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Chapter 1IntrodutionThe energy requirements around the world are expeted to grow. Even with bloomingand expanding green energy R&D, the developing soiety will still need petroleum foranother tens of years. A onern might be that the oil and gas reserves that are easilyaessible have, to a large extent, been produed already. The soures that are left areeither in geologially ompliated areas or ontain heavy oil that is di�ult to extrat andproess. Therefore, new tehnologies and any possible improvements to all stages of theoil reovery an ontribute to the world energy supply.Mathematial modeling of reservoirsA omputer model an help foreast some better known phenomena: in meteorologyit improves weather predition, in ylone traking it an save lives when people areevauated on time from the endangered areas, in reservoir engineering it helps optimizeeonomis. Nevertheless, omputer simulations an never preisely predit the proesses inthe nature whether it is reservoir engineering, weather predition, speies spread, market�utuations; the real world is far too omplex. Therefore, data assimilation methods needto be employed.Reservoir modeling plays an important role in enhaned oil reovery planning. Itis a basis for �eld development and involves a signi�ant number of researhers aroundthe world in the industry as well as in the aademia. The basi physis of �uid movingthrough a porous medium has been known sine Henry Dary in 1856 published hisresearh. Modern omputers allow to e�iently simulate the behavior of the �uids indi�erent reservoir onditions and with several hemial omponents present.Even though the models are not perfet due to simpli�ations and approximations, abigger issue in reservoir engineering is reservoir ondition spei�ation. Unlike in someother disiplines, like meteorology for instane, it is not possible to observe the domain ofinterest that is deep underground or, even more hallenging, under the sea bottom. Forthat reason, the ruial reservoir parameters like permeability or porosity are unknown.Therefore, initially the reservoir strutural information omes from the geologists andgeophysiists.The way the sediments form and what proesses reate the landsape through the agesdetermine whih strutures are to be expeted in the underground formations. Based onthat information (and possible observations desribed later) an expert derives a detailed3



geologial model. Two equivalent experts will produe two di�erent property modelsaording to their respetive experiene and interpretations. These property models aresometimes very detailed and need to be upsaled to make them suitable for �ow simulation.
Observations of the behavior of the reservoirsWhen an oil �eld is disovered there an be exploration data olleted. The most ommonlarge sale observations in this ase would be seismi observations. To gather seismi data,a ontrolled explosion is often performed and the signal of the re�eted waves is reorded.The seismi waves re�et from subsurfae strutures in a di�erent way depending on thestruture's density, and that reates a seismi image. This image an be interpreted andinverted into subsurfae strutures.However, today there are not many new �elds being disovered. The industry highlyrelies on oil �elds that are at various stages of development. Then, one wants to olletdata for prodution improvement but at the lowest possible ost, and most data types areexpensive to obtain.

Figure 1.1: Simulated time-lapse gravity[miro Gal℄ measurements of a water-driven gasreservoir prodution proess at (from the top) 4,
7 and 10 years. Courtesy of M. Glegola.

Additionally to seismi data, there areother large sale observation tehniquesavailable, for example, gravity (Figure 1.1)or magneti observations. While the wellsare drilled in the �eld, the rok that is be-ing removed an be a soure of valuableinformation about the underground stru-ture. It is a type of hard data (data thatdoes not need to be inverted) that givesdiret values of permeability and porositythrough lab tests on a very small sale. Ad-ditionally, there an be wireline log dataolleted from instruments lowered downan open borehole. These an provide veryaurate measurements in a small viinityof the well.There are di�erent types of wells, themore ompliated the more expensive theyget, reahing up to tens of millions of dol-lars per single well. The simplest wellsare the vertial monitoring wells that onlygather data and do not interat with thesurroundings (ommon in hydrogeology). There are injetion/prodution vertial wellsthat an also ollet pressure and/or �uid �ow data. The most tehnially advaned wellsare the so-alled smart horizontal wells that an reah areas that are di�ult to aess andan be kilometers away. These wells an sometimes be opened/losed to �ow in separatesegments along their lengths and, in that way, may provide additional data.4



Data assimilationIn the ase that a model is well alibrated and its parameters are known, it would havegood preditive apaities, and it would be good enough to use the model in deisionmaking onerning �eld development. When the data are rih and preise, they mightbe su�ient for suessful operation of the �eld without using a model. Unfortunately,in most ases neither the model nor the data provide good-enough information due tosimpli�ations and unertainties, and the ombination of the two an help to redue thesarity of information.Data assimilation is a onept that ombines the model with observed data in orderto minimize unertainties and improve preditions. The model as a theoretial repre-sentation of a natural proess is not perfet and its unertain parameters an be betterestimated given aquired data. An improved model is expeted to have better preditiveapabilities, and in reservoir engineering an help planning the �eld development anddesigning prodution strategies.

Figure 1.2: Map of Muskauer Park at the German-Polish border. A meandering river uts through the park.The park's south-east border ar is the biggest terminalmoraine in the world.

Formally, data assimilationis a mathematial optimizationproblem. Typially, one is inter-ested to minimize a mismath be-tween the data observed and thedata modeled, and this mismathis a basis for reating an obje-tive (or ost) funtion. The obje-tive funtion is a highly nonlinearfuntion of its variables in large-sale appliations. Then, theproblems are di�ult to solve and,therefore, a variety of data as-similation tehniques exists, noneof whih is universally applia-ble. Additionally, the problemis non-unique, i.e. there existits many solutions that minimizethe given objetive. In otherwords, real-life optimization prob-lems are severely ill-posed.A variety of methods for dataassimilation has been developedfor the oil industry, [62℄. Espeially, within the last years emphasis has been put toprodue geologially onsistent permeability and porosity �elds. Geologial onsistenyrequires the harateristis of the geometri struture of the parameters to be preservedduring the data assimilation proess, [10℄, [11℄. These harateristis are properties of the�elds that go beyond the mean and the ovariane. Natural formations show a wide rangeof patterns like river meanders, salt domes, layer-ake formations, faults, wind or watereddies, or moraines (Figure 1.2). Dealing with patterns and handling images is learlyrelated to the image proessing researh area.5



Image proessingThe image proessing disipline o�ers a variety of methods for dealing with images, pat-terns, features and other strutures. Our goal is to ombine data assimilation with patternmathing ideas. The two areas are not far apart, and a more detailed insight reveals manysimilarities. Image proessing problems deal with phenomena without an underlying phys-ial model, like a sequene of movie snapshots. The onseutive states (snapshots) areknown and the goal is to de�ne an automati warping proess from one image to another.The warping should be done in a natural way, i.e. in a way a human observer would doit, whih reahes as far as ognitive siene. An example ould be fae reognition whenseeing one side of somebody's fae would make us reognize a person in real life. Ourbrains interpolate that partial information in an instant but this every-day experiene isa very omplex task for omputer fae reognition software. Pattern reognition problemsinlude also ommon �nger-print mathing, as present nowadays at airports, in laptops,or a polie database. An eologially oriented appliation is, for example, salamandermathing, [95℄, where a digital piture of the animal needs to be ompared to a olletionof previously gathered images.Appliations like ylone predition, [2℄, moving �re fronts, [54℄, [6℄, preipitation andthunderstorms, [42℄, [100℄, [26℄, or epidemi spreading, [53℄, deal with strutured, feature-driven �elds. These approahes touh the area of image proessing but at the same timeontain dynami models of the underlying phenomena. There, data assimilation is per-formed with a large amount of observations, namely, the parameter �eld of interest isobserved but it is di�erent from the model output. The two images present the samefeature that might be displaed or aligned di�erently. The di�ulty lies in making on-sistent orretions to the model preditions that have to be approahed globally whereunderlying features are taken into aount.In this thesis we will adopt ideas from the image proessing area within data assim-ilation methods for reservoir engineering appliations. A typial problem in reservoirengineering is that the observations are usually very sare and nonlinearly related tothe variables that need to be estimated. We often deal with ill-posedness due to a largeamount of unknown variables ompared to the number of observations. The spatial un-ertainty would usually be represented with a small ensemble of nodes, muh smaller thanthe number of variables. This representation is too simple to piture the omplex spa-tial unertainty. This way spurious orrelations arise between physially or ideologiallydistant states.We will see that in reservoir engineering the unknown variables to be estimated areommonly permeability �elds that are nothing else but images. Often, these images havea prede�ned struture that disappears during the data assimilation and, therefore, thewhole proess loses the geologial bakground and realism.Objetive of the thesisWe propose two researh diretions to resolve the aforementioned problems:
• diminishing the spurious orrelations between the sparse data and distantly loatedvariables through upsaled treatment of the ovarianes,6



• taking into aount features in the domain and reduing the state size through ane�etive reparametrization.First, a type of ensemble Kalman �lter is applied, namely, an ensemble multisale�lter. In reservoir engineering, ensemble sequential �ltering started with [59℄ in 2002 andsine then various modi�ations were implemented, [20℄. The ensemble multisale �lterhas originated from multisale trees in image proessing ([22℄, [92℄, pyramidal mathing[2℄), and it was �rst implemented for an inompressible �ow model, [99℄. It upsales theovariane matrix on a tree struture, extrating stronger dependenies and introduingloalized improvements. We develop it for the estimation of the permeability in reservoirmodels and test it thoroughly for several ases in reservoir engineering.Seond, a feature modeling tehnique alled grid distortion is proposed. In reservoirengineering a number of feature-based methods have been implemented already: levelsets ([58℄, [14℄), Karhunen-Loève expansion ([72℄), disrete osine transformation ([34℄,[35℄, [36℄), hannel parametrization ([97℄, [84℄), training-image based sampling ([49℄ andreferenes therein) and elasti gridding ([76℄, [75℄). The grid distortion method is basedon smooth grid generation tehniques, [80℄, but it an equivalently be viewed as an imagewarping tehnique, [67℄. It provides smooth distortions of images adjusting the featuresin the domain, and an be expressed using very few parameters, whih makes the problembetter-posed. We pair grid distortion with the ensemble Kalman �lter algorithm as wellas with deterministi searh methods.Overview of the thesisBefore presenting the researh results, an introdution to the modeling of reservoirs isprovided. In Chapter 2 we desribe the basi reservoir equations, show a small example ofa forward run of an in-house reservoir simulator, and outline a onept of a forward model.Data assimilation with (ensemble) Kalman �lters and optimization methods used in thethesis omprise Chapter 3. There, we derive basi (ensemble) Kalman �lter equations,point out some improvements, and present other parameter estimation methods. Theensemble multisale �lter and its appliation are presented in Chapter 4, �rst for a simplease and later as a full data assimilation sheme in the ontext of reservoir engineeringappliation. The ontent of this hapter has been published in [46℄ and [45℄. Feature-based methods are disussed in Chapter 5; here, the fous is mainly on the grid distortionmethod developed in this thesis. The leading equations for grid distortion are derived andmultiple implementations in 2D and 3D ases are shown. There is an intention to publishthis researh soon. The onlusions are �nally presented in Chapter 6.
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Chapter 2Numerial modeling of reservoirsIn this hapter, a brief desription of reservoir modeling is presented, followed by spei�-ations of the main model used in this thesis. A detailed overview of the subjet an befound in [37℄, [4℄, [5℄.2.1 Modeling of reservoirsLet us present equations for a three dimensional problem in Cartesian spae, where x and
y are horizontal oordinates, z is the vertial oordinate, and t is time.Several phenomena play a role in reating a �ow model of a reservoir with oil andwater, namely, the mass balane onept, Dary's law, equations of state, and the apillarypressure onept. We explain them further here.

flux out
flux in VFigure 2.1: Representation of a volume with a �ux going through it.The mass onservation law gives rise to one mass balane equation per hemial om-ponent c. Let Cc be the mass onentration of omponent c in a unit volume V . Then,there exists a �ux (a rate of hange of mass), F , transferring the mass through the volume(Figure 2.1). The amount of omponent c in the volume an be expressed as:

∫∫∫

V

Cc dV.The mass onentration Cc an be expressed as Cc = φ
∑
l

ρlSlyc,l with φ - porosity, ρl -the density of phase l, Sl - the saturation of phase l, yc,l - the mass fration of omponent
c in phase l. Saturation of phase l is a fration of the volume of the pores that is oupiedby phase l; naturally, it is a value in the interval [0, 1] and the sum over all phases is

∑

l

Sl = 1.9



The hange in time of mass of omponent c is equal to
∂

∂t



∫∫∫

V

Cc dV


 = �ux in− �ux out.The di�erene in �uxes is a surfae integral of the �ux over a boundary of V , ∂V :�ux in− �ux out = −

∫∫

∂V

F · n dA,where n denotes a normal vetor (in the diretion out of the volume), and the symbol ·indiates a dot produt. This expression, aording to the Divergene Theorem, is equalto:
−
∫∫

∂V

F · n dA = −
∫∫∫

V

∇ · F dV,where ∇ · F is the divergene of F . This leads to
∂

∂t



∫∫∫

V

Cc dV


 = −

∫∫∫

V

∇ · F dV,and hene
∂

∂t
Cc = −∇ · F .Finally, allowing additional input/output soures q leads to:

∂

∂t
Cc = −∇ · F + q. (2.1)Assuming dead omponents, i.e., omponents that do not travel between phases, andassuming that the various hemial omponents in the oil an be lumped into one 'pseudoomponent', two basi equations arise: one for oil and one for water (subsript w standsfor water, o for oil):

Cw = φρwSw, Co = φρoSo. (2.2)We know that for density ρ and veloity v, �ux is equal to F = ρv, and we want towork out the veloity. Dary's law is based on a proportionality between the pressuregradient, ∇p , and the negative veloity: ∇p ∼ −v or, more preisely,
−k

µ
∇p = v,where k and µ denote the permeability tensor and visosity, respetively. This is anequation for the ase of one phase present. The two-phase Dary's law di�erentiatesbetween the water and oil equations:

− k

µw

krw∇pw = vw,10



− k

µo
kro∇po = vo.Relative permeabilities, krw ∈ [0, 1] for water and kro ∈ [0, 1] for oil, are funtions of watersaturation. These relations are found experimentally. Additionally, in 3D domains theimpat of gravity has to be taken into aount and the two-phase Dary's law beomes:

− k

µw
krw(∇pw − ρwg∇d) = vw, (2.3)

− k

µo

kro(∇po − ρog∇d) = vo, (2.4)where g is the gravitational aeleration, ρw and ρo are water and oil densities, respetively,and d is depth pointing vertially downwards.The ompressibilities for water cw, rok cr and oil co are de�ned as:
cw =

1

ρw

∂ρw
∂p

, cr =
1

φ

∂φ

∂p
, co =

1

ρo

∂ρo
∂p

.The apillary pressure (pc) onstraint is related to the interfaial tension between thephases and the wetting properties of the rok whih need to be determined experimentally:
pc(Sw) = pw − po,where pw and po are water and oil pressures, respetively.For eah phase we insert in Dary's law (2.3) and (2.4), and onentration de�nitions (2.2),into Equation (2.1), given that F l = ρlvl for l ∈ {w, o}:

∂

∂t
(φρlSl) = −∇ ·

(
ρl

(
− k

µl
krl (∇pl − ρlg∇d)

))
+ ql.Using the hain rule gives:

φ
1

φ

∂φ

∂p︸ ︷︷ ︸
cr

∂p

∂t
ρlSl + φρl

1

ρl

∂ρl
∂p︸ ︷︷ ︸
cl

∂p

∂t
Sl + φρl

∂Sl

∂t
= ρl∇ ·

(
k

µl
krl (∇pl − ρlg∇d)

)
+ ql.It leads to two oupled equations that need to be solved for Sw and p, [37℄, [5℄:

φ

[
Sw(cw + cr)

∂p

∂t
+

∂Sw

∂t

]
=

∂

∂x

[
k

µw
krw

(
∂p

∂x
− ρwg

∂d

∂x

)]
+

∂

∂y

[
k

µw
krw

(
∂p

∂y
− ρwg

∂d

∂y

)]
+

∂

∂z

[
k

µw

krw

(
∂p

∂z
− ρwg

∂d

∂z

)]
+ qw, (2.5)

φ

[
(1− Sw)(co + cr)

∂p

∂t
− ∂Sw

∂t

]
=

∂

∂x

[
k

µo
kro

(
∂p

∂x
− ρog

∂d

∂x

)]
+

∂

∂y

[
k

µo
kro

(
∂p

∂y
− ρog

∂d

∂y

)]
+

∂

∂z

[
k

µo

kro

(
∂p

∂z
− ρog

∂d

∂z

)]
+ qo, (2.6)11



where p = pw = po when apillary fores are negleted. The initial onditions for p(x, y, z)and Sw(x, y, z) need to be spei�ed and typially there is a no-�ow ondition assumed atthe boundaries.These equations an be spatially disretized and solved numerially with a �nite dif-ferene sheme. Typially, a regular omputational grid is used but advaned simulatorsmight allow non-standard unstrutured grids. The equations shown here are 3D, two-phase equations; gas an be added as a third phase. The presene of aquifers, faults,traers an also be aounted for.2.2 simsimIn this thesis a horizontal two-dimensional, two-phase (oil-water) reservoir model is usedwhere the gravity e�et an be negleted. Therefore, Equations (2.5) and (2.6) beome:
∂

∂x

(
k

µw
krw

∂p

∂x

)
+

∂

∂y

(
k

µw
krw

∂p

∂y

)
+ qw = φ

[
Sw(cw + cr)

∂p

∂t
+

∂Sw

∂t

]
,

∂

∂x

(
k

µo

kro
∂p

∂x

)
+

∂

∂y

(
k

µo

kro
∂p

∂y

)
+ qo = φ

[
(1− Sw)(co + cr)

∂p

∂t
− ∂Sw

∂t

]
.Reservoir simulator simsim (simple simulator, [37℄) has been implemented and devel-oped at Delft University of Tehnology.After the equations are disretized in spae for the two-phase �ow, four methods forthe time integration are available, [37℄, [5℄, [4℄: expliit Euler, impliit Euler with Piarditeration, impliit Euler with Newton iteration, and IMPES (IMpliit Pressure ExpliitSaturation).The reservoir domain is 2D with no-�ow through the boundaries. The wells (injetorsor produers) an be implemented with presribed initial pressures and rate onstraints,or with presribed initial rates and pressure onstraints.As an example of how simsim operates, a 49 × 49 reservoir is simulated for a year.The hannelized permeability �eld and homogeneous porosity �eld are shown in the toprow of Figure 2.2. There, the injetion (I) and prodution (P) wells are indiated aswhite dots. The initial ondition for reservoir pressure p0 (Pa) and water saturation

s0 is [pT
0 sT0

]T
=
[
3 · 107 · 1T

492×1 0.2 · 1T
492×1

]T , where 1 is a olumn vetor of ones. Thestreamlines, [37℄, between the three injetors at the left boundary and the three produersat the right boundary are shown in Figure 2.3. The wells operate under presribed rates(±0.001 m3/s) and no pressure onstraints.After one year, the pressure and saturation �elds look like in the bottom row ofFigure 2.2. The gradual saturation hange through time is shown in Figure 2.4.The simulated data from eah well an be olleted and plotted against time. Figure 2.5shows the bottom hole and the well grid blok pressures together with the �ow rates andwater saturation in wells. Cumulative prodution data over the whole �eld are shown inFigure 2.6. 12
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Figure 2.4: Saturation hange during one year at equal time intervals.
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Figure 2.5: Simulated well data where olors indiate di�erent wells.14
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2.3 State-spae representation of the modelLet xk be a vetor ontaining all the dynami model variables at a disrete time k.In reservoir engineering it would typially be disretized pressure and saturation pergrid blok: xk =
[
pT
k sTk

]T . Stati variables, disretized permeability and porosity pergrid blok, are stored in vetor m =
[
kT φT

]T . The deterministi nonlinear modelrepresentation an be formulated as:
xk+1 = fk→k+1(m,xk). (2.7)Here, fk→k+1(m,xk) is a model operator that depends on spei�ed stati parametersm andpropagates dynami variables xk from time k to k+1. An initial ondition x0 =

[
pT
0 sT0

]Tneeds to be spei�ed. We assume no-�ow boundary onditions.

16



Chapter 3Data assimilation and parameterestimationThis hapter presents sequential ensemble data assimilation and parameter estimationmethods that have been implemented for appliations in this thesis. The desriptions ofKalman, ensemble Kalman and ensemble square root algorithms are presented. Imple-mentation improvements and parameter estimation methods onlude the hapter.3.1 Problem setupThe task of data assimilation is to improve the results of a numerial model of the phenom-ena one is interested in with the available observations. Even though the physis of manyproesses may be well-understood, the numerial models are often unertain due to dis-retization errors and modeling approximations. Therefore, the model from Setion 2.3,Equation (2.7), an in general ontain a stohasti term expressing the model uner-tainty. Moreover, a measurement equation is added for a full desription of a state-spaerepresentation as given by:
{

xk+1 = fk→k+1(m,xk) + εk+1,
yk+1 = h(xk+1) + νk+1.

(3.1)The initial state x0 and the model parameters m need to be spei�ed; h is a measurementoperator expressing the relation between the state xk+1 and observations yk+1 at a giventime; and ε and ν are model noise and observation noise, respetively. The noise in themodel is assumed to be normally distributed ε ∼ N(0,Q) with a model error ovarianematrix Q; the noise in the data is assumed to be normally distributed ν ∼ N(0,R)with an observation error ovariane matrix R; and the model and observation errors areindependent. The error ovariane matries might depend on time k.The measurement operator h an depend on time when di�erent data types are avail-able at di�erent times. Large sale measurements like seismi observations are expensiveand not sensitive to small sale hanges, therefore, they are olleted relatively less fre-quently than well observations, for example. In real-life appliations data ome frominstruments and an be ontaminated with noise due to human or devie error.Upon observation arrival we an assess how well the model predits just aquiredobservations, and on the basis of the mismath dedut possible improvements to the17



model state. There exist many data assimilation tehniques and they proess the data indi�erent ways. A ommon starting point is the spei�ation of an objetive funtion. Letus de�ne a vetor x[k] that ontains states xk for all time steps k, and then the objetivefuntion to be minimized is
J
(
x[k]

)
=

1

2

∑

k

(yk − h(xk))
TR−1(yk − h(xk)) +

1

2

∑

k

(xb − xk)
TB−1(xb − xk) +

1

2

∑

k

(xk+1 − f(m,xk))
TQ−1(xk+1 − f(m,xk)). (3.2)We are looking for x∗

[k] = argmin
x[k]

J
(
x[k]

), where J is a nonnegative salar funtion
J : R

nx[k] −→ R
+ ∪ {0} with nx[k]

the size of vetor x[k]. The funtion inludes a quadratidata mismath weighted by the noise ovariane matrix R, a quadrati bakground mis-math measuring how di�erent the state xk is from some bakground state xb, weightedby a given ovariane matrix B, and a quadrati model mismath weighted by a givenovariane matrix Q.3.2 The lassial Kalman �lterKalman �ltering is a sequential optimization proedure that omprises of two steps: aforeast step and an update step, alternatingly applied until the last update time. First,the foreast step integrates the model to the �rst update time to ollet the preditedobservations, then the update is performed with the aid of the data, and the modelontinues with the new updated parameters until the next update time.Let us onsider a stohasti system like in Equation (3.1) but with linear model andobservation operators: {
xk+1 = Fkxk + εk+1,
yk+1 = Hkxk+1 + νk+1,

(3.3)where, as before, ε ∼ N(0,Q) and ν ∼ N(0,R), and model parameters have beenomitted. For simpliity of notation, we use Fk and Hk without the subsripts from hereon. Then, the objetive funtion in Equation (3.2) beomes:
J
(
x[k]

)
=

1

2

∑

k

(yk −Hxk)
TR−1(yk −Hxk) +

1

2

∑

k

(xb − xk)
TB−1(xb − xk) +

1

2

∑

k

(xk+1 − Fxk)
TQ−1(xk+1 − Fxk). (3.4)18



At eah update time we want to ompute a distribution of state xk given the data yk.This distribution an be shown to be Gaussian, [38℄. Then, the estimate of the mean x̄k,and the ovariane Pk ompletely desribe its shape. We want to derive the equations for
x̄k and Pk that are time and measurement updates, respetively, where x̄k is an optimalstate estimate and Pk is its orresponding minimized error at time k.We will di�erentiate between foreasted and updated variables using supersripts fand a (for analyzed), respetively. In this way, xf

k denotes foreasted dynami variablesat time k and xa
k denotes analyzed dynami variables at the same time after the updatestep; x̄f

k and x̄a
k denote foreasted and analyzed mean estimates at time k, respetively.Sine the model error mean is 0, the mean estimate x̄k propagates in time as givenby:

x̄k time update
x̄k+1 = Fx̄k. (3.5)Sine the de�nition of a ovariane matrix an be written asPk = E[(xk − x̄k)(xk − x̄k)

T ],let us de�ne the foreasted and updated ovariane matries:
P

f
k = E[(xk − x̄

f
k)(xk − x̄

f
k)

T ],

Pa
k = E[(xk − x̄a

k)(xk − x̄a
k)

T ],for the given mean estimates x̄f
k and x̄a

k, where E[·] denotes the expeted value.To estimate the forward ovariane propagation we ompute:
xk − x̄k

(3.3), (3.5)
= Fxk−1 + εk − Fx̄k−1 = F(xk−1 − x̄k−1) + εk,and this gives

Pk time update
Pk = FPk−1F

T +Q.Let k be a �xed observation time. A Kalman �lter aims at providing an optimal stateestimate given the objetive funtion at the observation time k. The objetive funtionin Equation (3.4) for the x̄a
k estimate beomes:

J(x̄a
k) =

1

2
(yk −Hx̄a

k)
TR−1(yk −Hx̄a

k) +
1

2
(xf

k − x̄a
k)

T (Pf
k)

−1(xf
k − x̄a

k),where the model mismath term disappears due to Equation (3.5). Here the bakgroundmismath term from Equation (3.4) is a distane to the foreast xf
k , and P

f
k denotes theerror in this foreast mismath.A neessary ondition for �nding the objetive funtion's minimum is that the fun-tion's gradient vanishes:

∇x̄a
k
J = 0.We ompute the estimate x̄a

k. Following [38℄, we get:
−HTR−1(yk −Hx̄a

k) + (Pf
k)

−1(x̄a
k − x̄

f
k) = 0,19



and hene
x̄a
k =(

HTR−1H+ (Pf
k)

−1
)−1 (

HTR−1yk + (Pf
k)

−1x̄
f
k

)
=

(
RH−THTR−1H+RH−T (Pf

k)
−1
)−1

yk +
(
P

f
kH

TR−1H+P
f
k(P

f
k)

−1
)−1

x̄
f
k =

(
H+RH−T (Pf

k)
−1
)−1

yk +
(
P

f
kH

TR−1H+ I
)−1

x̄
f
k . (3.6)We want to work out the terms in front of yk and x̄

f
k in Equation (3.6). We have

(
H+RH−T (Pf

k)
−1
)−1

=
[(

H(H−T (Pf
k)

−1)−1 +R
)(

H−T (Pf
k)

−1
)]−1

= P
f
kH

T (HP
f
kH

T+R)−1,(3.7)and we want to show that
(Pf

kH
TR−1H+ I)−1 = I−P

f
kH

T (HP
f
kH

T +R)−1H (3.8)by simple multipliation:
(
P

f
kH

TR−1H+ I
)(

I−P
f
kH

T (HP
f
kH

T +R)−1H
)
=

I+P
f
kH

TR−1H−P
f
kH

T (HP
f
kH

T +R)−1H−P
f
kH

TR−1HP
f
kH

T (HP
f
kH

T +R)−1H =

I+P
f
kH

TR−1H−P
f
kH

TR−1R(HP
f
kH

T +R)−1H−P
f
kH

TR−1HP
f
kH

T (HP
f
kH

T +R)−1H =

I+P
f
kH

TR−1H−P
f
kH

TR−1(R+HP
f
kH

T )(HP
f
kH

T +R)−1H = I.Substituting Equations (3.7) and (3.8) in Equation (3.6), we obtain an expression forthe update equation in the Kalman �lter, [38℄:
x̄k measurement update

x̄a
k =(

H+RH−T (Pf
k)

−1
)−1

yk +
(
P

f
kH

TR−1H+ I
)−1

x̄
f
k =

P
f
kH

T
(
HP

f
kH

T +R
)−1

yk +
(
I−P

f
kH

T (HP
f
kH

T +R)−1H
)
x̄
f
k =

x̄
f
k +P

f
kH

T (HP
f
kH

T +R)−1(yk −Hx̄
f
k). (3.9)The term

K = P
f
kH

T (HP
f
kH

T +R)−1 (3.10)is alled the Kalman gain.The updated ovariane matrix Pa
k = E[(xk − x̄a

k)(xk − x̄a
k)

T ] for the given meanestimate x̄a
k an now be omputed from

xk − x̄a
k

(3.9)
=

xk − x̄
f
k −K(yk −Hx̄

f
k)

(3.3)
=

xk − x̄
f
k −K(Hxk + νk −Hx̄

f
k) =

(I−KH)(xk − x̄
f
k)−Kνk,whih gives 20



Pk measurement update
Pa

k =

(I−KH)Pf
k(I−KH)T −KRKT =

(I−KH)Pf
k − (I−KH)Pf

kH
TKT −KRKT =

(I−KH)Pf
k −K(K−1P

f
k −HP

f
k +RH−T )HTKT (3.10)

=

(I−KH)Pf
k −K

(
(HP

f
kH

T +R)H−T (Pf
k)

−1P
f
k −HP

f
k +RH−T

)
HTKT =

(I−KH)Pf
k.Kalman �ltering, [40℄, was originally developed for linear, Gaussian problems. It pro-vides the optimal estimate of the state of the system and the ovariane of the estimationerror. It is also able to propagate these statistis in time. Models are, however, rarelylinear and variables are Gaussian only in some spei� ases. Lately, for omputationalreasons and to allow for nonlinear models, the ensemble Kalman �lter (EnKF) was intro-dued, [16℄, [20℄, and beame a new standard for sequential data assimilation.3.3 The Ensemble Kalman Filter - EnKFWe present a sequential ensemble-based algorithm for nonlinear Gaussian proesses, reallEquations (3.1): {

xk+1 = fk→k+1(m,xk) + εk+1,
yk+1 = h(xk+1) + νk+1.The ensemble Kalman �lter, [16℄, represents the distribution of the state vetor xk ∈ R

ns×1by a sample (a sample from the distribution of interest), i.e., a olletion of possiblerealizations, also known as an ensemble, with ne members:
X = [x1 x2 ... xne] ∈ R

ns×ne.The time index has been omitted for larity sine all the variables onsidered here aretaken at the same time step, namely, a disrete update step.Let Y be a matrix holding ne opies of the observation vetor:
Y = [y y ... y] ∈ R

no×ne ,where no is the number of observation points. The vetor of observations y is an input tothe data assimilation algorithm.Let Ŷ be a matrix holding an ensemble of predited measurements from eah repliate:
Ŷ = [h(x1) h(x2) ... h(xne)] ∈ R

no×ne.This olletion of vetors is a result of integrating the given model to the urrent up-date time for eah ensemble member, ne-times, and omputing the foreasted observationvalues. For ompliated models this foreast step an be very time onsuming for largeensemble sizes. 21



The ensemble Kalman update is expressed as:
Xa = Xf +K(Y − Ŷ),and the Kalman gain K ∈ R

ns×no is equal to:
K = Cov(Xf , Ŷ)[Cov(Ŷ, Ŷ) +R]−1,where Cov(·, ·) denotes a sample (ross-)ovariane matrix.This algorithm was initially desribed in [16℄ in 1994. The original formulation waswrong and its orretion was published in [8℄ where it is explained that to preserve orretstatistis the observations need to be perturbed. Sine then a number of improvementshave been introdued of whih many were applied to reservoir engineering, [1℄. Let Y bean ensemble of perturbed measurements:

Y = [y + ν1 y + ν2 ... y + νne ] ∈ R
no×ne,where ν is a measurement error sampled from a normal zero mean distribution with a givenovariane matrix R that expresses our belief in the unertainty of the measurements.The setup of the ensemble Kalman �lter, where the distribution of a variable is rep-resented by a sample, is easy to implement. Even though it has been used suessfullyin many appliations, it is known to ause ompliations and some of them are disussedhere further.The square root implementation of the ensemble Kalman �lter is presented sine it isthe version used throughout this work. The basi idea of the ensemble Kalman �lter isan introdution to almost every major setion for the sake of ompleteness. It might alsobe presented from di�erent (but equivalent) angles.3.3.1 The Ensemble Square-Root Filter - EnSRFIn the lassial ensemble Kalman �lter as formulated in the previous setion, the on-strution of the ensemble of perturbed measurements Y ontains noise that an be anadditional soure of sampling error for small ensemble sizes, [19℄. Therefore, square rootalgorithms were developed to avoid the use of perturbed measurements. Note that theversion presented here inludes a matrix of perturbations as a sample representation of aovariane matrix, [18℄, whih lowers the omputational burden.Square root algorithms use an ensemble representation like the EnKF, but updatethe mean and deviations from the mean separately as in the traditional Kalman �lter.In fat, both equations, the update of the mean and the update of the perturbations,ould be diretly derived from the lassial Kalman �lter equations but with the modi�-ations regarding the ensemble representations. A square root version of the �lter is usedthroughout this thesis. The basis of the algorithm was taken from [18℄, Setion 7.4.21therein, and improved as desribed in [70℄ and [51℄. Other versions of square root �ltersexist, see for example [83℄.Let us again de�ne:

• X = [x1 x2 ... xne ] ∈ R
ns×ne - an ensemble of state vetors,1Implementation thanks to Dr. B. Jafarpour. 22



• Y = [y+ν1 y+ν2 ... y+νne] ∈ R
no×ne - an ensemble of perturbed measurements,

• Ŷ = [h(x1) h(x2) ... h(xne)] ∈ R
no×ne - an ensemble of predited measurements.Additionally, we need:

• 1n ∈ R
n×n - a matrix where eah element is equal to 1

n
,

• I - identity matrix of a proper size,
• X̄ = X1ne

∈ R
ns×ne - a matrix storing the ensemble mean ne-times,

• X′ = X−X1ne
= X− X̄ - an ensemble-perturbation matrix,

• E = [ν1 ν2 ... νne ] - an ensemble of measurement perturbations,
• S = Ŷ − Ŷ1ne

- a matrix holding perturbations of the predited measurements.We want the above variables to be understood as (derived from) foreasted variables,for the ease of notation omitting the supersript f . The EnSRF de�nes the updatedensemble as a sum of updated ensemble mean and updated ensemble perturbations, thatis:
Xa = (X̄)a + (X′)aand

(X̄)a = X1ne
+X′STX1(I+Σ2

1)
−1XT

1 (Y1ne
− Ŷ1ne

),

(X′)a = X′V2

√
I−ΣT

2Σ2V
T
2 .The last multipliation by VT

2 provides the unbiasedness of the �lter, [70℄, [51℄, [19℄,sine it was shown that the original algorithm without the last multipliation does notonserve the mean. To ompute these equations we need to know matries: Σ1, X1, Σ2,and V2. Let the operator tSVD
= denote the thin singular value deomposition, [27℄, thenthe following sequene of equations ompletes the EnSRF update step:1. S

tSVD
= U0Σ0V

T
0 ,2. X0 = Σ−1

0 UT
0E,3. X0

tSVD
= U1Σ1V

T
1 ,4. X1 = U0(Σ

−1
0 )TU1,5. X2 = (I+Σ2
1)

−
1
2XT

1 S,6. X2
tSVD
= U2Σ2V

T
2 .Note that the equation for the perturbation update (X′)a omes from the ovarianemeasurement update in the lassial Kalman �lterPa = (I−KH)Pf sinePa = (X′)a[(X′)a]T ,

Pf = X′(X′)T and we an write, [19℄: 23



Pa = (I−KH)Pf

Pa = Pf −PfHT (HPfHT +R)−1HPf

(X′)a[(X′)a]T = X′(X′)T −X′(X′)THT (HX′(X′)THT +R)−1HX′(X′)T

(X′)a[(X′)a]T = X′
[
I− (X′)THT (HX′(X′)THT +R)−1HX′

]
(X′)Twhere we used Equation (3.10) for the Kalman gain. Then, if we write

I− (X′)THT (HX′(X′)THT +R)−1HX′ = TTTwe obtain
(X′)a[(X′)a]T = X′TTT (X′)T = X′T(X′T)T .Finally, the square root perturbation update in a general form is:

(X′)a = X′T.Matrix T is alled a square root transformation matrix and it is not unique, see [51℄ and[70℄ for a detailed disussion.3.4 Implementation issues of the Ensemble Kalman Fil-terThe EnKF or EnSRF even in the most e�ient form will almost never give satisfatoryresults when implemented for the �rst time in a new appliation. To be able to apply itsuessfully, di�erent modi�ations, [1℄, [3℄, [19℄, an be used that depend on the problemsenountered in a given setup. A number of improvements used in our implementations ispresented in this setion.In today's researh we want not only the dynami model variables xk to be esti-mated but also additional unertain parameters m. When xk follows the model equation
xk+1 = fk→k+1(m,xk), m does not hange in time, i.e., mk+1 = Imk where I is an identitymatrix.Updating all variablesTypially, all variables, dynami and stati, are updated and they omprise the statevetor. Then, the state-spae representation is of the form:






 xk+1

mk+1


 =


 fk→k+1(mk,xk)

Imk


+


 εk+1

0


 ,

yk+1 = h(xk+1) + νk+1.The measurement operator h works on the model outputs, where the model runs fromtime k to k + 1. 24



In reservoir engineering the reservoir simulator is onsidered to ontain no randomness.It is assumed that the model represents the physis of the �uid dynamis perfetly, andthat all unertainty is in the model parameters. Therefore, the state-spae representationan be written as: 




 xk+1

mk+1


 =


 fk→k+1(mk,xk)

Imk


 ,

yk+1 = h(xk+1) + νk+1.A ommon problem in data assimilation for this ase is the un-physial updates of thevariables. The laws of physis that determine the shape of pressure or saturation �eldsare not taken into aount when a linear update is performed. The �elds represent adynami state at a given point in time that is used for simulation initialization and mustbe physially meaningful.Parameter updateOne way to avoid un-physial updates of the dynami variables is updating the onstantparameters only, and leaving the dynami variables unhanged at the update time step.Then, the state-spae representation is rewritten as:




mk+1 = Imk,

yk+1 = h (fk→k+1(mk,xk)) + νk+1.In this ase, the model proess ontinues with dynami variables that were the resultof a forward model xk = fk−1→k(mk−1,xk−1), therefore, they are physially meaningful.Nevertheless, the dynami variables xk are now inonsistent with the onstant variables
mk sine the latter are a result of a linear update. The inonsisteny might not allow theforward model to ontinue. The solution to this problem ould be using reruns.RerunsReruns, [62℄, [96℄, are used if one an a�ord running the model from time zero after eahanalysis time using spei�ed initial onditions, and updated onstant variables from thelast update step. The advantage is that the model starts with the updated onstantvariables from an initial state suh that no inonsisteny appears, and it is unlikely tointrodue physially-impossible relations. Then, the state-spae representation is of theform: 




mk+1 = Imk,

yk+1 = h (f0→k+1(mk,x0)) + νk+1.Alternatively, one an rerun the model only after seleted update steps. These an be theupdate steps with more observations available or update steps ful�lling a given riterium,[15℄. 25



Asynhronous shemeIn the ase when observations are obtained very frequently, it beomes ine�ient to updatethe state at eah measurement time step. The model would need to be run and stoppedvery often whether we proeed in between time steps or use reruns. The asynhronousEnKF [71℄ was proposed to improve data assimilation for this kind of ase studies.Let us divide the time domain into assimilation windows indexed by K. Window
K ontains nK measurement times. Index kK runs through the measurement times inwindow K. The predited data for time window K + 1 beomes a olletion of nK+1predited data sets and the state-spae representation beomes:





mK+1 = ImK ,

yK+1 =




h
(
f·→kK+1=1(mK ,x·)

)

h
(
f·→kK+1=2(mK ,x·)

)...
h
(
f·→kK+1=nK+1

(mK ,x·)
)



+ νK+1,

where x· is a dynami variable from a hosen earlier point in time.Variable transformationAt the update step, a magnitude of the updated variable might exeed its feasible bound-aries, [63℄, and the variable beomes physially meaningless. One solution is to 'rop' theoutliers to stay within the boundaries of the interval of feasible values. It an, however,reate non-smooth hanges in the variable's values whih is not always desirable. Anothersolution is to projet the variable values to a spae with in�nite bounds, update it, andprojet bak to its bounded spae. Let [minu, maxu] be an interval of possible values forvariable u, and let T be a bijetion suh that:
T : [minu, maxu] −→ R,and then its inverse funtion is T−1 : R −→ [minu, maxu].At any update time (time subsript omitted for larity) the following steps are taken:

• forward-transformation T on the foreasted variable:
T (uf) = ũf ,

• the update
update(ũf) = ũa,

• bakward-transformation T−1 on the update:
T−1(ũa) = ua.26



Note that variable u is understood as a single physial notion. If one wishes to updatevariables with di�erent magnitudes, values or physial interpretation, several T funtionsare needed.If the transformation is applied in this work, it is the one introdued in [24℄. Let
mm = maxu+minu

2
and mr =

maxu−minu

2
. Then the forward transformation is:

T (uf) = ũf = ln
uf −minu

maxu − uf
.The bakward transformation after the update is:

T−1
α (ũa) = ua = mm +mr

exp(αũa)− 1

exp(αũa) + 1
,and it is illustrated in Figure 3.1 for several α values. For the implementations in thisthesis we simply pik α = 1. Di�erent values of α re�et a tradeo� between the smoothnessand the auray of the bakward-transformation.
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α=1/3Figure 3.1: The bakward transformation with di�erent values of α.LoalizationOften, small ensembles an introdue false (muh too large or muh too small) spatialorrelations between variables. These orrelations an trigger an ensemble Kalman �lterto misjudge the magnitude of a measurement update. It in turn might lead to ensembleollapse in the sense that it would onverge to a state di�erent from the true state.To orret for a misrepresented unertainty, a ovariane loalization has been pro-posed and a review of possible methods is presented in [1℄. In general, the loalizationaims at orreting an ensemble ovariane matrix Pe with an element-by-element multi-pliation by a ovariane-loalization matrix ρ:

ρ ◦Pe : (ρ ◦Pe)i,j = (ρ)i,j · (Pe)i,j,and using the latter in plae of Pe in the ensemble Kalman measurement update equa-tions. Provided that the ovariane-loalization matrix ρ is positive-de�nite, and sinethe ensemble ovariane Pe is always positive-semide�nite with positive main diagonal27



entries, the Shur produt ρ ◦ Pe is positive-de�nite, aording to the Shur produttheorem, [1℄. That is, the Shur produt is again a ovariane.Di�erent loalization tehniques are used depending on the problem at hand. Mostertainly, a loalization is neessary if only a small ensemble an be used or there is a vastamount of spatially distributed data available.3.5 Parameter estimation problemIn reservoir engineering the model parameters m, ontaining for example permeability orporosity �elds, are unertain. Therefore, often one wants to estimate their value givenobservations, and the objetive funtion in (3.2) turns into:
J
(
x[k](m)

)
=

1

2

∑

k

(yk − h(xk(m)))TR−1(yk − h(xk(m))) +

1

2

∑

k

(xb − xk(m))TB−1(xb − xk(m)) +

1

2
(m0 −m)TP−1

0 (m0 −m),where we do not onsider the model noise, and add a prior term where m0 is an initialguess and P0 its error. Sine m has no underlying dynamis, the problem turns into aparameter estimation problem and one wants to estimate m∗ suh that
m∗ = argmin

m

J(x[k](m)).The objetive is a salar funtion, J : Rnm −→ R
+∪{0}, whose domain is a set of possiblevalues of parameters m for whih J(x[k](m)) makes sense, and nm is the size of vetor m.Minimizing a funtion of several variables might be hallenging espeially if nm is verylarge. In reservoir engineering appliations nm an reah 106 and even more for real lifelarge �elds.To �nd the objetive funtion's minimum m∗ we start from investigating its gradientwith respet to the sought parameters, ∇mJ. Using the hain rule, the formula for thegradient an be omputed and it is equal to:

∇mJ =

−
∑

k

(
∂xk

∂m

)T (
∂h

∂xk

)T

R−1(yk − h(xk(m)))

−
∑

k

(
∂xk

∂m

)T

B−1(xb − xk(m))

−P−1
0 (m0 −m).This gradient is not always available or easy to ompute, therefore, gradient-basedminimization methods (e.g. BFGS [24℄, variational methods [12℄, [47℄, [52℄, steepest28



desent) might be prohibitive. It omes from the fat that it is di�ult to ompute thederivatives in the gradient formula. If the observation operator is simple, ∂h
∂xk

ould be easyto ompute. The main di�ulty are usually the derivatives ∂xk

∂m
whih are the derivativesof the forward model with respet to the model parameters. Variational tehniques,[47℄, implement adjoints that are used to e�iently ompute the gradient; for omplexnonlinear models they are di�ult to derive, too. Additionally, due to a high nonlinearityof a ost funtion they might be ine�etive in �nding a global minimum. The gradientsould alternatively be omputed using a simple �nite di�erene sheme but for the largesizes of m it is not feasible.Another approah to solving the minimization problem is the use of gradient-freemethods (e.g. Kalman �ltering [40℄, [1℄, partile �lters [85℄, [86℄, pattern searh methods[48℄, or geneti algorithms [66℄, [73℄). In this thesis only gradient-free methods wereimplemented and they are presented in detail in the following setions.In the ase when the parameter spae is very large and the observations are sare,there are many degrees of freedom while �tting the data, and the solution is most ertainlynon-unique. Then it might be advantageous to onstrain the parameter spae to only sometype of solutions, and express it using a smaller set of variables via a given transformation.Let us redue the parameter spae m = m(α) and rewrite the objetive as a funtion of

α:
J(x[k](m(α))) =

1

2

∑

k

(yk − h(xk(m(α))))TR−1(yk − h(xk(m(α)))) +

1

2

∑

k

(xb − xk(m(α)))TB−1(xb − xk(m(α))) +

1

2
(α0 −α)TP−1

0 (α0 −α).Analogially, the prior term ontains an initial guess α0 and its error P0. Here we arelooking for the minimum
α∗ = argmin

α

J(x[k](m(α))),where J : Rnα −→ R
+∪{0} and nα ≪ nm for nα being the size of vetor α. The problemposed this way might still be too ompliated to solve with gradient-based methods eventhough the size of the parameter spae has been redued. It is often due to a high degreeof nonlinearity assoiated with the redued spae.The problem setup in this thesis always onerns estimation of permeability parame-ter (impliitly α or expliitly m), that is, only onstant unertain parameters are sought.Not only Kalman �ltering an be applied to �nd the desired parameters but also otherparameter estimation tehniques ould be e�ient. We hoose to use diret searh meth-ods, [48℄, for a redued-parameter searh spae sine they are omputationally e�ientonly if the number of variables is small and this is the ase in our studies. Diret searhmethods are slow but less prone to stuk in a loal minimum. They are global optimiza-tion shemes that are appropriate for funtions with ompliated dependenies like in theexamples onstruted in this thesis. Not for all the diret searh methods there exists a29



onvergene proof but many suessful implementations enourage their use. They searhthrough the parameter spae along spei�ed paths (alled meshes or latties) and are notbased on gradients. The algorithm omputes the objetive funtion value for eah pointand ompares it to the best solution so far. It rede�nes the mesh when a better solu-tion is found or all the points in the urrent mesh have been visited. The diret searhalgorithms di�er with respet to the way the mesh is being de�ned. The advantage ofsearh methods is that they are relatively easy to implement ompared to gradient-basedtehniques. They an also form a hybrid with gradient-based tehniques, for example, asan initial-guess estimator.In Setion 5, a Latin hyperube searh, [56℄, is applied. The algorithm samples pointsfrom permutations of a �nite set of n onseutive natural numbers where n is the numberof variables in the searh spae. The permutation values are perturbed slightly andsaled to �t the domain of interest. This way with every draw we obtain points thatare nearly uniformly distributed over the feasibility interval. One iteration omprises of
15n draws, therefore, the more variables to be estimated, the slower the algorithm. Ingeneral, onseutive draws are not related to eah other and hene the algorithm does notget stuk in loal extrema. The disadvantage is that sine the points have a presribedform (almost uniformly distributed), the extremum might be impossible to �nd.
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Chapter 4Ensemble Multisale Filter - EnMSFThis hapter desribes the study that has been made on the ensemble multisale �lterfor reservoir models. Setion 4.1 presents one update time step on the EnMSF omparedto the lassial ensemble Kalman �lter, without aounting for model dynamis. TheEnMSF algorithm itself is desribed in Setion 4.1.2. Setion 4.2 inludes the reservoirdynamis and details the study of the ovariane matrix in EnMSF.4.1 Multisale ensemble �ltering for measurement up-date14.1.1 IntrodutionHistory mathing (HM) is a proess of adjusting the variables in a reservoir simulationmodel until it losely reprodues the past behavior of the reservoir. The auray ofthe history mathing depends on the quality of the reservoir model and the quality andquantity of the data available. There are gradient based HM methods whih require aminimization of a ost funtion over the entire time domain. In a real and large saleappliation it is an expensive proedure and it an be stuk in loal minima. Due to thepresene of unertainties in both, the data and the model, it is hard and expensive.One way to solve these problems is to use sequential data assimilation shemes (Kalman�ltering). In the past years suessful appliations of Kalman �lter theory were reportedin many areas of researh: the meteorologial appliations, [25℄, [12℄, nonlinear shallow-water storm-surge models, [88℄, atmospheri hemistry and transport modeling, [74℄, [89℄,[30℄.The ensemble Kalman �lter (EnKF) has also entered the world of reservoir engineering.Several publiations have disussed the use of EnKF with oil reservoir models: [59℄, [60℄,[61℄, [28℄, [23℄, [50℄, [90℄, [77℄, showing promising results and at the same time indiatingpossible drawbaks.The EnKF is based on the representation of the probability density of the state esti-mate by a �nite number N (N being muh smaller than the number of elements in thestate vetor) of randomly generated system states (ensemble members). This method falls1This setion is based on the artile in Computational Geosienes, 13:245-254, 2009 where theoauthors are: R.G. Hanea, A.W. Heemink, D. MLaughlin.31



into the Bayesian inversion approah and may provide a solution to the ombined param-eter and state estimation problem. The result is an ensemble of analyzed solutions (theombination between the measurements and the reservoir model) whih approximates theposterior probability density funtion for the model parameters in the best way.The ensemble size limits the number of degrees of freedom used to represent foreastand analysis errors. It makes the alulation of the error ovarianes pratial for modest-sized ensembles. One important onsequene of the use of small-sized ensembles is thesampling error problem. After a ertain number of assimilation steps the ensemble losesits variane and leads to �lter divergene. In [32℄ they onlude that the use of a smallnumber of members in an ensemble often produes spuriously large magnitude bakgrounderror ovarianes between greatly separated grid points (unphysial orrelations). Theynoted that the EnKF analysis sheme ould be improved by exluding observations atgreat distanes from the grid point being analyzed by performing a ovariane loaliza-tion. Examples of this approah inlude methods based on ovariane �ltering with Shurproduts, [29℄, [33℄, and methods that perform updates in small bloks of grid ells ,[55℄,[65℄. These methods improve omputational e�ieny and suppress the negative e�et ofsampling errors. The ovarianes that are used for loalization will have an impat onthe desription of the physial orrelation arried by the foreast ovariane. Therefore,there is a risk of introduing orrelations that are physially not possible. A number ofresearhers have observed and disussed the imbalanes introdued by the loalizationshemes in the meteorologial appliations, [52℄, [57℄.In this hapter we fous on data assimilation with the ensemble multisale �lter (En-MSF), [99℄, for estimation of oil reservoir permeability. This new approah solves someof the limitations of EnKF by allowing spatial loalization.Multisale estimation is based on the onept of using a multisale tree that desribesthe spatial orrelations. The method is based on an algorithm, [92℄, inspired by imageproessing researh. The degree of freedom to hoose a ertain tree and to set up theparameters for the update of the ensemble makes the method very appealing. At thesame time, one should be aware of the strong dependene of the method performane onthe hoies mentioned above.An interesting feature of the algorithm will be shown. An in�uene of its setup on thequality of the estimates in ase of a reservoir engineering appliation will be investigated.Due to the omplexity of the method we look only at a one time step update of theensemble. In Setion 4.1.2 the theoretial bakground for the EnKF and for the EnMSFis presented, and the assumptions that need to be made are desribed. In Setion 4.1.3 a2D, two-phase example is presented with seismi data. The numbering of the ells in thenumerial grid is disussed. The onlusions follow in Setion 4.1.4.4.1.2 EnKF and EnMSF - theoretial bakgroundThe problem an be formulated as follows. There is noisy data at every point in thedomain. Given the data we want to estimate what the true state is. In our ase, thedata and the state represent the same variable. There is no dynami model involved.Nevertheless, we talk about foreasted and analyzed states to remain in the ontext ofthe sequential data assimilation. The foreasted state is simply the state without themeasurements, and the analyzed state is the state where the measurements are already32



aounted for.The state vetor x needs to be de�ned and it is a olletion of variables representingthe model result. Supersripts for x are used in the equations: f representing the foreaststate and a representing the analysis state.All the available data are stored in vetor y. The way to ompare the measured valueswith the state vetor is to use a funtion from the state spae to observation spae alledthe observation operator H:
y = Hx. (4.1)Through the observation operator H, a foreast for the observed data an be made fromthe foreast of the state. Unertainties in the measurements need to be spei�ed as well.Therefore, Equation (4.1) modi�es to:

y = Hx+ ν.The observation operator H is often a olletion of interpolation operators from the stateto the observation points (onversions from state variables to the observed parameters);
ν is the observation noise, ν ∼ N(0,R). The ovariane matrix R needs to be spei�ed.Measurement update of the ensemble Kalman �lterThe Ensemble Kalman �lter was introdued by [16℄ and has been suessfully used in manyappliations, [21℄, [32℄. This Monte Carlo approah is based on the representation of theprobability density of the state estimate by an ensemble of possible states, x1,x2, . . . ,xN .Eah ensemble member is assumed to be a single sample from a distribution of the truestate. Whenever neessary, statistial moments are approximated with sample statistis.

• Foreasted state ensemble: x1,f , x2,f , . . . , xN,f .
• Analysis step:

x̄f = 1
N

∑N
i=1 x

i,f ,

Ef = [x1,f − x̄f , x2,f − x̄f , . . . , xN,f − x̄f ],

Pf = 1
N−1

Ef(Ef)T ,

K = PfH⊤[HPfH⊤ +R]−1,

xi,a = xi,f +K[y −H(xi,f) + νi],where i = 1, . . . , N . Here, νi are realizations of the noise proess ν.Measurement update of the ensemble multisale �lterThe ensemble multisale �lter, [99℄, provides an alternative way to perform the updatestep. The original ensemble ovariane is represented by a tree struture and physiallylong distane dependenies are kept through the relations between the tree nodes.It onsists of three basi steps: 33



1. assigning grid ells (pixels) to the �nest sale nodes and omputing the tree param-eters from sample propagation through the tree (tree onstrution);2. upward sweep (moving information upwards in the tree);3. downward sweep (spreading information downwards in the tree to the �nest sale).The ensemble members are partitioned with respet to grid geometry and settings(like the pixel numbering and the tree spei�ation). The multisale algorithm plaes thepartition at the �nest sale nodes (leaf nodes) and omputes the parameters at the uppertree nodes. Now, the upward and downward steps an be performed and the output is aset of updated repliates. ExampleSine the ensemble multisale algorithm is more omplex than EnKF, �rst, a littleexample is shown. The example greatly simpli�es the method but allows to grasp thegeneral idea.

Figure 4.1: The initial grid division.
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Figure 4.3: The middle sale representationon the grid.
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Figure 4.4: Pixels seleted for the middlesale of the tree.Eah pair of Figures: 4.1-4.2, 4.3-4.4, 4.5-4.6, shows a grid and orresponding treestates. This is the �rst stage of the EnMSF - tree onstrution. The 4 × 4 grid is arepresentation of permeability where grey is high permeability and blak is low.34



Figure 4.5: Root node representation on thegrid.
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Figure 4.6: Pixels seleted for the root (top)node of the tree.The grid ells (pixels) are numbered and eah group of four is assigned to a leaf nodeof a binary tree (Figures 4.1 and 4.2). Here it should be noted that having an ensembleof size N :
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,the �rst leaf node, for example, ontains a matrix with the �rst four states of eah ensemblemember:
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The state at eah higher sale node is a linear ombination of states at its direthildren. At the middle sale four most in�uential states are kept at eah of the two nodes(Figures 4.3 and 4.4). They happen to be the high permeability hannel. These eightvalues are used to ompute the four states at the root node (Figures 4.5 and 4.6) whihis the enter of the high permeability hannel. This is the end of the tree onstrutionpart when all the nodes ontain sets of parameters needed to perform the upward anddownward sweeps.Assume that a measurement is available in pixel no. 1. It is plaed at the node whihhad pixel no. 1 assigned to it, the �rst leaf node (a irle in Figure 4.7). Going up the treea Kalman-based update is performed and at the end the root node ontains the knowledgefrom the measurement. Downward sweep (Figure 4.8) spreads the knowledge from theroot node to all the other nodes. In onsequene, the �nest sale ontains the analyzedstates xia (xa
i ), i = 1, 2, ..., 16. 35



Figure 4.7: A sheme of the upward sweep.
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aFigure 4.8: A sheme of the downwardsweep and �nal updated values.Clearly, the ensemble �lter operates on an ensemble representing a distribution ofthe truth. For simpliity, the example shows one grid representation. It should be learthough that the states at the tree nodes ome from the dependenies in the ensemble.
Some mathematis in the algorithmThe most omplex is step 1 ontaining ruial assumptions and many �exible variables.Steps 2 and 3 are based on Kalman �lter theory. Some mathematial details are presentedhere to enrih the simple example shown above. The full detailed desription an be foundin [99℄.Some neessary notation is shown in Figure 4.9.
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m(s)+1
=M=2Figure 4.9: Notation: sαi - the ith hild of node s, sγ - the parent of node s, m(s) - the salewhere s is plaed, M - �nest sale, 0 - the root node.Additionally, some symbols used in the text are:36



NOTATION
χ(s) State vetor at node s.

χM(s) The vetor of �nest-sale states desended from s.
χ(s|s) The state at node s after the upward sweep.
χ(s|S) The state at node s after the downward sweep.
χ(sγ|s) Projeted state at node sγ.

j Supersript indiating an ensemble member.Any other symbols are explained in the text.The whole proess starts with assigning the grid ells (pixels) to the leaf nodes of thetree. The ells an be numbered in various ways what determines the assignment. Twohoies are shown in the next setion. Assigned pixels provide states at the �ne salenodes of the tree.A state at eah non-�ne-sale node s is a linear ombination of the states at its hildren:
χ(s) = V (s)




χ(sα1)...
χ(sαq)


 , (4.2)where matries V (s) are obtained as follows.We searh for a set of V (s)'s that provides the sale-reursive Markov property on thetree, i. e. deorrelates q + 1 following sets of one sale: �rst q sets are all the hildrenof the node s, and the set q + 1 ontains all the other nodes in this sale that are nothildren of s. The deorrelation is a minimization of onditional ross-ovarianes betweenthe mentioned sets, given node s.The tree that will approximate the foreast ovariane matrix well should be basedon the sale-reursive Markov property. The set of V (s)'s providing the sale-reursiveMarkov property perfetly would have a very high dimension sine it would keep the totaldependene between the �nest states on the upper sale. Therefore, for pratial purposethe state dimensions in oarser sales will be onstrained. This is easier if V (s)'s are blokdiagonal ; eah blok orresponds to a di�erent and only one hild of s.The way V (s)'s are built

V (s) has the form:
V (s) = diag[V1(s), ..., Vq(s)],where Vi(s) is a matrix orresponding to the ith hild of s, sαi, for i = 1, ..., q.There are two onstraints hidden here. The �rst one limits the number of rows inmatries Vi(s) to di(s). The seond one, if neessary, oarsens the number of rows in V (s).
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Construting matries Vi(s)To obtain Vi(s)'s, q onditional ovarianes need to be minimized, for eah non-�ne-sale node s. Those are the onditional ross-ovarianes between hild i (i = 1, ..., q) andthe rest of the nodes in the same sale, given the parent. Sine diret minimization isinonvenient, the algorithm uses a preditive e�ieny method.Preditive e�ieny methodThe method is more e�ient to ompute than all the onditional ross-ovarianes. Itpiks Vi(s)'s whih minimize the departure from optimality of the estimate:
ẑic(s) = E[zic(s)|Vi(s)zi(s)],where zi(s) is a vetor of states at node sαi (= χ(s)) and zic(s) is a vetor of states onall nodes at sale m(s) + 1 exept node sαi. It was proved, [22℄, that they are given bythe �rst di(s) rows of:
V ′

i (s) = UT
i (s)Cov[zi(s)]

−1/2,where Ui(s) ontains the olumn eigenvetors of:
Cov−1/2[zi(s)]Cov[zi(s), zic(s)]CovT [zi(s), zic(s)]Cov−T/2[zi(s)].Here it should be noted that di(s) are hosen by the user. The piked rows have the high-est orresponding eigenvalues. The reason is that we assume that the olumn eigenvetorsof Ui(s) are lined in a dereasing (orresponding eigenvalue) order.The size of χ(s) in Equation (4.2) is ontrolled by the setup of V (s), that is, it was

V (s) that allowed keeping four states at the upper sale nodes in the example.When all the states are omputed and the measurements are plaed at the tree nodes,the upward and downward sweeps an be arried out.Going up the tree the algorithm updates the states at the nodes. Then eah node sgets the value χj(s|s), where χj(s|s) is the state vetor updated with all the measurementsin the subtree rooted at s. At the top of the tree the value for the root node is obtained,
χj(0|0). This is the basis to perform the downward sweep of the algorithm. χj(0|0) is theinitial point, namely χj(0|S). Going down the tree the value χj(s|S) is assigned to eahnode s. That is the state value ontaining the knowledge from all given measurements.This way at the end of the sweep we get updated ensemble states at the �nest sale whihan be used to perform the next foreast step.The equations leading the upward and downward sweeps are:The upward sweep equation

χj(s|s) = χj(s) +K(s)[Y j(s)− Ŷ j(s)]The states χj(s) at eah node s are updated with perturbed measurements Y j(s)using weighting fator K(s) and predited measurements Ŷ j(s), and:
K(s) = Ĉov[χ(s), Ŷ (s)][Ĉov[Ŷ (s)] +R(s)]−1,38







R(s) = r(s), m(s)=M;
R(s) = diag[K(sα1)R(sα1)K

T (sα1), ..., K(sαq)R(sαq)K
T (sαq)], m(s)<M;





Y j(s) = y(s) + ej(s), m(s)=M;
Y j(s) =




K(sα1)Y
j(sα1)...

K(sαq)Y
j(sαq)

y(s) + ej(s)



, m(s)<M;





Ŷ j(s) = h(s)χj
M(s), m(s)=M;

Ŷ j(s) =




K(sα1)Ŷ
j(sα1)...

K(sαq)Ŷ
j(sαq)

h(s)χj
M(s)



, m(s)<M.

The downward sweep equation
χj(s|S) = χj(s|s) + J(s)[χj(sγ|S)− χj(sγ|s)]Previous states χj(s|s) at eah node obtain the knowledge from all measurementsthrough the weighting parameter J(s):

J(s) = Ĉov[χ(s|s)]F T (s)Ĉov
−1
[χ(sγ|s)],

F (s) = Ĉov[χ(sγ)]A(s)T Ĉov
−1
[χ(s)],

A(s) = Ĉov[χ(s), χ(sγ)]Ĉov
−1
[χ(sγ)].The state χj(0|S) = χj(0|0) is initially known from the upward sweep and projetedrepliates χj(sγ|s) an be omputed based on matries V (s) and:

χj(sγ|s) = F (s)χj(s|s) + w′j(s).Matrix F (s) is like above and w′j(s) is a zero-mean random perturbation withovariane Q′(s):
Q′(s) = Ĉov[χ(sγ)]− F (s)A(s)Ĉov[χ(sγ)].The whole proedure explained above, with the three steps, is able to approximate theforeast error ovariane by onstruting the tree and then to get the updated ensembleby moving up and down the tree assimilating the available measurements. At the end,the updated ensemble is obtained at the �nest sale.39



4.1.3 AppliationIn real-life appliations the data are olleted in the �eld; in theoretial appliations (so-alled twin experiments) the data is simulated with the aid of a setup that is alled thetruth or the referene ase. A twin experiment is prepared here for the algorithm tohek its performane. The results are ompared to the ensemble Kalman �lter's as it isdesribed in [18℄. All shown results are one update time results.

Figure 4.10: The training image 250 × 250.Given the training image2 (Figure 4.10) an ensemble was generated using SGeMS(The Stanford Geostatistial Modeling Software). Algorithm snesim, [10℄, generated 2Dsamples of permeability �elds with grid size 64×64 from the training image with grid size
250 × 250. Eah of 100 repliates is built of two values of permeability: high 10,000 mD(yellow) and low 500 mD (red). The �rst repliate was assumed to be the truth (Figure4.11) and removed from the ensemble.

 

 

Figure 4.11: The true permeability 64 × 64.The values of the observations are the perturbed values of the truth. It means that thepermeability �eld is updated with permeability measurements. In pratie these values2A training image is an image representing the features and the distribution of ensemble members,[10℄. 40



annot be measured anywhere exept for at wells. Therefore, this example is not realistibut allows to test almost any possible setup.Throughout the tests the tree is a quadtree (four hildren for every parent), there are16 pixels assigned to eah �nest-sale node and 16 states preserved at oarser sale nodes.The task is to assimilate large sale data. We assume it is possible to obtain the mea-surement in every pixel of the �eld, and that the data are very noisy. The number of datapoints in spae is very large. It is known that EnKF is not an e�ient tool to assimilatea very large amount of observations. The standard deviation of the measurement noiseis, therefore, equal to a large value of 9. The data are shown in Figure 4.12.
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Figure 4.12: The permeability data.The ensemble multisale �lter will be run twie. Eah time with a di�erent gridnumbering. The numbering shemes are shown in Figures 4.13 and 4.14.
1 2 5 6 17 18 · · ·

3 4 7 8 19 20

9 10 13 14

11 12 15 16...Figure 4.13: A square manner numberingof the pixels in the numerial grid.
1 2 3 4 5 6 · · ·

65 66 67 68 69 70 · · ·

129 130...Figure 4.14: A row wise numbering of thepixels in the numerial grid.The numbering an express our belief in the dependenies in the atual �eld. Thesquare manner numbering (Figure 4.13) keeps groups of pixels lose in the grid lose inthe tree. It is not a perfet mapping though. For example, pixels 6 and 17 are diretneighbors but they are plaed at di�erent nodes.The other approah (Figure 4.14) numbers the pixels row wise as if one believes thatthe hannels are horizontal. It an be improved if there is some prior knowledge available,for example, about the hannel plaement. 41



It is visible in the results that interesting artifats ome from those two di�erentapproahes.The plots of the prior, EnKF estimation and EnMSF with square and row wise num-bering estimations are shown in Figures 4.15 - 4.18. The prior is relatively smooth and it isthe best estimate if no data is given (the mean of the ensemble). Any proper assimilationshould give an improvement to the prior whih is the ase in here.
 

 

Figure 4.15: A mean of the ensemble mem-bers - the prior.  

 

Figure 4.16: Assimilation with EnKF.

 

 

Figure 4.17: Assimilation with EnMSF andnumbering sheme like in Figure 4.13.  

 

Figure 4.18: Assimilation with EnMSF andnumbering sheme like in Figure 4.14.The omparison of the performanes is based on a root mean square error (RMSE)values and visual judgment. If two matries of size N ×M are AN×M = {aij}, BN×M =
{bij} then:

RMSE(A,B) =

√√√√ 1

N ·M

N∑

i=1

M∑

j=1

(aij − bij)2.Table 4.1 ontains RMSE between the truth and: the prior, EnKF, EnMSF + squarenumbering, EnMSF + row wise numbering.The RMSE measures, roughly, the mean di�erene between respetive pixels. It is apoint not global measure, it annot give information on large sale features. Additionally,one update step should not only rely on the RMSE. Hene, the visual omparison is alsouseful. It might suggest a need to searh for a ompletely di�erent measure of similarity.42



Prior EnKF EnMSF+square EnMSF+row wise1.4002 1.3356 1.0795 1.0773Table 4.1: RMSE between the truth and di�erent results.The plot of EnKF in Figure 4.16 is smooth and it seems like it sharpens a ontrast inthe prior. Its RMSE is not satisfatory either. The two versions of EnMSF (Figure 4.17and Figure 4.18) show artifat, lines whih ome from the numbering shemes used. Nev-ertheless, the plots extrat the high permeability hannels quite well. The two approaheswere going to show that EnMSF an be adjusted to a given problem, espeially when someprior knowledge is available about the hannel orientation or loation.4.1.4 ConlusionsThe ensemble multisale �lter is a new tehnique for reservoir engineering. The methodhas been developed from image proessing. The goal is to show an appliation of this�lter to a simple reservoir engineering problem and to analyze its potential.It is known that large data sets ause omputational problems for Kalman �lters. Also,with more data, the struture of the system noise is less important. Therefore, there is aneed for e�ient tools to handle this kind of appliations.Multisale �ltering is a way of representing the ovariane matrix in the assimilationproess by a tree struture. This simpli�ation preserves the strongest orrelations be-tween the grid ells. The most ompliated part of the method is the de�nition of thetree; it ontains ruial assumptions and �exible parameters. There are features thatin�uene �lter's performane that an be adjusted to solve partiular problems. Here, wefoused on the numbering shemes whih an represent our belief in the �eld dependen-ies. Certainly, it is very e�ient to manipulate when some prior knowledge about the�eld is available.The two numbering shemes shown represent di�erent ideas. The �rst one, square like,might be universal to keep lose pixels on the grid lose in the tree. The seond, row wise,an be suggested by horizontal �ow information. Both shemes show good performaneompared to EnKF in ase of large data sets. The perfet mixture would be reated whenan approximate position of the hannel was known. The shape or way of numbering ouldbe adjusted to the feature.Sine the EnMSF is a omplex and interesting algorithm it needs further experimentsand investigation. Full runs with a reservoir simulator and more tests are required.
43



4.2 Towards the use of the ensemble multisale �lterfor history mathing34.2.1 IntrodutionThe EnMSF, [99℄, was introdued in Setion 4.1.2 and here we present a sensitivity analysisof the EnMSF with respet to several algorithm parameters. We learnt that the numberingsheme has a strong in�uene on update performane with oarsened tree. We proeedwith presenting the related ovariane study and an interpolation problem with sarerdata set.The numbering sheme is a feature that ours to have the strongest impat on the�lter's performane but additionally we deide to investigate the tree oarsening propertiesthat have been kept default to that point. For several numbering shemes we manipulatealgorithm oarsening parameters, namely, tree shape, upper-sale state oarsening (dim),and the deorrelating neighborhood radius. First, the ovariane study is shown thatonsiders several parameter setups. Then, the full history mathing experiments arepresented where a reservoir simulator models the time hange of the variables. Here, forthe �rst time, the EnMSF is shown as a parameter estimator in a sequential updatingsheme where the estimated and the observed variables are di�erent physial notions.Now, a full state-spae representation an be formulated following Setion 3.4:




mk+1 = Imk,

yk+1 = h (fk→k+1(mk,xk)) + νk+1.A permeability parameter m is stati, and the observations y are obtained through theobservation funtion h extrating simulated data from the results of the reservoir simulator
f , where x represents the dynami variables, grid-blok pressure and saturation.4.2.2 Pixel numbering shemeWe want to investigate the performane of the �lter given several options for numberingthe pixels in the grid and assigning them to the tree struture. Sine the EnMSF extratsstrong dependenies from pixels belonging to partiular subtrees, it is expeted that adi�erent assignment pattern might modify the result.The sensitivity analysis presents a omparison of ovarianes: the foreasted ensembleovariane and the ovariane used in the EnMSF. The approximated ovariane in theEnMSF will be alled the tree ovariane.A tree applied in the EnMSF for this example is presented in Figure 4.19. There arefour hildren per node and four pixels at eah leaf node. Eah middle sale node an keepup to 16 states, the root node an keep up to 64 states.3This setion is based on the proeedings of 11th European Conferene on the Mathematis of OilReovery - Bergen, Norway, 8-11 September 2008 where the oauthors are: R.G. Hanea, A.W. Heemink,D. MLaughlin, J.D. Jansen. 44



The true ovariane between pixel oordinates (xi, yi) and (xj , yj) is given by:
C(i, j) = exp

(
−
√

(xi − xj)2

42
+

(yi − yj)2

92

)
,for i, j = 1, ..., 8. The orrelation is stronger along the x-axis. Figure 4.20 shows thesample ross-ovariane between the pixel in the enter (the lightest) and all the otherpixels in the grid.

4

max 64

max 16

Figure 4.19: The tree for 8× 8 example. Figure 4.20: The prior sample ross-ovariane.Figure 4.21 shows four tree ross-ovarianes analogous to the one in Figure 4.20. Allof them were omputed using the same tree (Figure 4.19) and severe oarsening (therewas only one state kept at eah oarser sale node). Eah ovariane is oarsened in adi�erent way depending on the numbering sheme. Vertial and horizontal numbering(4.21(a) and 4.21(b)) keep stronger orrelations along the respetive diretions. Pixelsnumbered in the lusters like in Figure 4.1 preserve the orrelation within the luster,Figure 4.21(). The last randomly numbered �eld (Figure 4.21(d)) is not able to showany struture.If all the states were kept at the higher sales of the tree, the ovariane would betotally reonstruted independently of the numbering sheme. So, the numbering shemegains importane only if a oarsening is applied. No prior information arried by theensemble is ut o� or prioritized by the �lter if there is no trunation.The oarsening an be advantageous if there is some additional knowledge about thegrid. For example, that some areas are of a ommon nature whih is not inluded in theprior ensemble.To see the atual data assimilation results, appliations are shown in the next setion.
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(a) Pixels numbered vertially. (b) Pixels numbered horizontally.
() Pixels numbered in groups. (d) Pixels numbered randomly.Figure 4.21: The tree ross-ovariane for severely oarsened tree and di�erent numberingshemes.
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4.2.3 Interpolation problemThe numbering shemes disussed in the previous setion appeared to have a big impaton the ovariane representation in the EnMSF. Here, a simple one time assimilation witha trunated tree is going to show how a oarsened tree ovariane in�uenes the result.The true permeability �eld is given as in Figure 4.22(a), 64×64. The high permeabilityhannels are light yellow and the low permeability bakground is dark red. A priorhannelized ensemble with 100 members is given and its mean is shown in Figure 4.22(b).The orrelation is stronger in horizontal diretion sine the hannels are mostly horizontal.The permeability observations are taken along three vertial lines: one in the middle andtwo at the edges (Figure 4.22()). Sine the permeability is a measured and estimatedparameter, the problem is a simple interpolation problem.
(a) The true permeability.  

 

(b) The prior of 100 permeabilityrepliates. () The measurements along thethree vertial lines.Figure 4.22: The setup of the interpolation problem.The multisale tree has four hildren per node, 16 pixels at the �nest sale nodes andonly 4 states kept at eah oarser sale node. Four numbering shemes were applied andthe EnMSF results are shown in Figure 4.23.Sine the state trunation was severe the results di�er signi�antly. Vertial numbering(4.23(a)) assimilates the data only along the observation lines, it does not have a powerto reah in the horizontal diretion. When pixels are numbered along the rows (4.23(b))the data is interpolated horizontally. If this numbering is additionally onsistent with thehannel orientation, then the assimilation is advantageous.The lustered numbering (4.23()) spreads the data to a 'nearby' group of pixels. It iseasy to notie that the pixels in line with the middle observations have been assigned tothe tree together with their left neighbors; middle observations are not projeted to theright plane of the grid.The last numbering sheme (4.23(d)) was based on the truth like in Figure 4.22(a).Low pixel numbers are assigned to the high permeability hannels �rst and then the restof the pixels is numbered row wise. Therefore, the numbering exatly mirrors the truth.The data should then be spread with respet to the true shapes. It an be handy whenprior geologial knowledge (not inluded in the initial ensemble) is available.4.2.4 Coarsening parameters in the EnMSFThere are many parameters driving the EnMSF. These parameters need to be understoodand studied to disover their in�uene, importane and sensitivity of the �lter. Some47



(a) Vertial numbering (b) Horizontal numbering.
() Pixels numbered in groups. (d) Numbering along the feature.Figure 4.23: The EnMSF assimilation results with di�erent numbering shemes.onlusions will be drawn from studies done in this setion. We want to investigate thetree shape, the state oarsening at the upper tree sales (dim), and the onditioningneighborhood radius, and test the parameters versus di�erent numbering shemes.The researh is based on the ovariane matrix reonstrution. It is investigatedhow well the so-alled tree ovariane matrix represents the true and sample ovarianematries (the true ovariane matrix might be given - as it is in this ase - or omputedfrom a very large sample; sample ovariane matrix is a ovariane of a given ensemble).The tree ovariane matrix is a ovariane matrix that is used by the EnMSF in anassimilation algorithm. It is omputed on the basis of parameters assigned to the nodesof the tree after the tree onstrution step.On the root (top) node of the tree an ensemble is sampled from a normal distributionwith zero mean and the ovariane matrix omputed for that node in the tree onstrutionstep. The ensemble has as many members as there are repliates used initially for thetree onstrution. It is propagated to the �nest sale nodes with the downward transitionmatries attahed to eah node. The matries ome from the tree onstrution step aswell. A ovariane matrix of the ensemble from the �nest sale is the tree ovarianematrix.In this experiment the true ovariane matrix is again given by:

C(i, j) = exp

(
−
√

(xi − xj)2

42
+

(yi − yj)2

92

)
, (4.3)for i, j = 1, ..., 8. C(i, j) means that the ovariane is omputed between the points (xi, yi)and (xj , yj) in the Cartesian oordinates. The grid size is 8 × 8. The tests are restritedto that size sine it is omputationally di�ult to handle larger grids.The ovariane in Equation (4.3) has its denominators (42, 92) hosen suh that the48



orrelation of eah grid blok is longer in the horizontal than in the vertial diretion.For illustration, the ross-ovariane of one grid blok with all the other grid bloks ispresented. The true ross-ovariane is shown in Figure 4.24 (onsistently with furtherplots, it is the ross-ovariane between a pixel in the 7th row, 3rd olumn with all theremaining pixels).
Figure 4.24: The true ross-ovariane like in Equation (4.3).The results were ompared by omputing root-mean-square errors (RMSE) betweenovariane matries. If two matries of size N × M are AN×M = {aij}, BN×M = {bij}then again:

RMSE(A,B) =

√√√√ 1

N ·M

N∑

i=1

M∑

j=1

(aij − bij)2.The RMSE values are multiplied by 103.The tree ovariane matrix has been ompared to the true and sample ovarianematries. Sine the di�erene between omparisons is negligible (not shown here), onlythe results against the true ovariane are presented. Eah simulation was run 1000times. An average RMSE distane between a ovariane matrix of a sample of 10, 100repliates and the true ovariane matrix is equal to 12.2478, 3.4772, respetively. It anbe, therefore, assumed that a di�erene of around 10 should not be signi�ant.4.2.5 The design of the tree and its impatThe 64 pixels were distributed over the �ne sale nodes of the tree in Figure 4.25 in groupsof four. Eah oarser sale node has four hildren (a quad tree). A number of states at aoarser sale node will be alled dim. The smaller its value the more oarsened the originalsample ovariane matrix. An additional oarsening fator is a neighborhood radius (inhere equal to: 1, 2, 4, 8, 16, 64 as marked on the plots). It denotes a deorrelation radiuslength within one tree sale. The following results will show an impat of the two typesof oarsening on a small (10 members) and on a large (100 members) ensemble.Figures 4.27 and 4.28 piture the RMSEs for two di�erent numbering shemes. Figure4.27 had the numbering sheme adjusted to a feature and we will all it a 'hannel'numbering sheme. If one expets there is a hannel (like in Figure 4.26 in this example)running through the �eld, one ould hoose to �rst number the pixels horizontally insidethe hannel and then ontinue numbering outside it. That is how the numbering shemefor the runs in Figure 4.27 is onstruted. A random numbering sheme was used forthe results in Figure 4.28. Figures 4.27 and 4.28 ontain six plots eah, for six values49



Figure 4.25: The quad tree used for the tests. There are 4 pixels in every �nest sale node. Itimplies a maximum of 16 states at the nodes in the middle sale, and a maximum of 64 at theroot node (depending on the middle sale).
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8Figure 4.26: The assumed hannel.of dim: 64, 32, 16, 8, 4, 1, plaed in the reading order. Every plot is saled to interval
[0, 65] in the x-axis (neighborhood radius) and to [0, 220] in the y-axis (RMSE).The algorithm while omputing the states at oarser sale nodes takes the minimumbetween dim and a total number of states at its hildren. The ase cdim = 64 represents afull ovariane matrix reonstrution and, therefore, is equivalent to an ensemble Kalman�lter. The RMSE is very small, negligible, and the ensemble with 100 members (solidline) is more orret then the one with 10 (dashed line). The same observations apply to
cdim = 32. Then, the states are oarsened only at the root node of the tree.When cdim = 16, the RMSE is still low for both ensembles. For smaller neighborhoods(more severe oarsening) the larger ensemble performs worse. Still, the di�erene is notsigni�ant.Interesting results are obtained for cdim = 8. For the hannel numbering (Figure 4.27)the error inreases mildly, espeially for the large ensemble and the small neighborhoods.The random numbering sheme shows a signi�antly worse performane for the ensembleof 100. The remaining plots in Figure 4.28 show a similar trend of preferring the smallensemble results.The hannel numbering sheme shows a di�erent performane. With cdim = 4 bothurves, for 10 and 100 ensemble members, are lose to eah other even though for smallneighborhoods the small ensemble performs better. The largest mismath an be seenwith cdim = 1. It an be expeted sine the oarsening is severe and a greater ensemblemight introdue a larger mis�t.We will investigate what the impat of the oarsening is on the ovariane matrix.Examples with the urrent and additional numbering shemes will be shown.50
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’CHANNEL’ NUMBERINGFigure 4.27: The plots of 103·RMSEs versus the neighborhood radius for di�erent number ofstates kept at the oarser sales of the tree (dim), 'hannel' numbering sheme.
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RANDOM NUMBERINGFigure 4.28: The plots of 103·RMSEs versus the neighborhood radius for di�erent number ofstates kept at the oarser sales of the tree (dim), random numbering sheme.
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4.2.6 Covariane matrix approximationFor the EnMSF to be omputationally feasible a trunation has to be implemented. It isdue to the fat that a full tree struture requires storage of several large matries at everynode. Therefore, it needs to be reviewed how the trunation in�uenes the ovarianematrix and what the result of this oarsening is.Having in mind the true ross-ovariane from Figure 4.24, �ve trunated tree ross-ovarianes are shown in Figure 4.29. All the plots are kept in a onvention used in Figure4.24. Plots in Figure 4.29 were generated with 10 repliates, dim and neighborhood radiusequal to 4.
(a) 'Channel' numbering. (b) Random numbering.

() Row wise numbering. (d) Column wise numbering. (e) Square numbering (see Fig-ure 4.1).Figure 4.29: Cross-ovarianes for di�erent numbering shemes.Eah ross-ovariane shows a di�erent pattern oriented with respet to the underly-ing numbering sheme. The numbering proves important and may dominate the initialdependene struture with signi�ant trunation.The ensemble multisale �lter ours to be an interesting approah to sequential up-dating with build-in loalization possibilities. Sine reservoir engineering appliations arenot rih in measurements, the full potential of the method annot be investigated. Weonlude that the �lter ould be bene�ial when used in a data-rih �eld.Coming setion presents the ensemble multisale �lter applied to a reservoir engineer-ing problem versus the ensemble square root �lter for omparison. It is presented in thelight of this setion's results.
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4.2.7 History mathing using EnMSFThis setion presents the results from di�erent EnMSF runs in two problems where anensemble square root �lter is a benhmark.The true permeability for the �rst simulation is shown in Figure 4.30(a). The pressuremeasurements were obtained from �ve wells: a enter injetor and four produers in theorners of the �eld.The true permeability for the seond simulation is shown in Figure 4.30(). Thepressure measurements were obtained from the wells loated along the left (injetors) andthe right (produers) edge of the �eld, in total 42 wells. The domains' size is 21×21 ells.In eah example the data was olleted one a month, 12 times. Both examples use150 repliates of the permeability �elds and a measurement error of 104Pa. A set of initialrepliates for eah example has harateristis similar to the orresponding truth.
truth
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(a) The truth (non-binary).
permeability(150), RMSE = 0.22759
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(b) EnSRF for truth 4.30(a),150 repl., RMSE = 0.22759.
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() The truth (binary).
permeability(150), RMSE = 0.40819

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20
−13.8

−13.6

−13.4

−13.2

−13

−12.8

−12.6

−12.4

−12.2

(d) EnSRF for truth 4.30(),150 repl., RMSE = 0.40819.Figure 4.30: The true permeability �elds and EnSRF results for the two study ases.On the right from the true �elds in Figure 4.30 there are the results of assimilationusing the EnSRF. The root mean square error is indiated. In both examples the �lterperforms very well.The EnMSF uses a tree where eah oarser sale node has three hildren and thereare 49 pixels at eah �ne sale node. All updates are done on values of permeability aftera log-transformation, [24℄.Let us �rst look at the results where dim and the numbering sheme have beenmanipulated. Figures 4.31 and 4.32 ontain several assimilation results using di�erentsettings in EnMSF. Both Figures are organized as follows:
• 4.31(a), 4.32(a) - no dim trunation + feature based numbering templates,
• 4.31(b), 4.32(b) - cdim = 20 + feature based numbering templates,54



• 4.31(), 4.32() - cdim = 20 + numbering along olumns,
• 4.31(d), 4.32(d) - cdim = 1 + feature based numbering templates.It will test what is the impat of the same oarsening operations on problems with di�erentharateristis.The feature based numbering template varies for eah problem (it is onstruted onthe basis of the respetive true permeability). The binary problem uses a template wherethe pixels are �rst numbered in the hannel row wise from left to right, and then outsidethe hannel. To onstrut a feature based numbering sheme for the non-binary problem,a threshold for permeability was set. Then, all the greater true permeability pixels takea value 'hannel ours' and the rest - 'no hannel'. Now, the template an be built likefor the digital ase.

permeability(150), RMSE = 0.23617

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20
−13.8

−13.6

−13.4

−13.2

−13

−12.8

−12.6

−12.4

−12.2

(a) No trunation, fea-ture based numbering,
RMSE = 0.23617.

permeability(150), RMSE = 0.26066
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(b) cdim = 20, feature basednumbering, RMSE = 0.26066.
permeability(150), RMSE = 0.23093
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() cdim = 20, olumn wisenumbering, RMSE = 0.23093.
permeability(150), RMSE = 0.32719
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(d) cdim = 1, feature basednumbering, RMSE = 0.32719.Figure 4.31: EnMSF for the non-binary truth 4.30(a).For both ases when the tree used no trunation (4.31(a), 4.32(a)) the results arealmost idential to the EnSRF as expeted. For example, in the non-binary ase, per-meability on the right boundary loser to the south-east well is smoothed unlike thetrue pattern. (Note: A numbering sheme for a non-trunated tree does not make anydi�erene (no plots shown).) The trunation cdim = 20 using the template breaks thispattern, 4.31(b), making it more similar to the truth; the olumn wise numbering, 4.31(),is not as good. Nevertheless, the results in general are very good. Additionally, the mostseverely oarsened ase, 4.31(d) with cdim = 1, performs well. It might be due to strongorrelations between the permeability and pressures in this ase.The binary ase appears to be more sensitive to the trunation. In 4.32(b) and 4.32()the plaement of the hannel is approximately deteted but the values of permeability arenot orret. For cdim = 1, 4.32(d), it has only a vague reognition of the feature.55



permeability(150), RMSE = 0.35341
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(a) No trunation, fea-ture based numbering,
RMSE = 0.35341.

permeability(150), RMSE = 0.5675
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(b) cdim = 20, feature basednumbering, RMSE = 0.5675.
permeability(150), RMSE = 0.60914
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() cdim = 20, olumn wisenumbering, RMSE = 0.60914.
permeability(150), RMSE = 0.7655
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(d) cdim = 1, feature basednumbering, RMSE = 0.7655.Figure 4.32: EnMSF for the binary truth 4.30().Sine this example is larger, another tree ould be onstruted for omparison. Table 4.2ontains the tree parameters used for assimilations, results of whih are Figures 4.33(a)and 4.33(b). Both trees oarsen the middle sale to about 1
7
th but the root nodes havedi�erent trunations applied. Both use the same feature based numbering sheme. Mostlikely the trunation at the root node aused the results to vary, and not the topology ofthe tree. 4.33(a) 4.33(b)

♯ hildren 3 7
♯ pixels × ♯ �nest sale nodes = 441 49×9 9×49(♯ states × ♯ nodes) at the middle sales 20×3 9×7
♯ states at the root node 20 9Table 4.2: Tree parameters for two di�erent ases.Sine the neighborhood radius is not signi�ant (or expensive) when the tree is nottrunated or is mildly trunated (not shown here), the neighborhood trunation to 1 with

cdim = 1 is shown as an extreme ase. It is not realisti to use these settings in anyappliation but it is presented here for the sake of ompleteness.The plots in Figure 4.34 were generated using cdim = 1. Figures 4.34(a) and 4.34(b)weregenerated without the neighborhood oarsening but use di�erent numbering shemes.56



permeability(150), RMSE = 0.5675
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(a) Again Figure 4.32(b):
cdim = 20, feature basednumbering.

permeability(150), RMSE = 0.6811
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(b) cdim = 9, feature basednumbering.Figure 4.33: EnMSF with di�erent trees, the details of the tree parameters are ontained inTable 4.2.Here, it is visible that the olumn wise numbering prefers the features in north-southdiretion. Figures 4.34() and 4.34(d) use the respetive numbering shemes and addi-tionally a severe neighborhood trunation was applied. The olumn numbering learlyindiates the division into three nodes of the tree.
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permeability(150), RMSE = 0.32719

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20
−13.8

−13.6

−13.4

−13.2

−13

−12.8

−12.6

−12.4

−12.2

(a) Again Figure 4.31(d):
cdim = 1, full neighborhood,feature based numbering.

permeability(150), RMSE = 0.25328
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(b) cdim = 1, full neighbor-hood, olumn wise numbering.
permeability(150), RMSE = 0.33203
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() cdim = 1, neighborhood 1,feature based numbering.
permeability(150), RMSE = 0.29103
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(d) cdim = 1, neighborhood 1,olumn wise numbering.Figure 4.34: EnMSF with the neighborhood oarsening.4.3 ConlusionsChapter 4 desribed omprehensive researh results on the appliation of the ensemblemultisale �lter. The �lter is a Kalman type �lter that builds the sample ovarianematrix on the basis of a tree struture given an ensemble of realizations. After the tree isbuilt, the measurements an be plaed at the nodes and the update performed. Typially,a ovariane derived from a sample ontains spurious orrelations due to a �nite samplesize, and even physially very distant areas an show dependenies. We investigated howensemble multisale �lter deals with spurious orrelations with built-in loalization tools.First, Setion 4.1, presented the �lter as an interpolation method (no time update)where very noisy measurements of the true domain were available together with an ensem-ble of initial realizations. We ompared the ensemble multisale �lter with the lassialensemble Kalman �lter that ated as a benhmark. We showed that the multisale methodperformed updates di�erently, depending on the numbering sheme used, and extratedthe information in varying ways.In Setion 4.2 the same setup of the interpolation problem but with di�erent measure-ments was used. Here, less noisy measurements were available along three equally-spaedvertial lines. It was learly visible how the ensemble multisale �lter propagates infor-mation to pixels that are lose to eah other in the tree whih does not have to re�etphysial loseness. We onluded that the numbering of the pixels is important and pro-eeded with more tehnial aspets of the investigated �lter. We looked at the parametersof the tree that determine the level of the oarsening applied to the ovariane matrix.Our onlusion was that the ensemble multisale �lter's performane will depend moreon the level of oarsening (mostly parameter dim) than the tree topology. More impor-58



tantly, the oarsening with an appropriate numbering sheme an at as a loalizationmethod.The �lter an be omputationally hallenging due to its lassial ensemble Kalman�lter update sheme that is built into the algorithm. Then, if the tree has few hildrenper node or many sales, the omputation of the loal ovariane matries or building theupward/downward onnetions might be expensive. Nevertheless, sine the EnMSF neverstores the full ovariane matrix, it is expeted to be more e�ient than the traditionalEnKF.We reommend the EnMSF as a loalization and update tool in several ases. First, inase where there is some knowledge available about loal dependenies that will lead to aneduated pixel-to-tree assignment proedure. Then, during the tree trunation importantorrelations will be extrated and kept in the update. Seond, in ase where there is a vastamount of spatially distributed data available that will need loalization tehniques due toa possible ensemble ollapse. In any ase, a trunation in the �lter has to be implemented.Feature-based or orrelation-based numbering is neessary. Additionally, for large datasets we expet the artefats reated by the tree struture to be less pronouned.
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Chapter 5Feature-based methodsIn this hapter a method is developed for global feature deformation. This method isapplied in reservoir engineering and groundwater modeling data assimilation. Combiningknowledge from image proessing and grid generation we ome up with a grid deformationmethod parameterizing an image domain. First, some basi notions are de�ned. Then,the method is explained and applied to a 2D ase. Finally, a straightforward extension toa 3D ase is shown.5.1 Grid distortion for a 2D reservoir model5.1.1 IntrodutionData assimilation (or omputer-assisted history mathing) ombines theoretial knowl-edge about a physial proess with observed data. Di�erent data assimilation tehniquesan be lassi�ed into two main groups: variational or sequential methods. Variationalmethods assimilate all the available data over the whole time interval at one through aminimization of an objetive funtion. Sequential methods assimilate data at a partiulartime, proeed forward in time and assimilate the next available data; they an be derivedby minimizing a variane estimate of a onditional probability density of a model givendata. Both approahes have advantages and drawbaks, [52℄, [91℄.A speial ase of data assimilation is parameter estimation problem where only stativariables are estimated. Then, additionally, diret searh methods (or zero order meth-ods, [48℄) an be implemented. These algorithms searh through the objetive funtion'sdomain of feasible solutions not taking into aount loal gradients. This methodologyshould be espeially pro�table in our appliation due to objetive funtion's high nonlin-earity.Data assimilation is widely used in many branhes of industry. It an be appliedwhenever it is possible to model the underlying physis of a proess, and obtain theo-retial estimates of variables that are measured in reality. Appliations inlude weatherpredition, oean dynamis and hydrology, [88℄, [7℄, [16℄, or in�uenza spread, [39℄.Reservoir engineering uses data assimilation to improve estimates of subsurfae prop-erties from available measurements, [62℄. Typially, one wants to estimate a reservoirpermeability or porosity �eld. The measurements an be spatially small-sale (like bot-tom hole pressures or �uid rates measured in the wells) or large-sale (�eld-wide seismi,61



eletromagneti or gravity observations).Data assimilation for reservoir engineering needs to take into aount requirements(onstraints) that have to be met due to geologial or eonomial reasons. Geologialrealism, [49℄, [10℄, is one of them. The parameter �elds obtained from data assimilationshould look geologially orret, that is, the initial subsurfae harateristis should bepreserved in the history mathed estimate. The reason for this requirement is the generallyaepted belief that 'geologially realisti' reservoir models have a larger probability toprodue reliable foreasts than 'geologially unrealisti' models. Therefore, the maininitial geologial features should be displaed or bent but not broken. Nevertheless, theprior geologial information is often lost, [31℄, due to neglet of higher order statistis inthe data assimilation sheme. Furthermore, the geologially inorret estimates are oftenstill able to math the prodution history aurately. Therefore, additional onstraints areneeded to keep the geologial information onsistent during the history mathing proess.Feature-based methods are used to overome the problem of geologially unrealistihistory mathes. They aount for shapes/features in a domain of interest and have beeninvestigated from di�erent points of view and for various problems. Here, we fous onreservoirs ontaining hannels (high-permeable passages where liquids travel relativelyeasily).The most intuitive approah to the task is to parameterize a hannel. If the hannel issimple enough, its length, width, starting point and orientation might provide a ompletedesription of the domain, [97℄, [84℄. This kind of parametrization limits the number ofvariables (degrees of freedom) and ensures a ertain onsisteny of the struture.Permeability might also be seen as an image to whih di�erent image proessing toolsan be applied. Several methods reviewed below have been proposed to solve the problemof feature estimation, very often restrited to estimation of a hannelized �eld.
• A disrete osine transform (DCT) originates from jpg �le ompression; it deom-poses an image into a sum of produts of basis osine funtions and orrespondingDCT oe�ients. The appliation of the DCT has been introdued to data assimi-lation in reservoir engineering in [34℄, [35℄, [36℄, and later also implemented in [94℄.An e�ient parametrization of a variable �eld is provided through DCT oe�ientoarsening.
• A level-set method has been applied to a reservoir engineering data assimilationproblem, [58℄, [14℄, [93℄, to update ontour positions of features. The edges of thefeatures are then modeled as a horizontal ross-setion of a surfae and an evolutionof the level-set funtion modi�es the shape position.
• Field alignment (FA), [67℄, hanges an image by deforming its grid with a vetor �eld.The deforming vetor �eld is regularized by gradient and divergene onstraints inan objetive funtion.The main fous in this hapter is a grid distortion method. It was inspired by the gridgeneration researh desribed in [82℄, [81℄, [80℄, where the goal is to automatially generatesmooth grids for solving di�erential equations. The method deforms a grid smoothly (likeFA) to �t it to given data but does it through a simpli�ed (ompared to FA) partialdi�erential equation. The approah to the problem resembles FA, as both methods use62



deforming vetor �elds and were reated to allow reloation of patterns and their possibledeformation. However, unlike FA, grid distortion uses a limited number of parameters.Grid distortion is implemented here within the ensemble Kalman �lter framework andalso within a pattern searh method.All the methods mentioned above are feature-based methods. Sine the �eld alignmentand grid distortion methods are losely related, FA is disussed in more detail in Setion5.1.3. Optimization methods, in partiular the ensemble Kalman �lter and the patternsearh method, are desribed in Setion 5.1.4. Setion 5.1.5 introdues the feature-basedmethod developed in this thesis - grid distortion. Results follow in Setion 5.1.6, disussionand onlusions in Setion 5.1.7.5.1.2 Basi notionsVetor �eldsWe want to disuss images and their deformations aused by vetor �elds, and there areseveral ways of looking at this type of problems. One an think of a vetor �eld whosedomain are the nodes of a regular grid holding the pixels. Then, the deformation ofthe grid triggers pixel deformation whih in turn leads to the image deformation. Aninterpolation to a regular pixel values is then neessary. This type of warping is shown inFigure 5.1 and was implemented for the grid distortion method.

Figure 5.1: A node displaing �eld (applied in the grid distortion method).Another approah is demonstrated in Figure 5.2. Here, every pixel ontains a vetor.The vetor �eld is a searh �eld sine it seeks new values for the loations to obtain adeformation of a bakground image. The loation an be a pixel (like in the �gure) ora grid node. Alternatively, multiple vetors an be attahed at a single pixel loationto propagate the pixel's value to several destinations (Figure 5.3). Variations of theapproahes ould also be onsidered.
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InterpolationIn grid distortion method an interpolation has to be implemented to obtain the values ofpixels in a regular Cartesian grid after the deformation. The simulator in this ase annothandle irregular unstrutured grids. Various types of interpolation methods exist. Thebasi interpolants are: nearest-neighbor, linear, polynomial and spline.For the 2D grid distortion in Setion 5.1, an additional interpolation funtion is writ-ten. It presribes values to the grid nodes and maps them onto regular pixels after thedistortion. In the ase when a pixel has not reeived a value from a node, a weightedmean of neighboring pixel values is assigned. Sine the realizations in our appliationsare binary, there is a threshold value spei�ed.For the 3D grid distortion in Setion 5.2, the nearest-neighbor interpolation is imple-mented. Even though it makes the problem more non-smooth, it keeps the realizationslooking like geologial features whih is desirable in the presented examples.Problem formulationLet us formulate a data assimilation problem in the form of minimization problem wherethe objetive funtion J is
J(q) = (f∗ − f(q))T (f∗ − f(q)).

J is a funtion of a vetor �eld q and ontains only a squared measurement mismathterm in the simplest form. The atual data are represented as a vetor f∗, f(q) is a vetorof predited data.The onnetion between the data and the vetor �eld, i.e. funtion f , an have di�erentforms. If one wants to solve an image reognition problem, f(q) represents the distortedimage values at pixel loations, [95℄. It is the simplest appliation one an start with sineit does not inlude any aditional transformation or time.Complexity an be added by making f a funtion of a parameter �eld (for example, apressure response in a steady-state system to a permeability �eld). One step further is adata assimilation appliation where observations are olleted over time.5.1.3 Field AlignmentField alignment, [67℄, is a method developed for image deformation purposes. It an beused for image reognition, [95℄, or feature-based data assimilation.Let us have a disrete Cartesian grid (ξ, η), Figure 5.4. Eah grid node j has adisplaement vetor (all vetors are olumn vetors) q
j
with oordinates [q1j , q

2
j ]

T , j =

1, . . . , N . A olletion of the vetors for all the grid nodes j gives a disrete vetor �eld q:
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Figure 5.4: Cartesian grid (ξ, η) with displaement vetor q
j
= [q1j , q

2
j ]

T at node j.One wants to minimize an objetive funtion ontaining an observation mismath anda bakground mismath:
J(x(q)) =

1

2
(y − h(x(q)))TR−1(y − h(x(q))) +

1

2
(x(q)− xb)TB−1(x(q)− xb),where xb is a bakground image and B is a bakground error ovariane matrix. Themeasurements are denoted as the vetor y, x(q) is a distorted template (base ase) image,

h(x(q)) are predited measurements that depend impliitly on the distorting vetor �eld
q, R is a measurement error ovariane matrix of the zero-mean noise term ν suh that:

y = h(x(q)) + ν.In ase of an image reognition appliation, the observations y are the target imageand h is an identity. If the method is used for data assimilation in a physial proess thena dynami model needs to be inluded. In that ase h(x(q)) inludes a physial modelthat predits the values of observations.To regularize the vetor �eld q two quadrati penalty terms an be added to the ob-jetive funtion. The �rst one onstrains gradients of the vetor �eld, the seond oneits divergene. Constraining the gradients will not allow sharp jumps from one vetorto its diret neighbor. Minimizing divergene should ensure no exessive loal expan-sion/ontration of the image. The regularization terms are of the form, [67℄:
L(q) =
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]2.Here, w1 and w2 are weights, summation is done over all grid nodes indexed by j, tr isthe trae of a matrix, · denotes the inner produt, and
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represent the gradients and the divergene, respetively. Using �nite di�erene approxi-mation it is easy to derive a fully disrete version of these expressions that omes into theobjetive funtion as:
J(x(q)) =

1

2
(y−h(x(q)))TR−1(y−h(x(q)))+

1

2
(x(q)−xb)TB−1(x(q)−xb)+L(q). (5.1)Equation (5.1) an be solved through a so-alled two-step method, [67℄, by omputinggradients of J with respet to q and x(q) and setting them equal to zero. The �rststep of the method aligns features by deforming the grid. The seond step introdues anamplitude adjustment, in other words a pixel-based update on the aligned �eld.Even though the two-step approah an be implemented as an ensemble sheme inhistory mathing, it needs a model derivative if used with a physial simulationmodel, [67℄.This ould be a major obstale to implementing the �eld alignment method. Therefore,gradient-free approahes are hosen for the implementation of the grid distortion method.5.1.4 Ensemble sequential data assimilation and diret searhA sequential data assimilation sheme and a pattern searh method are applied in thiswork due to a relatively simple implementation proess that does not require a derivativespei�ation. This setion desribes the problem formulation, the ensemble sequentialapproah and the pattern searh.Most data assimilation formulations are based on a state-spae approah. Let xk bea state vetor of dynami variables. Then:





xk+1 = fk→k+1(m,xk) + εk+1,

yk+1 = h(xk+1) + νk+1,

(5.2)where subsript k indiates disrete time, fk→k+1 is a model for time-evolution that de-pends on the stati parameters m, and ε is a model error term. Initial ondition x0 and aset of initial parameters are given, yk indiates the measurements, h is the measurementoperator that ould depend on time, and ν is a zero mean normally distributed randomvariable representing noise with error ovariane matrix R.Let the state vetor ontain dynami variables and/or stati model parameters. As-sume that the model error an be ignored, that is, εk+1 = 0 for all k, and that oneis interested in estimating the stati variables m only. Then the state-spae approahmodi�es to: 



mk+1 = Imk,

yk+1 = h(fk→k+1(mk,xk)) + νk+1.

(5.3)If the stati variable an be represented by a smaller set of parameters α, m = m(α),then: 



αk+1 = Iαk,

yk+1 = h(fk→k+1(m(αk),xk)) + νk+1.

(5.4)Here, I is an identity matrix that indiates that the state is onstant in time, and
h(fk→k+1(m(αk),xk)) denotes a series of operations: �rst the model stati variables are67



omputed from a given parameter set, then the model fk→k+1 propagates the dynamivariables in time, and �nally h extrats the observations. Formulation (5.4) will furtherbe applied in our study.The main idea behind the ensemble Kalman �lter is to represent a probability distribu-tion of state variables by an ensemble. The ensemble is a olletion of possible realizations(repliates) of the variables in the data assimilation proess and is used to ompute a sam-ple (ross-)ovariane matrix. Sequentially, �rst the proess is integrated in time, then,the data are assimilated, and updated repliates are forwarded in time again. Variousensemble Kalman �lter �avors an be found in the literature, [1℄, [20℄. The ensemblesquare root �lter (EnSRF) implementation, [18℄, [70℄, is used due to its omputationale�ieny. In the urrent setup the EnSRF beomes a parameters estimator sine all thedynami variables have been exluded from the state vetor.For omparison, a pattern searh (Latin Hyperube Sampling) tehnique is imple-mented (see Matlab doumentation) that is espeially suitable for estimating a smallnumber of variables. It is not based on loal gradient hanges (hene the straightforwardimplementation) but usually requires a onsiderable time to �nd a minimum.5.1.5 Grid distortionThe notion of a grid is ubiquitous in mathematis and engineering. Any equation used formodeling must �rst be disretized on a numerial grid. In more advaned reservoir simu-lators �ow equations an be solved on various types of grids: Cartesian, unstrutured, et.A grid an also be deformed to �t a given shape, like in [80℄ where the goal is to generatea smooth 'orthogonal' grid for engine ombustion hamber simulation (Figure 5.5).
Figure 5.5: Fitting a grid to a shape of an engine ombustion hamber, [80℄.Similarly, in reservoir engineering appliations, [76℄, a grid an be adjusted to �t thetop and bottom reservoir horizons, or speify the position of a fault, [75℄.Looking at a digital image, we atually look at a set of pixels. This set of pixels anbe seen as embedded in (held by) a grid and the image ould be deformed by perturbingthe grid. Figure 5.6 shows an example of a simple image deformation by hanges in thegrid. Figure 5.6(a) is an image to be deformed (whih will be referred to as a base ase).Figure 5.6(b) is a deformed grid. Figure 5.6() is a deformed grid with the deformed imageon top of it. Finally, Figure 5.6(d) represents the deformed image mapped bak ontothe original Cartesian grid. This baktransformation is neessary beause our simulatorrequires a Cartesian grid. The base ase is an image generally representing one of thefeatures that is expeted to be seen in the feature �eld. To allow independent feature68



 

 

(a) Image to be deformed. (b) Distorted grid.

() Distorted grid with deformed image.  

 

(d) Deformed image mapped bakonto the original undistorted Cartesiangrid.Figure 5.6: An image deformed by a grid.
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distortion, eah shape has one base ase representing it. The base ases are not subjetto estimation proedures and are set onstant beforehand.The aim of the deformation is to translate the grid smoothly to assure a seamlesstransition of features. The grid then behaves like an elasti net, and deformations do notorrupt the shapes. Below, the grid distortion method is desribed in detail. First, themotivation and the relevant equations are presented. Then, grid distortion in the ontextof data assimilation is desribed.MotivationGrid generation is a well researhed area, [82℄, where the task is to automatially generateurvilinear grids for solving di�erential equations on variously shaped domains and withspei�ed boundary requirements, for whih it is advantageous to have orthogonal smoothgrids. First, we present several grid generation equations in inreasing order of omplexity,and then we ompare the grid distortion method to the �eld alignment method.Let us onsider two-dimensional grids where ξ and η are Cartesian oordinates, and
X and Y are urvilinear oordinates. The same type of reasoning would apply to athree-dimensional grid. In 2D Laplae's equations are:

∆X =
∂2X
∂ξ2

+
∂2X
∂η2

= 0,

∆Y =
∂2Y
∂ξ2

+
∂2Y
∂η2

= 0,where boundary onditions are given and the equation solves for smooth grid oordinatelines that beome orthogonal away from the boundaries. The boundary onditions an beDirihlet (in whih ase the lines are �xed at the boundary and their angle an vary) orNeumann (in whih ase the lines move along the boundary and have a spei�ed angle).The boundary onditions an also be mixed, but it is not possible to speify both theloation and the angle.Poisson's equation,
∆X = P,

∆Y = Q,is used to ontrol the oordinate line spaing through the ontrol (or distortion) funtions
P and Q, with the same rules for the boundary onditions. In [81℄ P and Q are, for exam-ple, spei�ed in the form of exponentials to reate points of attration in the urvilinearor Cartesian oordinates. There, it is also noted that a modi�ation to Poisson's equationan be used in the form of a general di�usion equation:

∇ · (K ∇X ) = 0,

∇ · (K ∇Y) = 0,where K is responsible for ontrolling the oordinates. The equations give:
∆X = − 1

K (∇K · ∇X ), (5.5)70



∆Y = − 1

K (∇K · ∇Y),that is
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)
.The right hand side is determined by K, the slopes of K and the slopes of the oordinates.In [80℄ a ovariant Laplae operator was proposed:
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= 0,where K is given and depends on the magnitudes of the slopes of X and Y . The equationsan be rewritten as:
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.Here, the left hand side of the equations is not the Laplaian. It might be more di�ultto implement but is ertainly an interesting alternative to onsider.We want to show how the grid generation methodology is similar to �eld alignmentin image proessing. Note that X = ξ + q1[j], where q1[j] are x-oordinates of a distortingvetor �eld q as de�ned for the �eld alignment method in the previous setion (q2[j] willdenote y-oordinates). This gives ∂2X

∂ξ2
=

∂2q1
[j]

∂ξ2
, ∂2X

∂η2
=

∂2q1
[j]

∂η2
and therefore ∆X = ∆q1[j].Note, however, that the boundary onditions for these problems di�er. We will show howa Poisson's-type equation arises naturally in the �eld alignment ontext as desribed in[67℄. Reall the objetive funtion from Equation (5.1):

J(x(q)) =
1

2
(y− h(x(q)))TR−1(y − h(x(q))) + L(q),where the bakground mismath term is ignored. Let the funtion L(q) be rewritten as:
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where we take w1 = 1 and w2 = 0 for simpliity. This gives
J(x(q)) =

1
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.Letting the derivatives of the objetive funtion be equal to zero leads to:
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)
omprise the gradient ∇x of x, and �nally we get:

∆q = (∇x)T
(
∂h

∂x

)T

R−1(y− h(x(q))). (5.6)Equations (5.5) and (5.6) are not Poisson's equations sine their right-hand sidesdepend on the unknown variable. Nevertheless, in [67℄ it is shown that Equation (5.6)an be solved iteratively as Poisson's equation holding the right-hand side �xed to thevalue from the previous iteration.We want to simplify the solution proess and aim to �nd a right-hand side of Poisson'sequation in a form that is easy to parameterize.Grid distortion equationsLet again X and Y be urvilinear oordinates, and ξ and η Cartesian oordinates. Thena distorted grid is a solution for X and Y to the equations
∂2X
∂ξ2

+
∂2X
∂η2

= P, (5.7)
∂2Y
∂ξ2

+
∂2Y
∂η2

= Q. (5.8)72



Funtions P and Q on the right hand sides of the equations are alled distortion fun-tions (ontrol funtions) and they drive the oordinate transformation. They representthe type of smooth deformation one wants to ahieve through the oordinate transforma-tion. The distortion funtions are parameterized to redue the number of variables to beestimated.If Equations (5.7) and (5.8) are disretized on a regular Cartesian grid, distortion fun-tions beome distortion matries (referred to as P and Q). The seond order derivativesare approximated by
∂2X
∂ξ2

=
X (i+ τ, j)− 2X (i, j) + X (i− τ, j)

τ 2
,where τ = 1 sine integer grid oordinates are used and (i, j) travels through all the gridnodes. The other terms in (5.7) and (5.8) are disretized in a similar fashion.Consider an image of size (Nη + 1)× (Nξ + 1) pixels in η- and ξ-axis diretion, respe-tively. There are (Nη + 2)× (Nξ + 2) grid nodes in the grid representing the given image.Let us assume that the grid at its boundaries is �xed and that one needs to �nd theurvilinear oordinates of the remaining Nη ×Nξ nodes. Equation (5.7) an be expressedin the form:

AX = bx, (5.9)where X ∈ R
(Nη ·Nξ)×1 is the unknown olumn vetor of urvilinear oordinates X . Theorigin is hosen at the lower left orner of the node domain. The �xed boundary valuesare: zeros at the left edge, Nξ + 1 at the right edge, while at the top and bottom thevalues inrease from left to right from zero to Nξ + 1 with inrement one. Let us de�ne amatrix Bx that aounts for the boundary ondition:

Bx =




1 2 · · · Nξ − 1 2Nξ + 1

0 0 · · · 0 Nξ + 1... ... ... ... ...
0 0 · · · 0 Nξ + 1

1 2 · · · Nξ − 1 2Nξ + 1




.

Matrix Bx is of the same size as the distortion matrix P: Nη × Nξ. Let us de�ne Pand Bx to be olumn vetors of size (Nη · Nξ) × 1 reshaped from matries P and Bx,respetively. During the disretization the �xed boundary values are moved to the right-hand side of the equation where one gets bx = P−Bx. At the left-hand side A is a sparse
(Nη ·Nξ)× (Nη ·Nξ) pentadiagonal �nite-di�erene matrix.For Equation (5.8) the only di�erene is the boundary ondition. We want to solve

AY = by. (5.10)Let Q be a olumn vetor reshaped from the distortion matrix Q. Let By be a olumnvetor reshaped from Nη ×Nξ matrix: 73



By =




2Nη + 1 Nη + 1 · · · Nη + 1 2Nη + 1

Nη − 1 0 · · · 0 Nη − 1... ... · · · ... ...
2 0 · · · 0 2

1 0 · · · 0 1




.

Then by = Q−By.Grid Distortion in Data AssimilationThe ensemble Kalman �lter is diretly appliable to reservoir engineering problems inthe form of Equations (5.3). Typially, the ensemble of states ontains unertain stativariables like permeability. Eah ell value in the permeability �eld an be estimated inthe data assimilation proess (here referred to as pixel-based estimation). Unfortunately,in reservoir engineering appliations there are few data available. There might be onlyseveral measurements available to estimate hundreds or thousands of state values, whihmakes the problem severely ill-posed.Additionally, Kalman �lters onsider only �rst and seond moments of the given distri-bution. This results in smooth estimates that might not always be desirable. One mightwant to aount for spei� features introdued in the initial permeability ensemble whihthe �lter loses during the history math. Both problems (ill-posedness and not-preservedinitial information) are approahed by the feature-based methods.Let us explain how grid distortion �ts into the sequential ensemble data assimilationframework. The state vetor in Equation (5.4) ontains the distortion parameters. Un-ertainty is assumed in the initial estimate of the distortion parameters only. Operator
m(α) represents a sequene of operations that reate a permeability �eld from the distor-tion parameters. To ompute predited measurements, several steps are required. First,the distortion parameters (α) need to be onverted to distortion matries P and Q. Theequations are solved for urvilinear oordinates, base ases are distorted and mapped bakto a Cartesian grid. The margins from grid embedding need to be ut o� and the resultsfrom di�erent base ases need to be merged. The resulting images of permeability are theinput for the reservoir simulator f . Operator h extrats the measurement preditions forthe next update time step. The measurements are ontaminated with noise. The distor-tion parameters are updated every measurement time step to reate an updated ensembleof hannel �elds. The base ases do not hange throughout the whole proess.To generate an ensemble of possible permeability realizations, the grid distortion withrandomly generated oe�ients is repeatedly applied to the base ases. Figure 5.7 repre-sents the repliate generation proess for one base ase. On top is the base ase whih,together with the distortion parameters, reates realizations of �elds with a horizontalhannel.
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Figure 5.7: Generation of repliates with the grid distortion method.The full sequential data assimilation algorithm is desribed below.Algorithm 1 - Sequential ensemble data assimilation for parameterestimation in grid distortion
• Initialize - load measurements, initial distortion parameters α for all en-semble members, and Nf base ases.Repeat for the total number of measurement times, for all ensemble members:1. reate distortion matries P(α), Q(α),2. solve Equations (5.9) and (5.10) for X and Y for eah of the Nf base ases,3. distort the base ases with omputed distorted grids,4. map distorted images to Cartesian grid,5. ut o� the margins from embedding,6. merge the results from di�erent base ases,7. simulate the forward reservoir model with the new permeability �elds andget predited data at the next measurement time, Equation (5.4),8. assimilate data to the parameters (using, for example, EnSRF).Additionally to pixel- and feature-based sequential data assimilation, a pattern searhmethod was implemented. Pattern searh requires a de�nition of an objetive funtionand an initial ondition. The objetive funtion is a weighted measurement mismathover the whole time interval, the initial ondition is zero for all the parameters. The base75



ase is idential to the one used in the sequential method. The pattern searh sheme ispresented below. Note that points 1-6 are idential with Algorithm 1.Algorithm 2 - Pattern searh for grid distortion
• Initialize - load measurements, initial distortion parameters α and Nf baseases.Repeat until stopping riteria have been met:1. reate distortion matries P(α), Q(α),2. solve Equations (5.9) and (5.10) for X and Y for eah of the Nf base ases,3. distort the base ases with omputed distorted grids,4. map distorted images to Cartesian grid,5. ut o� the margins from embedding,6. merge the results from di�erent base ases,7. simulate the forward reservoir model with the new permeability �eld andget predited data at all measurement times, Equation (5.4),8. ompute the objetive funtion value.Pattern searh has been applied only for the grid distortion parametrization sineit annot handle as many variables as there are in the pixel domain. Therefore, it ispresented in the grid distortion result setion.5.1.6 Twin ExperimentThe setion is organized as follows. First, the study ase is desribed. Then, the data as-similation results are presented in two subsetions following �rst the pixel-based approahand then the feature-based approah.As an example we onsider a domain with Nf features. Then, the grid distortion needsto be able to handle Nf separate harateristis. Eah feature is distorted by Poisson'sequations with its own set of distortion funtions P and Q. From the image proessingand grid generation literature we onlude that we an onstrut (and parameterize)the distortion funtions suh that they re�et the type of deformation of the underlyingfeatures. We want the deformation to be global and smooth sine small loal hangesmight be insigni�ant for the given type of data. We hoose eah distortion funtion, Pand Q in Equations (5.7) and (5.8), to be an independent paraboloid a(ξ − c)2 + b(η − d)2,where ξ and η are Cartesian oordinates, a and b are independent normally distributedparameters with zero mean and standard deviation 6 · 10−5, and c and d (deviationsfrom the enter of the domain) are independent normally distributed with zero meanand standard deviation 10. Higher standard deviations for the parameters led to shapesbeing removed from the domain. We want to mention here that the searh interval in thepattern searh method for the distortion parameters is set to [−33 · 10−5, 33 · 10−5] for76
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Figure 5.8: Grid embedding provides �exibility at the boundaries of the original grid domain.
a's and b's, and [−33, 33] for c's and d's. The intervals are wider than twie the standarddeviation that was used to generate the repliates in the initial ensemble.Paraboloids are simple enough to re�et only urving and smooth bending whihshould be able to �t the position of the feature. We an think of it as a loal shape�tting problem, a part of a larger domain. For larger domains more elaborate distortionfuntions should be used, for example higher order polynomials or spline interpolation.The initial grid is embedded in a larger grid (outer grid) with a given margin equalto Nm pixels in eah diretion, Figure 5.8. This outer grid is �xed at its boundaries.It provides �exibility at the edges of the original grid and does not introdue any moreparameters (the margin width is �xed).Sine there are Nf features (e.g., hannels) to be estimated, eah one of them ismodeled separately. That is, there are Nf base ases, eah assigned to model one of thehannels with a separate set of parameters. That gives in total only 8 · Nf parametersoming from the distortion funtions that are estimated in the data assimilation proessin Equation (5.4).The realizations of eah of the Nf features are merged before being used as input to areservoir simulator. That is, the shapes are gathered in one domain and given an arbitraryinside value, while the bakground value is also presribed; note that overlapping featuresdo not add up their values.Data assimilation for physial proesses always requires a model/simulator of the un-derlying phenomenon. An in-house reservoir simulator, [37℄, is used for the results in thissetion. It is based on mass balane equations and a two-phase version of Dary's law forslightly ompressible two-phase (oil-water) �ow, negleting gravity and apillary pressuree�ets. The bakground of reservoir simulation an be found in, e.g., [63℄, [5℄.An oil saturated 2D reservoir is water�ooded and produed for 24 months, waterbreakthrough ours later. The wells operate on a �xed rate (0.001 m3/s for all wells).Porosity is assumed known, onstant and equal to 0.3. All the other reservoir and �uidproperties an be found in Table 5.1.The domain size is 49 × 49 pixels. Bottom hole pressure in Pa is measured in thesix wells displayed in Figure 5.9, where the true permeability is shown. Low log10-permeability (blak) is equal to −13.5 and high is equal to −12.06 m2. The truth wasgenerated with the help of the snesim algorithm, [79℄. The six measurement points inspae provide data every month for two years. The noise standard deviation is assumed to77



Variable Value SI unitsGridblok height 2 mGridblok length/width 1500/49 mOil dynami visosity 0.5 · 10−3 Pa · sWater dynami visosity 1.0 · 10−3 Pa · sOil ompressibility 1.0 · 10−9 Pa−1Rok ompressibility 1.0 · 10−9 Pa−1Water ompressibility 1.0 · 10−9 Pa−1Initial reservoir pressure 3 · 107 PaEndpoint relative 0.9 −permeability of oilEndpoint relative 0.6 −permeability of waterCorey exponent, oil 2.0 −Corey exponent, water 2.0 −Residual oil saturation 0.2 −Connate water saturation 0.2 −Porosity 0.3 −Well bore radius 4.5 · 0.0254 mfor all wellsTable 5.1: Reservoir and �uid properties for the twin experiment.
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be 7 · 106 Pa. The ensemble ontains ne = 50 repliates. Their prior mean and �rst nineprior repliates are shown in Figures 5.10 and 5.11, respetively. The prior ensemble wasgenerated with the grid distortion method and is used in both pixel- and feature-basedsequential methods.
truth

Figure 5.9: The true permeability �eld. Three injetors at the left-hand side boundary, threeproduers at the right-hand side boundary.Eah prior repliate is simulated in time without data assimilation. Bottom holepressures are olleted at observation times from eah well. Figure 5.12 ontains six plots,eah representing one well. The left olumn is for the injetors, and the right olumn isfor the produers. Simulated pressure observations from 50 repliates (blue dashed lines)are plotted against the true measurements (red ontinuous line).Figure 5.13 displays prior water-prodution (in [m3/s℄) preditions for eah of the 50ensemble members. Colors indiate di�erent produers. The thik dashed line is the truewater-prodution in eah of the three produers. The �rst water breakthrough ours afterthe last assimilation time (24 months indiated on the graph with a vertial dashed line).A root mean square (rms) error of the water breakthrough time (expressed in months)is omputed for eah well:
Erms =

√√√√ 1

ne

ne∑

i=1

(twb,t − twb,i)2,where twb,t and twb,i are true water breakthrough time and simulated water breakthroughtime [month] of repliate i, respetively. Eah water-prodution plot indiates orrespond-ing root mean square errors of the water breakthrough times of the underlying ensemble.If water breakthrough did not our until month 70, the water breakthrough time is takento be equal to 70.
prior mean

 

 

Figure 5.10: Prior permeability mean.79



prior ensemble

Figure 5.11: First 9 prior permeability repliates.
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Figure 5.12: Prior ensemble. Bottom hole pressure from six wells; left olumn: injetors; rightolumn: produers. Red ontinuous line - true bottom hole pressure. Blue dashed lines - priorensemble bottom hole pressure foreast. 80
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Figure 5.13: Water-prodution [m3/s℄ in three wells for the prior ensemble. Thik dashed: truth.Thin solid: ensemble. Vertial line: last assimilation time. Erms(red) = 32.8, Erms(green) =9.86, Erms(blue) = 14.34.
permeability(50), RMSE = 0.79534

 

 

Figure 5.14: Pixel-based posterior mean.Pixel-based approahThe pixel-based approah is the ensemble square root �lter, [18℄, applied diretly to pixelvalues of permeability. It is assumed that the permeability is the only unertain parameter,that is, the state vetor ontains permeability values only. Variable transformation [24℄is applied to keep the values of permeability within reasonable bounds during Kalman�ltering.The posterior permeability mean and the �rst nine repliates are shown in Figures 5.14and 5.15, respetively. The posterior estimate learly shows the lowest hannel. The upperfeatures are more pronouned in the near-well area. This is due to the fat that the lowesthannel ontains the lowest produer and the water travels faster towards it, even thoughthe water breakthrough does not our in the assimilation time. The ontinuity of shapesis not kept in general.The posterior repliates are run from time 0, bottom hole pressure is olleted atobservation times and plotted against the true observations, see Figure 5.16, whih shouldbe ompared to the prior runs in Figure 5.12. The unertainty of the estimates is visiblydereased.Figure 5.17 displays water-prodution for the posterior pixel-based ensemble. The�lter estimated the �rst water breakthrough to our at least 8 months too late.81



Figure 5.15: Pixel-based posterior repliates.
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Figure 5.16: Pixel-based posterior estimate. Bottom hole pressure from six wells; left olumn:injetors; right olumn: produers. Red ontinuous line - true bottom hole pressure. Blue dashedlines - posterior ensemble bottom hole pressure foreast.82
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Figure 5.17: Water-prodution [m3/s℄ in three wells for the posterior pixel-based ensemble. Thikdashed: truth. Thin solid: ensemble. Vertial line: last assimilation time. Erms(red) = 26.35,
Erms(green) = 12.09, Erms(blue) = 7.57.

 

 

Figure 5.18: Base ase permeability �eld.Feature-based approahThe feature-based approah is the ensemble square root �lter applied to the distortionparameters. It is assumed that the parameters arry the only unertainty (and thereforeindiretly the permeability is unertain). It makes the state vetor to be of size 8 ·Nf =
8 · 3 = 24 (Nf = 3 there are three hannels and 8 parameters from the grid distortionfuntions).There are Nf = 3 base ases, eah one representing one hannel. The margin for gridembedding is equal to Nm = 10. The horizontal lines in the base ases are between therows: 9-13, 23-27, 37-41 in the original domain whih is 49 × 49 pixels. The whole basease template is 69 × 69 pixels. Figure 5.18 shows a realization with all the parametersequal to zero. It is the initialization for the pattern searh method.The posterior permeability estimates are shown in Figure 5.19 (permeability ensemblemean), Figure 5.20 (distortion parameter mean applied to the base ase), and Figure 5.21(repliates). The method always maintains ontinuity of the strutures from the left tothe right boundary of the domain. Figure 5.22 shows how the �rst repliate evolved intime along the sequential data assimilation proess.The posterior repliates are run from time 0 and the bottom hole pressure is olletedat observation times and plotted against the true observations, Figure 5.23. Figure 5.23should be ompared to the prior runs in Figure 5.12 and the pixel-based method inFigure 5.16. The posterior unertainty is dereased for both methods and for all the wells,83



permeability(50), RMSE = 0.63197

 

 

Figure 5.19: Feature-based posterior mean.
permeability − mean parameters

 

 

Figure 5.20: The mean of posterior param-eters applied to the base ase.

Figure 5.21: Feature-based posterior repliates.
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Figure 5.22: In reading order, the evolution of the �rst repliate in time along the sequentialdata assimilation proess, initial and 24 updated permeability states.
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Figure 5.23: Feature-based posterior estimate. Bottom hole pressure from six wells; left olumn:injetors; right olumn: produers. Red ontinuous line - true bottom hole pressure. Blue dashedlines - posterior ensemble bottom hole pressure foreast.but the pixel-based method better mathed the prodution data.Figure 5.24 shows the water-prodution for the posterior feature-based ensemble. Thewater breakthrough ontains the truth within the ensemble bounds and it does not seemover-on�dent about the estimate.Figure 5.25 shows the objetive funtion values for the 50 ensemble members. Priorlarge values (irles) an be ompared to the posterior pixel- and feature-based values.Here, the pixel-based posterior estimates (squares) are smaller in some ases than thefeature-based posterior estimates (stars). For example, posterior feature-based repliatesnumber 3 and 6 are the ones with larger objetive values. They are pitured in Figure 5.21row 1 olumn 3, and row 2 olumn 3, respetively. The large objetive value in the repliate3 is aused by the mismath in the lower right orner where the hannel does not reahthe produer; for repliate 6, the enter produer is in a high permeability area unlike inthe truth. In Figure 5.25 'ensemble member' number 51 represents the objetive funtionvalue of the mean. We an see the objetive funtion value for the prior mean fromFigure 5.10 (irle), the posterior pixel-based mean from Figure 5.14 (square) (whihis the smallest value in this plot), the posterior feature-based permeability mean fromFigure 5.19 (small star), and the posterior feature-based parameter mean from Figure 5.20(big star). The large value of the big star indiates how nonlinear the relationship isbetween the observations and the distortion parameters and how for severely nonlinearproblems a mean is not neessarily a good estimate. For pixel-based results the mean is agood estimate due to the larger number of degrees of freedom whih an give a better �t.This high nonlinearity makes the problem more appropriate for diret parameter searh86
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Figure 5.24: Water-prodution [m3/s℄ for the posterior feature-based ensemble. Thik dashed:true. Thin solid: ensemble. Vertial line: last assimilation time. Erms(red) = 12.93, Erms(green)= 9, Erms(blue) = 5.51.methods.The grid distortion parametrization ontains only a few parameters to be estimated.Additionally, sine the parameters are stati and they are the only soure of unertainty,the formulated problem is suitable for diret searh methods. For omparison, we showhow pattern searh works with grid distortion parametrization, Figure 5.26. The objetivefuntion goes down to 0.815 in the ase presented here. Pattern searh methods involveslight perturbations along the minimization proedure, therefore, the results might dif-fer for multiple runs. The objetive funtion values for the posterior realizations fromsequential data assimilation ensembles are of a similar magnitude.The hannels in the permeability �eld obtained by the pattern searh method with griddistortion, Figure 5.26, are not as smooth as expeted. The kinky edges of the shapesome from the fat that the grid is strongly strethed and the interpolation proedureprodues artefats. If we look at the three grids (one for eah feature) before interpolation,Figure 5.27, we an see that the transformation itself is smooth. There, the full grids withthe margin equal to 10 are shown, therefore, after interpolation and margin trimming, wereeive images from the enter of these grids. Preisely, the grid for x- and y-oordinatesfrom the interval [11, 60].The objetive funtion for the pattern searh method is a measurement mismath,therefore, the pressure data are almost perfetly �tted. The water prodution urves forthe estimated permeability �eld in Figure 5.26 are shown in Figure 5.28. The estimatedparameters indiate a late water breakthrough.Both tehniques, pixel- and feature-based, improved the bottom hole pressure mathin the wells. The �rst water breakthrough time was better estimated by the grid distortionmethod. The advantage of the feature-based method over the pixel-based method is thatthe hannels are preserved in the posterior permeability repliates. Moreover, they an beparameterized with just a few parameters whih makes the estimation problem feasiblefor alternative minimization tehniques.
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Figure 5.25: The values of the objetive funtion for prior and posterior permeability repliates.
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(a) Objetive funtion, pattern searh method for grid distortion.  

 

(b) Posterior permeability esti-mate with objetive value equal to0.815.Figure 5.26: Pattern searh method with grid distortion.
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Figure 5.28: Water-prodution [m3/s℄ in three wells for the posterior feature-based permeabilityestimated using diret searh, Figure 5.26. Thik dashed: truth. Thin solid: estimate. Vertialline: last observation time. Erms(red) = 8, Erms(green) = 5, Erms(blue) = 5.
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5.1.7 Disussion and ConlusionsIn this setion a new feature-based method based on grid warping is developed. It pa-rameterizes the unertain parameter �eld suh that the parameter vetor to be estimatedbeomes about 1% of its original size, and keeps the initially introdued features. Thegrid distortion method was applied to a 2D syntheti reservoir problem with ensembleKalman �ltering. The positions of three hannels present in the domain were estimatedand the water-prodution response was improved. The estimated hannels run ontinu-ously from one boundary of the domain to the other without breaks that our in thestandard approah. The variability between the posterior repliates is re�eted in thevariability in the bottom hole pressure and water-prodution pro�les.The implementation with the ensemble Kalman �lter is not essential. Due to thesigni�ant redution in the dimensionality of the problem, grid distortion an be ombinedwith a pattern searh minimization method.Poisson's equations in (5.7) and (5.8) are the basis of the distortion method. Theright-hand-side distortion funtions an be adjusted to the requirements of an appliation.Here, the domain is relatively small and it is su�ient to use paraboloids with onstrainedmagnitude that adjust the hannels globally. For larger, more ompliated domains,it might be worth onsidering higher order polynomials for the distortion funtions orloalization if only regional in�uene is expeted.The distortion funtions annot have too large values to prevent the domain from�ipping over. That was the reason to use small standard deviations of 6 · 10−5 for theparameters in the paraboloids. More rigorous rules for de�ning the funtions should bethe topi of follow-up researh that an still gain from insights in grid generation andimage proessing tehniques. Further, the method should be applied to di�erent types ofproblems to determine its strengths and faults. A 3D appliation is developed next.5.2 Grid distortion for a 3D groundwater �ow modelThis setion extends the grid distortion method to three dimensions. In Setion 5.2.1the 3D extension is presented. Thereafter, two appliations are shown. First, a 3Dgroundwater �ow model is used to test the onept. Thereafter, the grid distortion methodis used with a 3D multiphase reservoir simulator. In both ases, we hoose to use a patternsearh method, Setion 3.5, to estimate the grid distortion parameters.For an alternative method of feature estimation with the ensemble Kalman �lter in thegroundwater problem see [98℄. Here, the authors propose a method termed normal soreensemble Kalman �lter that transforms hannelized ondutivity �elds into univariateGaussian variables before the update step is performed. After updating the output isbaktransformed to the feature domain.5.2.1 The 3D grid distortion methodHere, we present the grid distortion method for a 3D problem. Analogially to Setion 5.1.5,let X , Y and Z be urvilinear 3D oordinates, and ξ, η and ζ Cartesian oordinates. Then,a distorted grid is a solution for X , Y and Z to Poisson's equations:91
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= R.Funtions P , Q and R on the right hand sides of the equations are distortion funtionsand they drive the oordinate transformation. They are parameterized to redue thenumber of variables to be estimated. The parametrization re�ets a belief in a typeof deformation that ould drive the hange of features in the domain. This allows themethod to be adjusted to di�erent types of appliations. The boundary onditions needto be given. The setup is analogous to the 2D version of the method. Therefore, theboundary is �xed at the Cartesian grid nodes and the domain is embedded in a largergrid with given margin to remove the boundary e�ets.5.2.2 3D groundwater �ow modelWe hoose to start the 3D grid distortion experiments with a 3D model that is easilyaessible and relatively simple ompared to omplex reservoir models. A 3D groundwater�ow model, [69℄, is presented here.Let a voxel be a 1 × 1 × 1 three-dimensional pixel. Consider a retangular uboidomposed of nx × ny × nz voxels (in x-, y- and z-axis diretion, respetively), where aondutivity value is presribed in eah voxel. If voxel v1 has ondutivity K1 and voxel
v2 has ondutivity K2, and v1 and v2 share a fae, then the ondutivity between thetwo voxels is equal to: K12 =

√
K1 ·K2. Let us all Kx, Ky and Kz a ondutivity in x-,y- and z-axis diretion, respetively. Then, the head h = h(x, y, z, t) at point (x, y, z) attime t an be expressed by the following equation:

∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂

∂z

(
Kz

∂h

∂z

)
= Ss

∂h

∂t
,where Ss is a spei� storage oe�ient.Boundary onditions have to be spei�ed for the domain. Figure 5.29 depits a uboidwith two indiated faes for whih high or low head is presribed. The other faes workunder no-�ow onditions.
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A soure/sink term Q representing a well (or wells) an be introdued:
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.Vertial wells pump and/or ollet data (in the ase of monitoring wells) from eah layer.The equation is disretized on a retangular grid and after disretization, Kx, Ky and

Kz are de�ned at the faes of voxels, and h is de�ned in the voxels. The equation is solvedexpliitly with entral and forward �nite di�erene shemes.The groundwater �ow model is a single-phase model and an be derived diretly fromEquation (2.5) with no gravity:
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,where we are interested only in the motion of water with no oil present, therefore, Sw = 1and krw = 1. The groundwater �ow equation arises naturally given the relationships:
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ρgφ(cw + cr) = Ss,where ρ is the water density, g is the gravity aeleration, and h∗ is a height above adatum.5.2.3 Experiment setupA list in Table 5.2 summarizes the experimental setup of the 3D groundwater model.Figure 5.30 shows the true head ontours mapped on the x-y plane at the last timestep. The vertial pumping well is loated in the enter of the domain and it is open to �owin all the 18 inner horizontal layers (top and bottom layers are no-�ow). There are eightmonitoring wells spread over the domain, irles in Figure 5.31, eah olleting head datafrom every inner horizontal layer at all the 500 time steps. There is no measurement noise.The data over time from all the wells is shown in Figure 5.32. Finally, the true ondutivityinner layers are shown in Figure 5.33. It was onstruted using the 3D grid distortionmethod with 18 parameters per shape (in total 18 · 2 in this ase) where the distortionfuntions are three dimensional seond order polynomials. The initial ondutivity (whihis also a base ase) is shown in Figure 5.34.
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• Domain size is 900× 900× 250 [m×m×m].
• Number of gridbloks is 30× 30× 20.
• Voxel size is 30× 30× 12.5 [m×m×m].
• Spei� storage oe�ient is 10−2.2 [m−1].
• Pumping rate per well opening is 2.1/302/12.5/18 [s−1].
• Bakground low ondutivity is 3.2 · 10−5 [m/s].
• Channel high ondutivity is 3 · 10−4 [m/s].
• Horizontal ondutivity is equal to 10% of vertial ondutivity,
Kz = 0.1 ·Kx.

• Head boundary ondition is equal to 200 and 100 at high head and lowhead end, respetively, see Figure 5.29.
• Initial head is a steady-state head for homogeneous ondutivity, hene thehead initial ondition is inonsistent with the underlying ondutivity.
• There are 500 time steps eah equal to 1 hour.Table 5.2: Variable setup for the groundwater problem.

Figure 5.30: The true head ontoursmapped on the x-y plane at the last timestep. Figure 5.31: The loation of the 8 moni-toring wells (irles). Contour lines are notrelevant.94
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Figure 5.32: Head observations over time from all the wells [m]. The stronger head delineobservations ome from the produer (towards the bottom of the plot). The observations withsmaller variability ome from the monitoring wells (towards the top of the plot).

95



(a) The layers in reading order starting from the bottom.

(b) The 3D view.Figure 5.33: The true ondutivity.
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(a) The layers in reading order starting from the bottom.

(b) The 3D view.Figure 5.34: The initial ondutivity. The base ase with zero distortion.
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5.2.4 Disussion and resultsCurrent hapter begins with Setion 5.1 where the 2D grid distortion method is intro-dued, developed and thoroughly investigated. An extension of the dimension in the 3Dmethod is simple, on the one hand, sine it does not introdue any ompliations in themethod itself, only an additional derivative term. On the other hand, in three-dimensionalspae the dependene between ells beomes more omplex and there are more degrees offreedom when seeking the solution. Therefore, even though we might be ertain that thegrid distortion is an e�etive method, we need to investigate if the additional dimensionis not making the stated problem too di�ult to solve.The 3D grid distortion method is applied to the 3D groundwater �ow model. The taskis to �nd the true ondutivity pattern that lies within the span of possible solutions giventhe head response in 9 wells, eight of whih are monitoring wells. A pattern searh method(Latin Hyperube Sampling, refer to Matlab doumentation) is implemented to �nd thegrid distortion parameters where a searh interval is de�ned to have radius equal to abouttwo around the true solution. The objetive funtion is a sum of squared measurementmismath terms.
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Figure 5.35: Objetive funtion deay in pattern searh method.Figure 5.35 presents the objetive funtion values whih go down to 23344 startingat 6 · 106. (Note that, sine there is no measurement noise, it would be possible for theobjetive funtion to reah 0.) The posterior ondutivity is shown in Figure 5.36. Theposition of the hannels is orret but it is not idential on a pixel-by-pixel basis. Thesesmall di�erenes in�uene the value of the objetive funtion. The pattern searh methodhas not been able to �nd the exat solution due to the nature of the searh algorithm butstill it has performed very well.We need to note that this result has been obtained with relatively narrow searhinterval. It omes from the fat that Latin hyperube sampling aims at drawing almostuniformly distributed points in the searh interval. Sine the true solution was randomlysampled from a Gaussian zero-mean distribution with small variane, we expet to seerather zero onentrated small numbers, and we allow the searh algorithm to be able to98



(a) The layers in reading order starting from the bottom.

(b) The 3D view.Figure 5.36: The posterior ondutivity estimate.
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�nd similar solutions. Therefore, even though the true solution is in the searh spae andthe problem seems to be easily solvable, it might not be possible to �nd the exat answer.Either way, the performane of the method is exellent. In the next appliation we willstudy a more realisti ase where the true solution is not in the searh spae.
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5.3 Grid distortion for a 3D reservoir modelThis setion presents the researh �ndings on the 3D grid distortion method implementedin a 3D 2-phase reservoir simulator. We use 3D blak oil simulator for water �ooding.Given the true permeability �eld, modeled with 480m × 480m × 28m, 60 × 60 × 7 gridbloks where the layers are shown from the bottom in reading order in Figure 5.37, wesimulate1 observations of bottom hole pressure, liquid rate, oil rate and water rate fortwo hundred time steps of one day eah. A 3D view with ative ells, and well loationsis shown in Figure 5.38, the low permeability value is 300 mD, and high 6100 mD inthe horizontal, and ten times less in the vertial diretion. Table 5.3 summarizes otherreservoir and �uid properties of this experiment.

Figure 5.37: The true permeability layers.We hoose the objetive funtion to be a sum of squared di�erenes between theobserved and predited data. One evaluation of the objetive funtion given the griddistortion parameters takes a few minutes (3-6 minutes) and its most time-onsumingpart is the onstrution of the permeability �eld. It is due to the fat that for onepermeability �eld to be built we need to solve Poisson's equation for eah dimension andfeature. The grid distortion uses four base ases, eah one with one horizontal hannel,trying to follow our expetations with respet to the true shapes. This gives 3 · 4 = 12Poisson's equations for large domains. Even though the grid is 60 × 60 × 7, a margin isadded for the �exibility at the permeability boundaries. The margin is equal to 7 whihgives �elds of size 74 × 74 × 21 to be solved for in Poisson's equation, whih might beonsidered omputationally intense.To show that the model is sensitive to small permeability hanges we run it with thetrue permeability where the two bottom layers have been made uniformly low permeable,Figure 5.39. In this ase the objetive funtion value equals to 4.33 ·106. It indiates that1Thanks to G. van Essen, M. Kaleta and M. Glegola.101



Variable Value SI unitsGridblok height 4 mGridblok length/width 8 mOil dynami visosity 5 · 10−3 Pa · sWater dynami visosity 1 · 10−3 Pa · sOil ompressibility 1.0 · 10−10 Pa−1Rok ompressibility 0 Pa−1Water ompressibility 1.0 · 10−10 Pa−1Initial reservoir pressure 4 · 107 PaEndpoint relative 0.9 −permeability of oilEndpoint relative 0.75 −permeability of waterCorey exponent, oil 1 −Corey exponent, water 1 −Residual oil saturation 0.1 −Connate water saturation 0.1 −Porosity 0.2 −Table 5.3: Reservoir and �uid properties for the 3D experiment.
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Figure 5.38: The true permeability in 3D with indiated wells.values of the objetive funtion with a similar magnitude should not be onsidered verylarge.We want eah of the four base ases represent one horizontal hannel wider at the topand narrower towards the bottom. Let eah distortion funtion be a onstant. This way,we estimate 3 parameters (one for eah X -, Y- and Z-oordinate) for eah of the 4 baseases, that gives only 12 parameters in total. The problem is simple and the questionis if the parametrization is su�ient for the level of omplexity of the permeability �eld.The initial guess for the parameter values is 0 and Figure 5.40 shows the orrespondinginitial permeability �eld with the objetive funtion value 1.037 ·1010. We run the patternsearh method, Setion 3.5, with searh interval [−5, 5]. The algorithm terminates due toa small mesh size and inability to proeed. The objetive funtion is shown in Figure 5.41and a orresponding posterior estimate in Figure 5.42. Clearly, the algorithm does notseem very e�etive.
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4.33e6Figure 5.39: True permeability with uniform two bottom layers giving the objetive value of
4.33 · 106. Compare to Figure 5.37.

1.037e10Figure 5.40: The base ase permeability and initial guess giving the objetive value of 1.037·1010 .
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Figure 5.41: Pattern searh method objetive funtion with simple onstant distortion funtions.

1.6e9Figure 5.42: Pattern searh method �nal estimate from the objetive in Figure 5.41 with value
1.6 · 109 with simple onstant distortion funtions.
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Now we modify the distortion funtions slightly to allow more feature deformation. Wehoose 9 parameters per oordinate diretion, that is a total of 27 parameters that ontrolone single feature. This gives 108 (four hannels give 27·4) parameters fully desribing the3D permeability �eld, ompared to 25200 total number of all grid ells. The 9 parametersmake up a right-hand-side distortion funtion; they are assigned to vertial panels of the3D domain. We want to estimate the 108 grid distortion parameters through diret searhspeifying the feasible interval for parameter values to be [−1
2
, 1
2
]. The initial guess forthe parameter values is 0. Figure 5.43 shows the pattern searh objetive funtion, andFigure 5.44 is the result of the �nal iteration with value 9.359 · 107. The searh took aboutseven days2 but ould have been stopped earlier sine the last iterations did not improvethe objetive value any more. The posterior permeability estimate ontains the hannelstruture that bends in a similar way as the true features due to the distortion funtionparametrization. The hannel loations are not found exatly but it seems the algorithmdistinguishes the north and south part of the struture and some well onnetions arerestored, lowering the objetive funtion value.

2The experiments have been run on a single desktop workstation with 3200MHz proessor and 24GBRAM. 106
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Figure 5.43: Pattern searh method objetive funtion with more omplex distortion funtions.

9.359e7Figure 5.44: Pattern searh method �nal estimate from the objetive in Figure 5.43 with value
9.359 · 107.
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5.3.1 Disussion and onlusionsWe ompare the results from two experiments, one with the simplest possible distortionfuntion forms, and the other with slightly more omplex representation. We see thatthe former does not allow signi�ant hannel distortion and gives not satisfatory results.The latter distortion funtion representations allow multiply-bending hannels. Theseprove to be more e�etive and take the objetive funtion values down to a small number.Even though the hannels seem to have a wrong orientation, they reate a relatively goodpermeability �eld as far as the objetive funtion is onerned.The grid distortion performs well with images that represent faies of a homogeneousnature sine it has not yet been developed to a point where it ould represent hetero-geneous �elds. Some knowledge about the shape harateristis appears to be useful forspei�ation of the distortion funtions. The distortion funtions and the base ases fullydesribe the domain, they need to allow a onstrution of geologial features we look for.Due to a time onsuming grid distortion proedure for the large 3D ases, it is noteasy to implement the lassial ensemble Kalman �lter algorithm in these large examples.It takes around 3 minutes to reate one permeability �eld in the grid distortion methodand run it forward in the large reservoir model. Assuming 100 possible ensemble membersand 200 time steps, the time to run the full experiment is 3 · 100 · 200min = 1000h ≈
41.7days. Clearly, in the urrent omputational onditions it is not a feasible methodology.An alternative ould be the asynhronous ensemble Kalman �lter, [71℄, or the ensemblesmoother, [78℄, or the possibility to implement the ensemble omputation in parallel.
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Chapter 6Conlusions and reommendationsThis thesis ombined researh in image proessing, data assimilation and reservoir engi-neering. Two di�erent image proessing studies led to two main diretions in this thesis,both embedded in parameter estimation for reservoir engineering appliations, both stillworth exploring further. The leading topi was feature-based modeling, whih is partiu-larly suited for �elds that show leading patterns and shapes.First, an ensemble multisale �lter was investigated. The ensemble multisale �lter isan update tool that partitions the domain and assigns it to leaf nodes of a tree. The treerepresents the onnetions and expeted dependenies between the parts of the domain.The upper sales are built from the strongest relationships between the hildren nodes.This upsaling (pyramid) is ommon in image proessing tehniques. It was shown thatthe tree struture used in the ovariane representation is an e�ient loalization tool.We investigated several numbering shemes, i.e. proedures of assigning the variablesto the tree nodes. It revealed that the order with whih the assignment is performed isan important fator for ovariane representation. Moreover, it an aount for strongerorrelations along features whih means that the strutural information an be embeddedin the �lter.Still, it would be bene�ial to test EnMSF in a larger appliation with more variablesand/or measurements. The tree assignment ould be made automati, based for exampleon the features in the �eld. Then, the subtrees ould diretly re�et separate features thatwould be onneted higher up the tree. Additionally, the numbering inside the featuresould be made in lusters.Seond, the grid distortion method for reservoir history mathing was developed inthis thesis. We were looking for a tehnique that would smoothly distort some presribedfeatures without breaking them. It is an important issue in reservoir engineering historymathing where there is usually few data available and many variables to estimate, whihreates many degrees of freedom. Therefore, we wanted our tehnique to parameterize thefeature �eld with very few parameters. We hose to work with the mesh instead of the pixelvalues diretly, and used Poisson's equation for grid deformation. The parametrizationof distortion funtions in Poisson's equations provided an indiret parametrization of thepermeability �elds. These parameters were estimated by optimization algorithms. Weshowed that grid distortion e�iently de�nes the domain with just a few parameters.The shapes are preserved along the optimization, and their deformation is global ratherthan pixel based. This small number of parameters made the grid distortion suitable109



for parameter estimation methods based on the objetive funtion minimization. In ourappliations the drawbak of having a small number of parameters from grid distortion isthe severe nonlinearity that is reated between the parameters and observations.The grid distortion method ould be enrihed with an additional amplitude adjust-ment proedure possibly allowing heterogeneous �elds. Other partial di�erential equationsould be used in plae of Poisson's equation investigated in this thesis. For even larger�elds, the grid distortion method ould be used loally to perform smooth small-salehanges. Other feature types and distortion funtion representations ould be imple-mented. On top of the parametrization, various optimization tehniques an be tested.To ombine the two ideas from this thesis, EnMSF update ould be applied as anamplitude adjustment method along features spei�ed in grid distortion. This fousedupdate inside the feature driven �elds would make the methods bene�t from eah other.
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SummaryA reservoir simulator mimis the movement of �uids in the presene of eah other througha porous medium under some spei�ed onditions (e.g. temperature, depth, initial pres-sure or initial saturation). It is a numerial model of a real-life physial proess, therefore,subjet to unertainty. Some unertainties an be lowered by improving model-parameterestimates. This is where data assimilation plays an important role. Automated data as-similation, using sophistiated tehniques, is a widely researhed topi in today's appliedsiene.We investigated two researh topis in data assimilation that are losely onneted tothe area of image proessing. Images are an integral part of reservoir engineering appli-ation in the form of property or variable �elds. Reservoir engineering, image proessingand data assimilation are the leading themes of this thesis.First, we applied an ensemble multisale �lter as a permeability estimator forone update step and later as a full data assimilation experiment. We summa-rized by investigating properties of di�erent ovariane matrix approximationsobtained from the ensemble multisale �lter. We onluded that the �lter anbe an e�ient loalizing tool espeially for spatially large observations.The ensemble Kalman �lter is a sequential Monte-Carlo approah that uses an ensem-ble of reservoir models. For realisti large sale appliations the ensemble size needs tobe kept small due to omputational ine�ieny. Consequently, the error spae is not wellovered (poor ross-orrelation matrix approximations) and the updated parameter �eldbeomes sattered and loses important geologial features. The prior geologial knowledgepresent at the initial time is not found in the �nal updated parameter any more.We propose a new approah to overome some of the ensemble Kalman �lter limita-tions. We show the spei�ations and results of the ensemble multisale �lter for auto-mati history mathing. The ensemble multisale �lter replaes, at eah update time, theprior foreasted ovariane with a multisale tree. The global dependene is preserved viathe parent-hild relation in the tree. After onstruting the tree the Kalman update isperformed.The ensemble multisale �lter is a di�erent way to represent the ovariane of anensemble. The omputations are done on a tree struture and are based on an ensembleof possible realizations of the states and/or parameters of interest. The original ensembleis partitioned between the nodes of the �nest sale in the tree. A onstrution of the treeis led by the eigenvalue deomposition. Then, the state ombinations with the greatestorresponding eigenvalues are kept on the higher sales.119



The properties of the ensemble multisale �lter were presented with a 2D, two phase(oil and water) twin experiment, and the results are ompared to the ensemble Kalman�lter. The advantages of using the ensemble multisale �lter are: loalization in spaeand sale, adaptability to prior information, and e�ieny in ase many measurementsare available. These advantages make the ensemble multisale �lter a pratial tool fordata assimilation problems. The updated states/parameters using the ensemble multisale�lter are believed to keep geologial struture due to loalization property.A omparison of ovariane matries obtained with di�erent setups used in the EnMSFis presented. This sensitivity study is neessary sine there are many parameters in thealgorithm whih an be adjusted to the needs of an appliation; they are onneted tothe tree onstrution part.The loalization property is disussed based on the example where the �lter is runwith a simple simulator and a binary ensemble is used (the pixels in the repliates ofpermeability an have one of only two values).Seond, we developed a grid deformation tehnique inspired by grid generationand image warping methods. Our implementation was de�ned suh that thedeformation was smooth, global and led by just a few parameters. The griddistortion was used to adjust a position of high-permeable hannels in thepermeability �eld through data assimilation or a diret searh method. Wepresented two- and three-dimensional versions of the method in reservoir andgroundwater �ow models, and onluded that the grid distortion proved oste�ient and e�etive in terms of time and performane.Data assimilation in hydroarbon reservoir engineering involves adjusting the reservoirmodel parameters suh that the simulated model response mathes the measured histor-ial response within the presribed unertainty bounds. During this proess the modelparameters are often hanged to suh an extent that the resulting model laks geologialrealism. This is in partiular the ase when the original model ontains high-permeabilityhannels, i.e. elongated features extending over large distanes, whih are broken up afterthe parameter update.We propose to avoid suh a loss of geologial realism with a parameterization based ongrid deformation whih maintains the ontinuity of geologial features in the initial model.The parameters determine a smooth distortion of the grid that de�nes the original geolog-ial pattern, using deformation funtions in the form of Poisson's equation de�ned on thegrid oordinates. The grid distortion drives the underlying geologial-image distortion.We tested the method using a twin experiment involving history mathing of pro-dution data generated during water�ooding of a simple two-dimensional two-phase (oil-water) reservoir with high-permeable streaks extending over the entire domain. We om-pared the results against those obtained by using a pixel-based updating method in whihthe onnetivity of the original hannels was destroyed during the parameter updatingproess. On the ontrary, in our method geologial ontinuity was suessfully maintained.Moreover, we found an improved apaity of the geologially realisti models to preditthe future reservoir response ompared to a poor preditive apability of the geologiallyunrealisti models obtained through the pixel-based updating.120



SamenvattingEen reservoirsimulator modelleert de vloeistofbeweging in de aanwezigheid van elkaar dooreen poreus medium onder bepaalde voorwaarden (bijv. temperatuur, diepte, initiële span-ning of initiële verzadiging). Het is een numeriek model van een real-life fysieke proes,dus onzeker. Sommige onzekerheden kunnen worden verlaagd door betere shattingenvan modelparameters. Dit is waar data-assimilatie een belangrijke rol speelt. Geau-tomatiseerde data-assimilatie, gebruikmakend van geavaneerde tehnieken, is een zeeronderzoht onderwerp in tegenwoordige toegepaste wetenshappen.We onderzohten twee onderzoekthema's in data-assimilatie, die nauw met het ge-bied van beeldverwerking verbonden zijn. Beelden zijn een integraal onderdeel van reser-voirengineering toepassing in de vorm van eigenshap of variabele velden. Reservoirengi-neering, beeldverwerking en data-assimilatie zijn hoofdthema's van deze sriptie.Ten eerste pasten we toe een ensemble multisale �lter als een permeabiliteitshat-ter voor één bijwerkingstap en later als een volledige data-assimilatie exper-iment. We vatten samen met onderzoeking van eigenshappen van vershil-lende shattingen van ovariantiematrix afkomstig van het ensemble multisale�lter. Wij onludeerden dat het �lter een e�iënte lokalisatiemiddel kan zijnvooral voor ruimtelijk grote observaties.Het ensemble Kalman �lter is een sequentiële Monte-Carlo benadering die gebruikteen ensemble van reservoirmodellen. Voor realistishe grootshalige toepassingen moethet ensemblegrootte klein worden gehouden door rekenine�iëntie. Als gevolg van isde foutruimte niet goed gedekt (slehte shattingen van ross-orrelatie matrix) en debijgewerkte parameterveld wordt verspreid en verliest belangrijke geologishe kenmerken.De prior geologishe kennis aanwezig op de initiële tijd wordt in de laatste bijgewerkteparameter niet meer gevonden.We stellen een nieuwe benadering voor om een aantal beperkingen van ensembleKalman �lter te overwinnen. We tonen de spei�aties en resultaten van het ensem-ble multisale �lter voor automatishe geshiedenis mathing. Het ensemble multisale�lter vervangt, op elke bijwerking tijd, de prior voorspelde ovariantie met een multisaleboom. De globale afhankelijkheid wordt door de parent-hild relatie in de boom bewaard.Na onstrutie van de boom wordt de Kalman bijwerking uitgevoerd.Het ensemble multisale �lter is een andere manier om de ovariantie van een ensem-ble weer te geven. De berekeningen worden gedaan op een boomstrutuur en wordengebaseerd op een ensemble van mogelijke realisaties van de beshouwde staten en/of pa-rameters. Het oorspronkelijke ensemble wordt tussen de knoppunten van de �jnste shaal121



in de boom verdeeld. Een onstrutie van de boom wordt door de eigenwaardedeomposi-tie geleid. Daarna worden de ombinaties van staten met de grootste orresponderendeeigenwaarden op de hogere shalen gehouden.De eigenshappen van het ensemble multisale �lter zijn met een 2D, twee fase (olieen water) dubbel experiment weergegeven, en de resultaten worden met het ensembleKalman �lter vergeleken. De voordelen van gebruik van het ensemble multisale �lterzijn: lokalisatie in de ruimte en shaal, aanpassingsvermogen aan prior informatie, ene�ieny indien veel metingen beshikbaar zijn. Deze voordelen maken het ensemblemultisale �lter een praktish middel voor data-assimilatie problemen. Gebruikmakendvan het ensemble multisale �lter houden de bijgewerkte staten/parameters geologishestrutuur vanwege lokalisatieeigendom.Een vergelijking wordt gepresenteerd van ovariantiematries verkregen met vershil-lende instellingen gebruikt in de EnMSF. Deze gevoeligheidsanalyse is noodzakelijk omdater veel parameters in het algoritme zijn die aan de behoeften van een toepassing kunnenworden aangepast; ze worden met de boomonstrutie onderdeel verbonden.De lokalisatieeigendom wordt besproken met behulp van het voorbeeld waarin het�lter met een simpele simulator uitgevoerd wordt en een binaire ensemble gebruikt wordt(de pixels in de permeabiliteitreplieken kunnen één van slehts twee waarden hebben).Ten tweede ontwikkelden we een tehniek voor roostervervorming, dat doorroostergeneratie en beeldverbuiging methoden geinspireerd wordt. Onze uitvo-ering is zodanig gede�nieerd dat de vervorming smooth, globaal en geleid doorenkele parameters was. De roostervervorming is gebruikt om een positie vanhoge permeabiliteitkanalen in het permeabiliteitveld door data-assimilatie ofeen direte zoekmethode aan te passen. Wij presenteerden twee- en drie-dimensionale versies van de methode in reservoir en grondwaterstromingsmod-ellen, en onludeerden dat de roostervervorming in termen van tijd en prestatiekostene�iënt en e�etief is.Data-assimilatie in koolwaterstof reservoirengineering betrekt aanpassing van het reser-voir modelparameters zodanig de gesimuleerde modeluitkomst met de gemeten historisheuitkomst binnen de voorgeshreven onzekerheidgrenzen overeenkomt. Tijdens deze pro-essen worden de modelparameters vaak gewijzigd zodanig geologish realisme aan hetresulterende model ontbreekt. Dit is met name het geval als het oorspronkelijke modelhoge permeabiliteitkanalen bevat, namelijk uitgestrekte kenmerken over grote afstanden,die na de parameterbijwerking gebroken worden.We stellen voor om te voorkomen een dergelijk verlies van geologish realisme dooreen parametersering gebaseerd op roostervervorming, die de ontinuiteit van geologis-he eigenshappen van het initiële model handhaaf. De parameters bepalen een smoothvervorming van de rooster, die de oorspronkelijke geologishe patroon de�nieert, gebruik-makend van vervormingfunties in de vorm van Poisson vergelijking gede�nieerd op deroosteroördinaten. De roostervervorming bepaalt de onderliggende geologishe beeldver-vorming.Wij testten de methode met behulp van een dubbele experiment betrekking geshiede-nis mathing van produtiedata gegenereerd tijdens wateroverstroming van een eenvoudige122



twee-dimensionale twee-fase (olie-water) reservoir met hoge permeabele strepen verbrei-den over the hele domein. We vergeleken de resultaten met die verkregen door gebruik vaneen pixel-gebaseerde atualiseringmethode waarin de onnetiviteit van de oorspronkelijkekanalen tijdens het bewerkingsproes van de parameters vernietigd werd. Integendeel isgeologishe ontinuiteit in onze methode met sues gehandhaafd. Bovendien vonden weeen verbeterde apaiteit van de geologish realistishe modellen voor het voorspellen vande toekomstige reservoiruitvoer vergelijking met een slehte voorspellingapaiteit van degeologish onrealistishe modellen verkregen door de pixel-gebaseerde bijwerking.
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