op elke bijwerking tijd, de prior voorspelde 
ovariantie met een multis
aleboom. De globale afhankelijkheid wordt door de parent-
hild relatie in de boom bewaard.Na 
onstru
tie van de boom wordt de Kalman bijwerking uitgevoerd.Het ensemble multis
ale �lter is een andere manier om de 
ovariantie van een ensem-ble weer te geven. De berekeningen worden gedaan op een boomstru
tuur en wordengebaseerd op een ensemble van mogelijke realisaties van de bes
houwde staten en/of pa-rameters. Het oorspronkelijke ensemble wordt tussen de knoppunten van de �jnste s
haal121



in de boom verdeeld. Een 
onstru
tie van de boom wordt door de eigenwaardede
omposi-tie geleid. Daarna worden de 
ombinaties van staten met de grootste 
orresponderendeeigenwaarden op de hogere s
halen gehouden.De eigens
happen van het ensemble multis
ale �lter zijn met een 2D, twee fase (olieen water) dubbel experiment weergegeven, en de resultaten worden met het ensembleKalman �lter vergeleken. De voordelen van gebruik van het ensemble multis
ale �lterzijn: lokalisatie in de ruimte en s
haal, aanpassingsvermogen aan prior informatie, ene�
ien
y indien veel metingen bes
hikbaar zijn. Deze voordelen maken het ensemblemultis
ale �lter een praktis
h middel voor data-assimilatie problemen. Gebruikmakendvan het ensemble multis
ale �lter houden de bijgewerkte staten/parameters geologis
hestru
tuur vanwege lokalisatieeigendom.Een vergelijking wordt gepresenteerd van 
ovariantiematri
es verkregen met vers
hil-lende instellingen gebruikt in de EnMSF. Deze gevoeligheidsanalyse is noodzakelijk omdater veel parameters in het algoritme zijn die aan de behoeften van een toepassing kunnenworden aangepast; ze worden met de boom
onstru
tie onderdeel verbonden.De lokalisatieeigendom wordt besproken met behulp van het voorbeeld waarin het�lter met een simpele simulator uitgevoerd wordt en een binaire ensemble gebruikt wordt(de pixels in de permeabiliteitreplieken kunnen één van sle
hts twee waarden hebben).Ten tweede ontwikkelden we een te
hniek voor roostervervorming, dat doorroostergeneratie en beeldverbuiging methoden geinspireerd wordt. Onze uitvo-ering is zodanig gede�nieerd dat de vervorming smooth, globaal en geleid doorenkele parameters was. De roostervervorming is gebruikt om een positie vanhoge permeabiliteitkanalen in het permeabiliteitveld door data-assimilatie ofeen dire
te zoekmethode aan te passen. Wij presenteerden twee- en drie-dimensionale versies van de methode in reservoir en grondwaterstromingsmod-ellen, en 
on
ludeerden dat de roostervervorming in termen van tijd en prestatiekostene�
iënt en e�e
tief is.Data-assimilatie in koolwaterstof reservoirengineering betrekt aanpassing van het reser-voir modelparameters zodanig de gesimuleerde modeluitkomst met de gemeten historis
heuitkomst binnen de voorges
hreven onzekerheidgrenzen overeenkomt. Tijdens deze pro-
essen worden de modelparameters vaak gewijzigd zodanig geologis
h realisme aan hetresulterende model ontbreekt. Dit is met name het geval als het oorspronkelijke modelhoge permeabiliteitkanalen bevat, namelijk uitgestrekte kenmerken over grote afstanden,die na de parameterbijwerking gebroken worden.We stellen voor om te voorkomen een dergelijk verlies van geologis
h realisme dooreen parametersering gebaseerd op roostervervorming, die de 
ontinuiteit van geologis-
he eigens
happen van het initiële model handhaaf. De parameters bepalen een smoothvervorming van de rooster, die de oorspronkelijke geologis
he patroon de�nieert, gebruik-makend van vervormingfun
ties in de vorm van Poisson vergelijking gede�nieerd op derooster
oördinaten. De roostervervorming bepaalt de onderliggende geologis
he beeldver-vorming.Wij testten de methode met behulp van een dubbele experiment betrekking ges
hiede-nis mat
hing van produ
tiedata gegenereerd tijdens wateroverstroming van een eenvoudige122



twee-dimensionale twee-fase (olie-water) reservoir met hoge permeabele strepen verbrei-den over the hele domein. We vergeleken de resultaten met die verkregen door gebruik vaneen pixel-gebaseerde a
tualiseringmethode waarin de 
onne
tiviteit van de oorspronkelijkekanalen tijdens het bewerkingspro
es van de parameters vernietigd werd. Integendeel isgeologis
he 
ontinuiteit in onze methode met su

es gehandhaafd. Bovendien vonden weeen verbeterde 
apa
iteit van de geologis
h realistis
he modellen voor het voorspellen vande toekomstige reservoiruitvoer vergelijking met een sle
hte voorspelling
apa
iteit van degeologis
h onrealistis
he modellen verkregen door de pixel-gebaseerde bijwerking.
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