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Chapter 1

Introduction

T
he robust worldwide economic growth is progressively leading to a signi-
ficant boost in the energy consumption (IEO, 2011). As a consequence,

the demand for fossil fuels, by far the first energy source, is expected to in-
crease. The oil exploration and production (E&P) industry is trying to keep
up with this growing demand, leading to the raise in crude oil prices seen in
the last years.

1.1 Oil production and recovery

The constantly increasing energy demand worldwide in combination with the
decrease in easily accessible fossil fuel resources has stimulated a.o. research
and development to the optimization of hydrocarbon recovery from existing
reservoirs over the last decade. Typically for the production of oil reservoirs,
three stages of recovery, generally referred to as primary, secondary and ter-
tiary recovery, can be distinguished.
During primary recovery the reservoir drive consists of only the natural reser-
voir pressure forcing the oil to the surface through the production wells.
With this approach the so-called recovery factor is in (worldwide) average
lower than 15% (Dake, 1978). Secondary recovery is often applied to im-
prove this factor by artificially induced processes. When the driving natural
reservoir pressure drops below a certain threshold and the production be-
comes uneconomical, the secondary recovery stage starts, in which external
energy is supplied into the system by injecting gas or water (waterflooding)
in the reservoir. In particular, waterflooding is by far the most successful and
widely applied method for improved oil recovery, increasing the recovery up
to several tens of percent (Jansen et al., 2008). Ultimately, when secondary
recovery is not sufficient to maintain the appropriate production level, ter-
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2 1. Introduction

tiary oil recovery techniques are considered. These methods aim specifically
at raising the mobility of the oil. This can be achieved either by decreasing
the viscosity through an increase of the temperature (thermally enhanced oil
recovery), through gas injection (mostly CO2), or through a reduction of the
surface tension of the left heavy oil (microbial or chemical injection). In this
thesis the main focus will be on improving the characterization of the sec-
ondary recovery process using both production data and time-lapse seismic
data.

1.2 The value of 4D seismic in oil production

Oil is produced from the pores or fractures in reservoir rocks (mostly sand-
stones or limestones) situated at depths ranging from a few hundred meters
up to a few thousands of meters. In general, the deeper the reservoir, the
higher the pressure and temperature due to the weight of the overlying rock.
A reservoir can be considered either as a frame of small mineral grains with
open pore space in between (siliciclastic or sandstone reservoirs), or as an en-
semble of rigid rock blocks divided by numerous fracture systems (carbonatic
or limestone reservoirs) and combinations thereof. Our focus will be mainly
on sandstone reservoirs, though most of the methods can easily be applied
to limestones as well.
Most rocks in the subsurface are saturated with water, of which the salinity
tends to increase with depth. In a reservoir rock hydrocarbons have migrated
due to buoyancy forces from deeper source rocks over geological times into
the porespace and accumulated there due to the presence of an impermeable
caprock above it. Therefore the fluids present in the pores/fractures of these
rocks are often a mixture of brine, hydrocarbons and non-hydrocarbon gasses.
Each of these components influences the bulk properties such as compress-
ibility and density of the rock differently. Since seismic data are sensitive
exactly to those two bulk properties, in principle one can learn more about
the pore content from seismic data.
A drawback is, that the pore content is not the only parameter influencing
the bulk properties and hence the seismic response. Other parameters like
texture, cementation, lithology, pore size, pore shape, effective stress, and
temperature do so as well and the ensemble of all these parameters determ-
ines the final rock properties in terms of bulk density and compressibility.
However, changes in these bulk properties as a consequence of hydrocarbon
production are essentially induced by changes in saturation and pore pres-
sure, whereas the other parameters can in most cases be considered more or
less stable. This makes time-lapse seismic data appealing for monitoring the
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effects of fluid flow in the reservoir.
The repetition of seismic surveys (time-lapse or 4D seismic), in order to de-
tect short-term, human related changes in the reservoir, was introduced in
the late 1980’s (Greaves & Fulp, 1987), and it represents a key instrument
for reservoir characterization. In fact, during the secondary recovery process
of waterflooding, one can imagine that water ”pushes” the oil towards the
producing wells causing a change in reservoir saturation and pressure along
the way. The consequence is a change in compressibilities and densities of the
reservoir rocks. With time-lapse seismic data it is possible to measure those
changes and to identify the areas where those changes occur. Time-lapse
seismic surveys were (and actually still are) essentially used to qualitatively
track migration fronts and bypassed zones. Developments over the last dec-
ade with a drastic improvement in acquisition and processing techniques, al-
low for a more quantitative interpretation of time-lapse seismic data in terms
of distributions of fluids and pressures establishing a direct link to reservoir
simulations (Tura & Lumley, 1999; Landrø, 2001; Trani et al., 2011). Inver-
sion of time-lapse seismic data into saturation and pressure changes requires
additional knowledge in terms of rock physics relations. To link saturation
changes to seismic changes (i.e. compressibility and density of a saturated
rock) the Gassmann model is probably the most widely used relation (Gass-
mann, 1951). Alternatively direct measurements from time-lapse log data or
from laboratory experiments on core data can be used to derive empirical re-
lations. The latter is generally used to determine the effects of pore pressure
changes.

1.3 Field development and reservoir management

Traditionally seismic data plays an important role in geological model build-
ing together with well log information, cores and geological knowledge. Seis-
mic data provide both structural information (horizons, faults) and properties
(such as lithologies, porosities, saturations). Both types of information have
a large degree of uncertainty. Since seismic data is recorded in time, the in-
terpretation for model building suffers from uncertainties in the time-depth
conversion and the underlying velocity model. Properties are essentially de-
rived from seismic amplitude information. These amplitudes also suffer from
large uncertainties due to the complex acquisition and processing schemes
required to reduce the vast amounts of seismic pre-stack data to an inter-
pretable post-stack form. However, calibration of seismic data to well log
information measured in depth and directly at the rock under in-situ condi-
tions helps to decrease the uncertainty again. The resulting geological model
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is then transformed into a reservoir flow simulation model. This step often
includes upscaling, since flow simulations can be very demanding on compu-
tational power and therefore can not handle the fine gridded geological model.
These reservoir flow simulations are then matched to existing production (and
injection) data and, in case available, to time-lapse seismic data. The lat-
ter, as already mentioned, are often used in a qualitative manner essentially
looking at the shape of time-lapse changes assumed to represent flow patterns
at specific timesteps (snapshots). Finally, when a proper history match has
been obtained by adjusting model parameters like the permeability, it is as-
sumed that the proper model has been obtained. This model is then used for
predicting or forecasting the future production and to determine the optimal
settings at the production wells to maximize the production. Throughout
this thesis we will use the term state parameters for dynamically varying
properties such as pressure and saturation and model parameters or simply
parameters for the (assumed) static parameters like permeability. When new
data become available in time, this entire workflow has to be followed again
in order to update the model. Major drawbacks of this process are, that
generally uncertainty and non-uniqueness are not well handled and that it is
very cumbersome to update models with latest data.
These drawbacks have resulted in a new integrated approach based on meth-
ods developed for oceanography and weather forecasting, where also large
models have to be updated continuously with new information and measure-
ments taking uncertainties into account. In this methodology no longer a
single best model is used, but an ensemble of realizations representing the
true reservoir. By using multiple realizations throughout the whole process, a
better estimate of the uncertainties and the non-uniqueness can be obtained.
The following paragraphs summarize developments in this field. In this thesis
the main focus is on how to optimally use time-lapse seismic data in this
workflow.

1.4 Closed-loop control

In reservoir management we try to optimize the production of a hydrocarbon
field, requiring representations or models of the reservoir. In the traditional
approach, reservoir models are revised only every few years and plans are
based on the most recent model. Jansen et al. (2005) presented reservoir
management as a model-based, closed-loop controlled activity, in which reser-
voir states and parameters are continuously estimated as new measurements
become available. Subsequently, the updated model is used to calculate new
settings that are expected to optimize the reservoir production.
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Figure 1.1: Closed-loop reservoir management as presented in Jansen et al. (2005).
The traditional workflow including the system and the measurements (top part of the
picture) is closed by a data assimilation (red) and by an optimization loop (blue).
The yellow circles indicate the contribution of this thesis with respect to the loop, as
described in section 1.6

.

The main idea of the closed-loop, integrated approach (often called ’closed-
loop’ or ’real-time’ reservoir management) is explained in figure 1.1. The
system at the top of the picture (in black) consists of one or more reservoirs,
wells and facilities, the state of which is estimated from the measured data
available. The associated uncertainty is related to the limitations or even
lack of measurements and observations and to the uncertainties in measure-
ments. However, this open process can be closed by two smaller loops: the
data assimilation loop (in red) and the optimization loop (in blue). In the
red loop, system models based on data from different sources are updated us-
ing the available measurements in order to decrease the uncertainty on state
and parameters (see next section for a detailed description of the process).
In the blue loop, the updated model (or models, if the assimilation process
is based on multiple realizations) is used to optimize hydrocarbon produc-
tion by changing production strategies: the reservoir performance can be
maximized by manipulating the well rates or pressures (Jansen et al., 2009b;
Van den Hof et al., 2009).
It has been demonstrated (Nævdal et al., 2006; Sarma et al., 2006; Jansen
et al., 2009a) that closed-loop reservoir management has the potential to con-
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siderably improve the reservoir performance, as with frequent updates the
estimated models become more reliable and are able to predict the future
behavior with fairly high accuracy. In particular, with the Brugge bench-
mark (Peters et al., 2009) three improvements can be observed compared to
a traditional reservoir management approach:

• Models become more reliable with more frequent updates;

• Uncertainty is taken into account properly;

• The improved history match seems to lead to better forecasts.

.
With respect to the innovative integrated approach illustrated in figure 1.1,
the contribution of this thesis can be split into two parts: the first part of
this study, as mentioned in section 1.2, is dedicated to time-lapse seismic
inversion and therefore to the improvement of reservoir characterization (left
yellow circle in the picture); the second part of the thesis is focused on an
innovative manner to improve the use of production and seismic observations
in the automated history matching process (lower yellow ellipse).

1.5 Data Assimilation and History match

This section provides a more detailed description of the data assimilation
loop in order to understand the role of the thesis with respect to the closed-
loop framework.
In reservoir engineering the process of data assimilation is often referred to
as ’History Matching’ (HM). This name is explained by the objective of the
process itself: obtaining a model that fits historical observations.
Originally HM was performed manually, using good reservoir and production
engineering experience. Manual HM was done following a workflow which has
been developed through years of experience and adopted within most oil com-
panies.
A good description of this workflow is given in Williams et al. (1998). The
first step of the workflow is to obtain a good match of the pressure field,
as it represents the reservoir energy. This can typically be done by tuning
a number of key parameters such as: aquifer pore volume factors, aquifer
transmissibility and size, permeability multipliers, rock compressibilities and
the ratio between horizontal and vertical permeabilities. Once a good match
with the global pressure behavior is achieved, pressures at individual wells
have to be matched. This match can be obtained by adjusting the properties
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of individual flow units and layers, followed by the adjustment of well prop-
erties or properties in near well areas.
Once the pressure match is satisfactory, the production rates (oil and water
rates or water cuts) are matched. In Williams et al. (1998) it is suggested that
relative permeability curves can be tuned at this stage, as this would help
in matching well rates without affecting much the already matched reservoir
energy. If tuning relative permeabilities is not enough, further improvement
in matching saturations can be obtained by adjusting locally the vertical
transmissibilities, and horizontal permeabilities.
It is quite obvious that achieving a good HM for large models with many wells
is a major effort (Agarwal et al., 2000). A serious drawback of a manual HM
is, that it only results in a single solution, lacking information on the associ-
ated uncertainty.
With the evolution of faster computational capabilities, HM has become pro-
gressively computer-assisted (automated HM or AHM) and it has been more
and more approached as an ’inverse’ problem. An inverse problem is a gen-
eral framework used to deduce information about a physical system from
observed data (adapted from Wikipedia). The name ’inverse’ is due to the
nature of the approach, typically reversed to what is called a ’forward’ prob-
lem. A forward problem, in fact, consists of predicting observations from
given conditions.
In the AHM the results from a numerical reservoir prediction model (the
forecast) are combined with observations of the current (and possibly, past)
reservoir state to produce an updated description of the reservoir. Essen-
tially, the analysis step tries to balance the uncertainties in the data and
in the forecast, which are expressed in terms of mean and standard devi-
ation. In order to represent the pdf of the uncertainties multiple realizations
are needed. The mean of the update is considered as ’the best’ estimate of
the current state of the system. This process, based on the measurement
information is also called ’Data Assimilation’. Data Assimilation has been
introduced first in environmental sciences like oceanography (Evensen, 1994;
Wunsch, 1996; Bennett, 2002; Keppenne & Rienecker, 2003; Leeuwenburgh,
2007), and weather forecast (Courtier et al., 1998; Lorenc, 1981; Talagrand
& Courtier, 1987). Unlike in the traditional HM, where only a very limited
number of predictions are made, AHM generates a large range of predic-
tions that are updated in a consistent manner. Several model predictions, or
realizations, are generated with the aim of capturing the range of possible
outcomes. However, in the AHM, the multiple realizations not only describe
the uncertainty at a certain time step, but they are used to propagate the
uncertainty in time and reduce it when new observations become available.
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Data Assimilation problems can be formulated in a Bayesian framework
(Tarantola, 2005). Bayes theorem states that we can estimate the state of
nature A given the observations D. It reads as:

f(A|D(ti) : i = 1, ..No) = f(D(ti) : i = 1, ..No|A)f(A)/f(D(ti) : i = 1, ..No)

(1.1)

f(D(ti) : i = 1, ..No|A) is the conditional probability of the data given the
state of nature. This term indicates how likely the measurements are, given
a certain parameter. f(D(ti) : i = 1, ..No) is the probability of the measure-
ments and it does not depend on A. The ratio between these two terms
represents the impact of the measurements on the confidence in A and it
is called the ’Likelihood’. f(A) is the prior information, that is the un-
certainty associated to the state A before the measurements are acquired.
f(A|D(ti) : i = 1, ..No) is the maximum a posteriori estimate of A that rep-
resents the confidence in the estimated parameters after the data are ac-
quired.
Basically Bayes theorem tries to minimize the mismatch between observed
and predicted data. From Bayes theorem two main groups of data assim-
ilation approaches have originated: variational methods, based on optimal
control theory (also referred to as ’optimal methods’), and sequential meth-
ods, based on the theory of optimal statistical estimation. The first class was
first introduced in meteorology (Le Dimet & Talagrand, 1985; Lewis & Der-
ber, 1985; Courtier & Talagrand, 1987) and more recently in oceanography
(Thacker & Long, 1988; Sheinbaum & Anderson, 1990; Schroter et al., 1993;
Moore, 1991). Statistical methods were introduced in oceanography slightly
later (Ghil, 1989; Ghil & Malanotte-Rizzoli, 1991).
Variational methods start from the definition of a cost-function J measuring
the discrepancy of the solution of the model associated to the control vector
and the acquired observations (Aurox, 2006). In the cost-function the a priori
information is included. These methods try to minimize the cost-function by
calculating its gradient. Because of the large dimension of the model state
vector, it is not possible to compute directly the gradient by using discretiza-
tion methods, such as finite differences. The gradient vector is then obtained
by the adjoint method (Le Dimet & Talagrand, 1985; Talagrand & Courtier,
1987). The determination of the most probable state of nature, that is the
one that minimizes the cost-function, is carried out by running a descend-
type optimization method. Given an initial estimation (prior information),
an iterative algorithm, either conjugate gradient or Newton-type method,
searches for the minimum of the cost-function.
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A major disadvantage associated with optimal methods is that in case of
nonlinear problems it requires several evaluations of J , hence several integ-
rations of the model. Furthermore, in case of non-linear problems J may
not be convex, and it can present several local minima. The optimization
algorithm may then converge to a local minimum rather than the global min-
imum, depending on the choice of the first estimate. A second drawback of
these methods is the implementation of the adjoint model. In the minimiza-
tion of J , the transpose of the matrix containing the partial derivative of the
model operator (mapping parameters to the observation space) with respect
to the state vector entries is required to be known. This matrix is called the
Jacobian, or ’Adjoint’. Provided full access to the code, the procedure can
be quite long and cumbersome, limiting the use of these methods to small
case studies.
The second type of methods consists of the sequential methods. Because
of the limited applicability of variational methods, the sequential method
family has received recently growing attention (see chapter 3 for detailed ref-
erences). This type of methods has been proven useful for time-dependent
problems where new observations are assimilated sequentially in time as they
become available (Evensen, 2009). The first sequential method to be intro-
duced was the Kalman Filter -KF- (Kalman, 1960). The method is based on
the assumptions that:

1. The measurement noise is not time-dependent;

2. The model and the measurements are unbiased, and their associated
noise is white;

3. The model is linear;

4. The true model error covariance is known;

5. The conditional probability is Gaussian and therefore fully described
by the first two point statistics.

As can be understood from assumption 3,the KF is not suitable for nonlin-
ear cases. Furthermore, from assumption 4 it is clear that the prior and the
posterior error covariances have to be known at every assimilation step. This
means that the covariance matrices, need to be stored and propagated in
time; however, since those matrices have equal size as the square of the state
vector, the method is not easily applicable to high dimensional models.
A derivation of the KF which overcomes those two main drawbacks of the
KF is the Ensemble Kalman filter -EnKF- (Evensen, 1994). In the EnKF the
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covariance matrices are propagated using sample points (ensemble) to rep-
resent the uncertainty and apply forward simulations of each of the sample
points with nonlinear model equations. In the forward step of the EnKF,
the model equations are applied to each of the ensemble members. The up-
date step is computed using the form of the KF equation, but it avoids the
computation and the storage of the full covariance matrices for model and
measurement uncertainties, as the error covariance matrices are built from
the ensemble. In the EnKF, the analysis step, same as in KF, is still based on
the first two-points statistics of the distributions (although the model vari-
able distributions are finite), limiting the performance of the filter when the
Gaussian assumption is strongly violated.
Because of the mentioned characteristics, the EnKF is computationally feas-
ible for large systems and is relatively simple to implement making use of
existing simulators. Furthermore, the method presents other attractive fea-
tures for history matching: consistent time-evolving weighting of model and
data contributions based on model and measurement error covariances, flex-
ible treatment of any kind and number of data or uncertain parameters, a
large and active research community, and a rigorous theoretical basis. For
these reasons the EnKF has become popular in the Data Assimilation liter-
ature and it has been chosen in this thesis to update the reservoir model.
Despite its numerous advantages, the EnKF approach presents also some dis-
advantages: one is that, as it is derived from the KF, it only allows linear
updates and therefore it can only preserve Gaussian distributions. A second
one is its inability to deal with large numbers of independent observations.
Chapter 3 provides a detailed description of the EnKF and adjustments to
the filter aimed at improving its performance.

In HM, the reservoir engineer is generally forced to estimate paramet-
ers for the entire reservoir model only based on the information related to
sparsely distributed production data. It is obvious that the number of obser-
vations is much smaller than the number of variables to estimate. Therefore
HM is generally considered as a strongly ill-posed problem (Tavassoli et al.,
2004). The additional information acquired from (time-lapse) seismic data
can be utilized to narrow the solution space down when minimizing the misfit
between gathered measurements and their forecasts from numerical models.
Chapters 3, 4,5,and 6 of this thesis investigate the possibility to assimilate
time-lapse seismic data, using the EnKF, in order to achieve a better con-
strained and more accurate reservoir model.
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1.6 Research objective

In the previous sections it has been mentioned that time-lapse seismic obser-
vations, within a data assimilation framework, have the potential to reduce
uncertainty on model parameters and states in order to optimize oil produc-
tion in a closed-loop reservoir management approach. However, currently it
remains unclear in the literature, what the optimal way of incorporating seis-
mic data in such a scheme would be, particularly in a quantitative manner.
This has lead to the following research objectives of this thesis:

Research objective:

Provide accurate estimates of changes in saturation and pore
pressure induced by waterflooding with 4D seismic inversion, and
investigate the possibilities to obtain an accurate model update

through the assimilation of seismic measurements with the
Ensemble Kalman Filter.

The first part of this thesis is focused on a time-lapse seismic inversion
scheme able to provide changes in fluid saturation and pressure resulting from
production/injection, with no (or minimized) bias, a necessary prerogative
for observations used in the EnKF update.
In the literature numerous time-lapse pre-stack seismic inversion methods are
presented -a.o. Landrø (2001); Meadows (2001)-. Although these approaches
are easy to implement, in some cases they suffer from bias and poor accuracy
in the estimates. The first part of this thesis aims at improving the inversion
schemes, primarily by adding the information contained in the time-shift as
an additional constraint.

The second part of the thesis is focused on the optimal way to assimilate
with the EnKF the estimated changes in bulk properties induced by fluid
flow from seismic inversion. The goal of this process is to use seismic ob-
servations to increase the accuracy in the estimate of reservoir porosity and
permeability, which both strongly condition the reservoir fluid flow. A good
estimate in those parameters is reflected in a reliable production forecast
which is necessary for optimization processes (like infill well drilling).
This thesis investigates the assimilation of time-lapse changes in saturation
and pressure, providing indicative rules-of-thumb for the implementation of
the EnKF when such measurements are available. These rules-of-thumb are
inferred from a covariance study performed on a 2D model with a regular
well pattern. The applicability of these rules on a larger, more realistic 3D
model with an irregular well placement is also tested.
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Alternatively this thesis proposes a new technique based on the time re-
parameterization of saturation data at the front location estimated from 4D
seismic data. This approach consists of transforming saturation data at the
water front in water-phase arrival times for each gridblock. These arrival
times are then used for the assimilation using the EnKF. The motivation is
that fluid fronts can often be detected more robustly from time-lapse seismic
data than inverted saturation changes. Furthermore, using saturation data
directly as observations generally violates the Gaussian assumption under-
lying the EnKF; instead, water-phase arrival times, with a model forecast
properly approximated by a normal function are more suited for an EnKF
update. Results on a 3D synthetic reservoir are promising.

1.7 Thesis outline

The outline of this thesis is as follows:

• Chapter 2, based on Trani et al. (2011), presents an innovative time-
lapse seismic inversion method for the estimation of time-lapse changes
in fluid saturation and pore pressure from the combination of changes
in seismic amplitudes and compressional and shear wave time-shifts.
This chapter corresponds essentially to the yellow circle in the lower
right part of the closed loop in figure 1.1 (building the model). The
next chapters are dedicated to the data assimilation loop (yellow circle
in the lowest part of the closed-loop in figure 1.1).

• Chapter 3 gives an introduction to the Ensemble Kalman Filter, the
preferred method for data assimilation selected in this thesis. Both ad-
vantages and disadvantages of this method are introduced. This chapter
also includes an introduction to the EnKF localization, a procedure re-
quired for the correct functioning of the filter for the assimilation of
large amounts of time-lapse seismic observations.

• The first part part of chapter 4 is dedicated to a covariance study on a
synthetic 2D model, indicating the model region to take into account
when applying localization for the correct assimilation of seismic meas-
urements as provided in chapter 2. The second part of the chapter
presents results from the assimilation of 4D seismic measurements with
the EnKF localization performed on a 2D synthetic model.

• Chapter 5 presents a comparison between the localized and the tra-
ditional EnKF update, similar as in chapter 4, but from a larger and
more realistic 3D synthetic model.
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• Chapter 6, based on Trani et al. (2012), presents the EnKF update
performed with the time-reparameterization of saturation data, an al-
ternative approach to covariance localization. Results are performed
on the same model as used in chapter 5.

• Chapter 7 provides general conclusions from this thesis and recom-
mendations for future research.
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Chapter 2

Estimation of changes in saturation

and pressure from 4D seismic AVO

and time-shift analysisi

T
his chapter presents an innovative 4D seismic inversion scheme to es-
timate time-lapse changes in saturation and pressure induced during

reservoir waterflooding. In general, a reliable estimate of reservoir pressure
and fluid saturation changes from time-lapse seismic data is difficult to ob-
tain. Existing methods generally suffer from leakage between the estimated
parameters. The presented method uses different combinations of time-lapse
seismic attributes based on four equations: two expressing changes in pre-
stack AVO attributes (zero-offset and gradient reflectivities), and two ex-
pressing post-stack time-shifts of compressional and shear waves as functions
of production induced changes in fluid properties. The effect of using dif-
ferent approximations of these equations is tested on a realistic, synthetic
reservoir, where seismic data have been simulated during the 30 years life-
time of a waterflooded oil reservoir.
The estimated changes in saturation and pressure, provided by 4D seismic
inversion will be used in the next chapters in a broader data assimilation
process to update the reservoir model with the Ensemble Kalman Filter.

iThis chapter has been published as a journal paper in Geophysics, 76(2), C1-C17 (Trani
et al., 2011). Note that minor changes have been introduced to make the text consistent
with the other chapters of this thesis.

15
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2.1 Introduction

Several authors have introduced various 4D seismic inversion methods to es-
timate changes in pore pressure and saturation, each one taking into account
different seismic attributes. Tura & Lumley (1999) presented a method to
map and quantify those changes utilizing P- and S-wave impedances. Rojas
(2008) proposed to use the P- and S-wave velocitities ratio as an indicator of
lithologies, fluid saturation and pressure changes in gas sandstones reservoirs.
Landrø (2001, 1999) introduced an elegant, straightforward inversion scheme
which solves for pressure and saturation changes from seismic amplitude-
versus-offset (AVO) data. The method relies on the fact that those variations
in dynamic properties are detectable from changes in intercept and slope of
the AVO response for the top reservoir reflector; the minimally required in-
put consists of near- and far- offset stacked data from the baseline and the
monitor surveys. Meadows (2001) slightly modified Landrø’s method by in-
troducing a quadratic approximation of compressional wave velocity changes
as a function of changes in saturation, and by taking variations in P- and S-
waves impedances as input, instead of differences in the noise sensitive AVO
attributes.
The afore mentioned methods estimate variations in fluid properties from
the information given by amplitude attributes only, not taking into consid-
eration the time-shift below the producing reservoir. Different authors have
demonstrated the added value of using time-lapse differences in arrival times
to map, interpret and estimate changes in reservoir properties.
Landrø et al. (2001) noticed a good correlation between over-pressured areas
and an increase in arrival times (push-down); the time-shift analysis also gave
information about the vertical distribution of the production related changes
within the reservoir. Landrø (2002) proposed a way to express changes in fluid
properties as a weighted linear combination of the estimation coming from
changes in AVO coefficients and from changes in P- and S-waves traveltimes.
Arts et al. (2002, 2004) used a combination of the time-shifts together with
changes in seismic amplitudes, to estimate variations in saturation and the
extension of the CO2 flooded area at Sleipner. Landrø & Stammeijer (2004),
Røste et al. (2006), Ghaderi & Landrø (2009) presented different methods
to estimate reservoir thickness variations from velocity changes, using differ-
ences in seismic amplitudes and time-shifts. Tura et al. (2005) used a closed
loop workflow in which the static and dynamic reservoir model properties
were updated with the objective of matching production data, time-lapse
seismic amplitudes and time-shifts.
Despite the fact that Landrø’s (2001) approach (or the enhanced version)
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is quite straightforward and appealing, it provides estimates with large un-
certainty; in fact, Landrø’s method tends to overestimate real changes in
saturation and the leakage between one parameter into the other masks dif-
ferent fluid effects. In this study an inversion scheme is presented, based on a
modified form of Landrø’s equations and extended with two extra equations
expressing the time-shifts induced by P- and S-wave velocity changes as a
function of pressure and saturation changes. The combined instantaneous
information from AVO attributes and the averaging information contained
in the time-shifts reduces the uncertainty in quantifying changes in pressure
and saturation and reduces leakage from one parameter into the other, all
under the assumption of negligible reservoir thickness changes (compaction
or swelling). The aim is to render the methodology originally proposed by
Landrø more robust and accurate.
Different factors having impact on the inversion results are evaluated and
quantified; this is done using a synthetic, but realistic reservoir adapted from
the Brugge Field model used as a benchmark study for closed loop reservoir
management (Peters et al., 2009).

2.2 Review and extension of Landrø’s method in-

troducing the time-shift as a constraint

Landrø (2001) proposed an elegant procedure to express changes in seismic
amplitude attributes as a function of variation in reservoir saturation and
pressure. The expressions are based on the Smith and Gidlow (Smith &
Gidlow, 1987) equation for the P-wave reflection coefficient as a function of
the angle of incidence. The equation reads

R0 (θ) =
1

2

(

δρ

ρ
+

δα

α

)

−
2β2

α2

(

δρ

ρ
+

2δβ

β

)

sin2 (θ) +
δα

2α
tan2 (θ) (2.1)

where α, β, ρ, indicate the mean P-, S-wave velocity and density, respect-
ively, between the two layers (the overburden and the reservoir), and δα, δβ,
δρ the difference in the respective seismic parameters. The first term in the
equation represents the zero-offset reflectivity while the latter two terms, for
angles up to 30◦ can be grouped together; they express the dependence of the
reflection coefficient as the offset increases (gradient reflectivity). The change
in reflectivity is calculated by subtracting R0 (θ) (at the initial time) from the
reflection calculated at the time of the monitor survey (see eqs. B.1 and B.2).
The time-lapse change in zero-offset reflectivity (neglecting higher order terms
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in relative changes of seismic parameters or combination of them) reads

∆R0 =
1

2

(

∆ρ

ρ
+

∆α

α

)

(2.2)

and the change in gradient reflectivity reads (again neglecting higher order
terms in relative changes of seismic parameters or combination of them)

∆G = −
2β2

α2

(

∆ρ

ρ
+

2∆β

β

)

+
∆α

2α
(2.3)

where ∆α/α, ∆β/β, ∆ρ/ρ indicate the relative variations in P-, S-wave ve-
locity and density, respectively. These changes can be considered as the sum
of the relative changes induced by the separate effects of fluid saturation and
pore pressure changes (except for density, on which the effect of pressure
changes is negligible) as

∆α

α
=

∆αF

α
+

∆αP

α
, (2.4)

∆β

β
=

∆βF
β

+
∆βP
β

, (2.5)

∆ρ

ρ
=

∆ρF
ρ

. (2.6)

Using a linear expansion with respect to saturation changes and a quadratic
expansion with respect to pressure changes, the relative variations in seismic
properties can be written as

∆α

α
≈ kα∆S + lα∆P +mα (∆P )2 , (2.7)

∆β

β
≈ kβ∆S + lβ∆P +mβ (∆P )2 , (2.8)

∆ρ

ρ
≈ kρ∆S. (2.9)

Where kα, lα, mα, kβ , lβ , etc. are the regression coefficients of the empirical
curves which express the relative variations of the seismic parameters vs
relative variation of ∆S or ∆P .
The zero-offset reflectivity, using eqs. 2.7 and 2.9, can be rewritten as

∆R0 ≈
1

2

(

kρ∆S + kα∆S + lα∆P +mα (∆P )2
)

. (2.10)
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Using eqs. 2.7 to 2.9, and assuming -after Landrø (2001)- that under fluid
substitution the shear modulus remains constant (meaning that β2ρ is con-
stant and therefore (∆ρF /ρ+2∆βF /β) = 0), the gradient reflectivity can be
rewritten as

∆G ≈
1

2

(

kα∆S + lα∆P +mα (∆P )2
)

−
4β2

α2

(

lβ∆P +mβ (∆P )2
)

. (2.11)

By solving the system of two equations containing the AVO attributes, ex-
plicit expressions for changes in saturation and pressure are found.
By using second order approximations to express relative changes of P- and
S-wave velocity as functions of ∆S and ∆P -as proposed by Meadows (2001)-
eqs. 2.7 and 2.8 can be, respectively, rewritten as:

∆α

α
≈ jα (∆S)2 + kα∆S + lα∆P +mα (∆P )2 , (2.12)

∆β

β
≈ jβ (∆S)2 + kβ∆S + lβ∆P +mβ (∆P )2 , (2.13)

where jα and jβ are the second order regression coefficients of the saturation
induced relative changes, respectively, of P- and S-wave velocities. Using eqs.
2.12 and 2.9, the zero-offset reflectivity becomes

∆R0 ≈
1

2

(

kρ∆S + jα (∆S)2 + kα∆S + lα∆P +mα (∆P )2
)

. (2.14)

Using eqs. 2.12 and 2.13 and again assuming no variation of the shear mod-
ulus during fluid substitution, the gradient reflectivity becomes

∆G ≈
1

2

(

jα (∆S)2 + kα∆S + lα∆P +mα (∆P )2
)

−
4β2

α2

(

lβ∆P +mβ (∆P )2
)

.

(2.15)

Figure 2.1 presents the modeled relationship between relative changes in P-
wave velocity and water saturation; the relationship has been calculated using
a rock physics model calibrated to typical North Sea reservoir values. Initial
water saturation is 0.2 potentially increasing to 0.5 as a result of production
and water injection; leading to changes in water saturation (∆S) varying
between 0 and 0.3. The ’true’ modeled relationship is in black and it can
be approximated by a linear (as in Landrø) or by a quadratic function (as
in Meadows). Figure 2.1b illustrates the relative P-wave velocity changes
as a function of net pressure. The net pressure is equal to the overburden
pressure minus the pore pressure with the coefficient of internal deformation
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Figure 2.1: Relative change in P-wave velocity versus change in water saturation
(a) and in pressure (b) for different approximations; the black line is the truth case.
A quadratic approximation (red) shows high accuracy in figure a. In plot b, the
quadratic approximation (red), as Landrø proposed, overlaps with the exact curve.

being equal to 1. Initial net pressure is 17 MPa and changes (∆P ) from 0 to
+ 8 MPa are expected as a consequence of production. The green and the
red lines show, respectively, the linear and quadratic approximations of the
’truth’ case (in black). For this case study, a quadratic function moderately
improves the accuracy of the approximation of relative changes in P-wave
velocity versus saturation changes; for the approximation versus differences
in net pressure, minor improvements are observed, as the relative change in
P-wave velocity induced by variations in pressure presents an almost linear
behavior.
Despite the use of a quadratic approximation, Meadows (2001) did not

solve two problems related to Landrø’s method: the bias in the estimation
of changes in saturation and the leakage between different parameters. In
this chapter solutions to minimize these effects are proposed. The quantit-
ative estimation of changes in dynamic properties in Landrø (2001) and in
Meadows (2001) is based only on the information related to the top reser-
voir reflection amplitude characteristics. A way to further constrain Landrø’s
method (or the enhanced version) and to make it more robust is to extend
it with an additional equation expressing the P-wave time-shift, induced by
variations in seismic velocity, as a function of changes in pressure (∆P ) and
in saturation (∆S). This time shift reads

∆Tpp = −
2D

αr
0 + δαr

0

δαr
0

αr
0

. (2.16)
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where D is the reservoir thickness, αr
0 the reservoir interval velocity at the

time of the baseline survey (time 0), δαr
0 the absolute change in the reservoir

velocity between the times of the baseline and the monitor survey, δαr
0/α

r
0

its relative change. The latter can be expressed as a function of changes in
pressure and saturation (see eq. 2.12); inserting eq. 2.12 into eq. 2.16 the
P-wave time-shift can be expressed as a function of ∆S and ∆P as

∆Tpp ≈ −
2D

αr
0 + δαr

0

(

jα (∆S)2 + kα∆S + lα∆P +mα (∆P )2
)

. (2.17)

With the addition of time-shift data, expressions for ∆P and ∆S cannot
be found in a simple way as presented in Landrø (2001); the non-linear, over-
determined system composed of the second order approximations of change
in vertical reflectivity (eq. 2.14), change in gradient reflectivity (eq. 2.15)
and P-wave time-shift (eq. 2.17), is solved with the Gauss-Newton algorithm
(see Appendix A).
If shear wave or converted wave data (SS- or PS-waves) through multi-
component data are available, another equation expressing the time-shift
induced by shear wave velocity changes as a function of ∆P and ∆S can be
added to the non-linear system. The S-wave time-shift reads

∆Tss ≈ −
2D

βr
0 + δβr

0

(

jβ (∆S)2 + kβ∆S + lβ∆P +mβ (∆P )2
)

, (2.18)

obtained the same way as eq. 2.17. The Gauss-Newton convergence al-
gorithm used to solve the system of three non-linear equations can be used
to solve the system of 4 quadratic equations.
Note that the time-shift represents an integrated change over the reservoir
thickness, whereas the reflection response represents a more localized re-
sponse associated to the top of the reservoir. In case the reservoir thickness
is within the order of a wavelength it is reasonable to assume that the changes
at the top of the reservoir and those integrated over the reservoir interval do
not differ too much.

2.3 The effect of approximating the rock-physics

model

The relationships between changes in reservoir dynamic properties and rel-
ative changes in seismic parameters are in general derived from laboratory
measurements performed on cores representative of the whole reservoir. In
this synthetic study these relationships are forward modeled using a rock-
physics model based on the Gassmann (1951) and Mindlin (1949) equations.
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Figure 2.2: At the top, ∆R0 versus changes in saturation (a) and versus changes in
effective pressure (b) for different approximations. The initial reflection coefficient
is positive and increases with water saturation and net pressure increase. At the
bottom, ∆G versus changes in water saturation (c) and versus changes in effective
pressure (d) for different approximations. In plot c there seems to be a systematic
error in the Smith & Gidlow and in the Landrø approximations, which cannot be
solved by using a second order regression. When pressure is changing (plot d) the
error seems not to occur.

The Mindlin theory (Mindlin, 1949) calculates effective bulk and shear mod-
uli assuming a dry dense random pack of identical spherical grains subject
to hydrostatic pressure at the initial porosity of 0.36; the Hashin and Shtrik-
man lower bound (Hashin & Shtrikman, 1963) estimates the effective moduli
at the reservoir porosity, with the assumption that the rock is everywhere
isotropic, linear, elastic.
The Gassmann equation (Gassmann, 1951) predicts the seismic parameters
for the saturated rock with the assumption of using long wavelengths and
low frequencies (corresponding to the seismic range), in a medium where all
pores are connected and fluids do not interact with the matrix.
Since for the real case studies the exact relations between changes in fluid
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properties and changes in AVO coefficients are unknown, different approx-
imations are tested in the inversion process. Figures 2.2a&b present changes
in zero-offset reflectivity (∆R0) as a function of changes in water saturation
and in pore pressure, respectively. Initial water saturation, initial effective
pressure and their respective changes are the same as in figure 2.1. The over-
burden consists of relatively soft clay, leading to an initial positive reflection
coefficient. When increasing water saturation, the zero-offset reflectivity also
increases, with a trend closely resembling the P-wave velocity behavior in fig-
ure 2.1a. This was to be expected since changes in zero-offset reflectivity are
mainly determined by changes in P-wave velocity and density, of which the
latter is closely related to P-wave velocities again. In figure 2.2b, as for figure
2.1b, the reflection coefficient, positive at time 0, increases as the effective
pressure increases. It appears evident that eq. 2.2, introduced by Smith
& Gidlow (1987), approximates changes in zero-offset reflectivity almost per-
fectly, and the zero-offset reflectivity approximations as introduced by Landrø
(2001) and Meadows (2001), respectively eqs. 2.10 and 2.14, present accur-
acy comparable to the zero offset reflectivity introduced by Smith & Gidlow
(1987).
Figures 2.2c&d show the changes in gradient reflectivity (∆G) as a function
of changes in saturation and pressure, respectively. In figure 2.2c, the Smith
& Gidlow equation (eq. 2.3) does not approximate changes in gradient re-
flectivity with the same accuracy as it does for zero-offset reflectivity, and
the gradient expression introduced by Landrø (2001), eq. 2.11, deviates even
more from the truth. This seems to be a systematic error that cannot be
solved by a higher order regression as proposed by Meadows (2001), in eq.
2.15. For pressure changes, figure 2.2d, the problem does not occur.
In general, the quadratic equations better approximate variations in seismic
attributes. However, in real data examples the question remains of course,
whether the uncertainty on the rock physics framework justifies the use of
higher order approximations. In that case the simple linear approximation
provides insight in the uncertainty range. Note that in a real case, the regres-
sion coefficients for changes in pressure are in general estimated from core
data, and for changes in saturation a calibrated rock physics model based on
the Gassmann equation is used, as in Landrø (2001).
Figures 2.3a-b present, respectively, the differences between the ’exact’ ∆R0

and Landrø’s approximation (eq. 2.10) and the difference between the ’exact’
∆R0 and Meadows’ approximation (2.14), in a region of perturbation ranging
between 0 and 0.3 for changes in saturation (∆S) and between 0 and +8 MPa
for changes in net pressure (∆P ); initial water saturation and pore pressure
are the same as in the previous figures. Figures 2.3c show the differences
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Figure 2.3: Differences between the truth ∆R0 and the approximated change in
zero-offset reflectivity as a function of pressure and saturation changes, according
to Landrø’s formula (plot a) and Meadows’ approximation (plot b). As expected,
the quadratic approximation from Meadows provides the smallest mismatch. In the
second row, differences between the true ∆G and the approximated change in gradient
as a function of pressure and saturation changes according to Landrø’s formula (plot
c), and Meadows’ approximation (plot d). Both the approximations reveal similar,
quite poor accuracies.

between the real and the gradient reflectivity using Landrø’s approximation
(2.11), and figure 2.3d the difference between the real and and the gradient
reflectivity estimated with Meadows’approximation (eq. 2.15) in the same
perturbation space as for figures 2.3a-b. The approximation of ∆R0 is very
accurate over the entire range, especially when a quadratic approximation is
used, but the approximation of ∆G is less accurate, mainly at high values of
changes in saturation.
In figure 2.4a the ’exact’ P-wave time-shift and its quadratic approximation
(eq. 2.17) are expressed as a function of ∆S and in figure 2.4b as a function
of ∆P . Initial water saturation and pressure values, as well as the changes
in both properties are the same as in the previous figures.
Figures 2.4c&d illustrate the timeshift in shear wave velocities and its quad-
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Figure 2.4: P-wave velocity induced time-shifts as a function of changes in sat-
uration (a) and effective pressure (b). As water saturation and/or net pressure
increases, the time shift decreases since the P-wave velocity increases. The black
line represents the truth case, the red line a quadratic approximation. At the bottom,
S-wave velocity induced time-shifts as a function of changes in saturation (c) and
in effective pressure (d) are presented. Initial water saturation is 0.2 and initial
reservoir net pressure is 17 MPa.

ratic approximation (eq. 2.18) both versus a ∆S increase (c) and versus a
∆P change (d). Initial water saturation and pressure conditions again are
identical to the values presented in figures 2.1a&b, and the reservoir thick-
ness is about 30 m. In all cases, a second order approximation presents very
high accuracy.
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2.4 Results

2.4.1 Description of the model

In order to evaluate the accuracy of the different proposed approximations, a
synthetic reservoir model has been used. This is a 74 x 24 x 7 gridblock simu-
lation model, with gridblock size of 150 x 150 x 4.5 m corresponding to an area
of 11.1 x 3.6 km. The reservoir model has an anticlinal structure, the same as
in the synthetic Brugge Field (Peters et al., 2009). The reservoir is entirely
composed by unconsolidated, loose sand; its porosity, normally distributed,
ranges between values of 0.04 and 0.35, and its permeability, correlated to
porosity ranges between 2 and 5000 md. The reservoir is divided into seven
layers, each of them presenting two high porosity/permeability structures on
the western flank of the anticline, surrounded by low permeability areas; such
a permeability contrast is expected to cause preferential flow patterns and
therefore preferential changes in seismic attributes. The porosity distribution
is the result of a conditioned sequential Gaussian simulation obtained using
an exponential variogram with 5000 m major correlation length, 500 m minor
correlation length, nugget effect of 0.1 and azimuth of 80◦W. Figures 2.5a&b
present the porosity fields for two different layers, and figures 2.5c&d the
associated permeability fields. The green arrows point towards the North.
The top of the reservoir lies at a depth of 1590 m; the overburden pressure is
around 37 MPa and the initial pore pressure is hydrostatic, with a mean value
of 17MPa. Two fluid phases are present in the model: water and undersat-
urated oil. Initially the oil is above the bubble point and during production,
occurring simultaneously to water injection, pressure is maintained high so
that the gas remains totally dissolved. Figures 2.5e&f show the initial satur-
ation, for two different layers, before production starts: the oil-water contact
lies at 1678 m depth; in the water saturated zone water saturation is 1, while
in the oil zone connate water saturation and residual oil saturation are both
0.2. In total 30 wells penetrate the reservoir: a crown of 10 water injectors
in the lower part of the anticline and 20 producers on the crest, the position
being the same as in the Brugge Field (Peters et al., 2009). The over- and
the underburden seal the reservoir completely allowing in- and outflow only
at the wells. During the simulation, the producers are constrained on total
liquid rates, and the injectors on fixed injection pressure.
Pre-stack time-lapse seismic data have been modeled using ray tracing; the
baseline survey has been acquired before production starts and the monitor
survey after 30 years production. The seismic properties at each reservoir
gridblock are determined from the rock physics model given the saturation
and pressures resulting from the reservoir simulation. Given the large grid
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c d

a b

e f

Figure 2.5: Porosity field for layer 1 (a) and layer 5 (b), and the associated per-
meability field in mD (c&d). In all layers, two low porosity and low permeability
elongated structures can be observed in the western part of the anticline. At the
edges of these structures, porosities and permeabilities reach higher values. At the
bottom, initial water saturation values for the same layers (e&f). In blue are indic-
ated the injectors, in red the producers.
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Figure 2.6: ∆R0 (a) and ∆G (b) determined at the top reservoir reflector. Changes
in different AVO coefficients relate to changes in different reservoir fluid properties.
In plots c and d are plotted, respectively, the P- and the S-wave time-shifts; both the
time-shifts are picked at the bottom reservoir reflector. Note the similarity between
∆R0 and ∆Tpp, and between ∆G and ∆Tss. ∆R0 and ∆Tpp are the combined effects
of ∆S and ∆P ; ∆G and ∆Tss are essentially related to ∆P and only to a minor
extent to ∆S through a change in density.

dimensions compared to the bin size, seismic measurements from different
common-midpoints (CMP) are averaged over the entire gridblock.
For computational reasons, with respect to the original Brugge Field, the
lateral and the vertical sizes of the reservoir model used in this study have
been reduced, resulting in a thickness of about 30 meters. The use of a
realistic frequency of 45 Hz has been chosen; given an average interval ve-
locity of about 3500 m/s, the corresponding tuning thickness (a quarter of
the wavelength) is about 20 m, smaller than the reservoir thickness. In this
way the AVO coefficients for the top reservoir reflector and the time-shifts
picked at the bottom (input for the inversion) can be correctly estimated.
The effect of frequency on the picked AVO coefficients and time-shifts has
not been further investigated in this study.
Figures 2.6a&b show, respectively, the differences in zero-offset and gradient
reflectivity picked at the top reservoir reflector: variations in seismic attrib-
utes are the expressions of changes in reservoir saturation and pressure. Fig-
ures 2.6c&d illustrate the time-shifts induced by, respectively, compressional
and shear wave velocities. The P-wave time-shift, legacy of saturation and
density changes, presents a trend similar to the variations in zero-offset re-
flectivity, while the pattern of the S-wave time-shift, more related to pressure
changes, emulates the one seen for ∆G.
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methods ∆R0 ∆G ∆Tpp ∆Tss

method 1
linear in ∆S
quad. in ∆P

linear in ∆S
quad. in ∆P

NA NA

method 2
quad. in ∆S
quad. in ∆P

quad. in ∆S
quad. in ∆P

quad. in ∆S
quad. in ∆P

NA

method 3
quad. in ∆S
quad. in ∆P

quad. in ∆S
quad. in ∆P

quad. in ∆S
quad. in ∆P

quad. in ∆S
quad. in ∆P

method 4
quad. in ∆S
quad. in ∆P

NA
quad. in ∆S
quad. in ∆P

quad. in ∆S
quad. in ∆P

method 5
quad. in ∆S
quad. in ∆P

complete in
∆S
complete in
∆P

quad. in ∆S
quad. in ∆P

NA

Table 2.1: Characteristics of the different methods in approximating seismic at-
tributes.

2.4.2 Results with spatially invariant porosity

From the extracted seismic attributes, vertically averaged changes in pore
pressure and saturation have been estimated with different combinations
of the four presented equations. Method 1 corresponds to the traditional
Landrø’s (2001) scheme (using eq. 2.10 and 2.11), method 2 makes use of
quadratic equations related to ∆R0, ∆G, and ∆Tpp (eq. 2.14, 2.15, and 2.17),
method 3 is similar to method 2 but it uses additionally the equation related
to the S-wave time-shift (eq. 2.18), method 4 is identical to method 3 except
that the gradient equation is neglected (eq. 2.14, 2.17, and 2.18), method 5
makes use of quadratic equations of ∆R0, ∆Tpp and a linear approximation
of ∆G including second order terms (equations 2.14, 2.17, and B.5, respect-
ively). Table 2.1 summarizes the differences in the methods.
Figure 2.7a shows the real ∆S after 30 years of production/injection; note
that the relatively modest change in water saturation from 0.2 to a max-
imum of 0.5 in 30 years production is a consequence of the vertical averaging
of the 7 reservoir layers. Individual layers might have a higher residual oil
saturation after flushing due to a low sweep efficiency. Figures 2.7b, c, f, g
present, respectively, the estimated ∆S with the methods one to four; below
each estimation, the differences with respect to the truth case are plotted.
Although all estimations are able to capture perfectly the real trend of satur-
ation changes, they all present a bias. The bias is positive in the rim where
changes in saturation occur, and negative outside the rim, in the lower part
of the reservoir, probably caused by a leakage from ∆P . From the com-
parison between figures 2.7b, c, f and figure 2.7a it can be argued that by
including P- and S-wave time-shifts in the inversion, the positive bias slightly
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methods ∆S ∆P

method 1 1.16 6.35

method 2 1.62 6.93

method 3 1.31 6.63

method 4 0.33 7.18

Table 2.2: RMSE for the four methods in estimating ∆S and ∆P .

decreases. By eliminating the gradient (figure 2.7g), both the positive bias
for the estimated changes in ∆S and the negative bias for the gridpoints
in the aquifer are reduced, but still there is room for improvement for the
estimated changes in saturation on the top of the reservoir.

Figure 2.8 presents the real and the estimated ∆P with different approx-
imations, the order being the same as in figures 2.7; below each estimation
the differences with the truth are plotted. In all the estimations taking into
account the gradient reflectivity (figs.2.8b, c, f) a leakage effect from ∆S is
clearly visible as a halo in the central part of the reservoir; in figure 2.8g,
where the information related to the gradient is neglected, ∆P presents no
saturation signatures. The comparison of figure 2.7g to the other estimations
of ∆S (figs. 2.7b, c, f), and the comparison between figure 2.8g to the other
estimations of ∆P (figs. 2.8b, c, f) suggests that the poor approximation of
the gradient reflection could be one of the causes of the leakage between the
two variables.
The root mean square error (RMSE) represents a way to evaluate the per-
formance of the different inversions. It is defined as

J =

√

√

√

√

1

Ng

Ng
∑

i=1

(

αT
i − αE

i

)

, (2.19)

where αT
i is the true value of the parameter α at the gridcell i, αE

i the es-
timated value at that gridcell, and Ng the total gridcells number.
Table 2.2 lists the RMSE for ∆S and ∆P for the different methods. The
information from the S-wave time-shift does not improve the inversion if this
attribute is combined with the other three (method 3 vs method 2); how-
ever it becomes a real advantage in the case the S wave time-shift replaces
the gradient reflectivity (method 4). In fact, the exclusion of the gradient,
slightly increases the error for the ∆P estimate, but it largely reduces the
error for the estimate of ∆S.
All the pictures show evident East-West oriented lineaments, that seem
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Figure 2.7: Exact vertically averaged changes in saturation (a) versus changes in
saturation estimated with method 1 (b), with method 2 (c), method 3 (f), method
4 (g). Below each estimation, the respective difference with the truth are plotted
(plots d,e,h,i). The labels indicate the CMP numbers on the X and Y directions.
Including P- and S-wave timeshifts slightly reduces the positive bias; by eliminating
the gradient reflectivity equation, the positive bias, together with the pressure leakage
outside the ∆S rim, decreases.
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Figure 2.8: Exact vertically averaged changes in pore pressure (a) versus changes
in pressure estimated with method 1 (b), with method 2 (c), method 3 (f), method 4
(g). Below each estimation, the respective difference with the truth are plotted (plots
d,e,h,i). Remarkable is the similarity between the trend in pressure changes and the
trend shown by the gradient and S-wave time-shift (figs. 2.6b&d). Eliminating the
gradient reflectivity equation (g) zeros the leakage from ∆S.

strongly related to the porosity/permeability field. In the current analysis,
the coefficients used in the approximations are calculated using only the mean
reservoir porosity. In the next section the effect of a more detailed knowledge
of the porosity field is investigated, leading to somewhat different results.

2.4.3 Results with more accurate Porosity Information

The coefficients used in the approximations are calculated from the relative
change in seismic properties induced by changes in fluid saturation and in
pore pressure (eqs. 2.4-2.6). These are defined as the time-lapse variation in
density and velocities, consequence of production and/or injection, normal-
ized on the mean of the respective property between the overburden and the
reservoir at the initial time. The total porosity is an important parameter
in the calculation of density and velocities as it enters in the Mindlin (1949)
and the Gassmann (1951) equations. Also, the total porosity acts as a scaling
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factor for changes in seismic properties, induced by changes in pore pressure
and fluid saturation, as it determines the weight between the fluid and the
rock terms in the Gassmann equation. Hence, the value of the total porosity
is proportional to the relative time-lapse variations in density and seismic
velocities described in eqs. 2.4-2.6.
In the previous section it was assumed that the total porosity was constant
over the entire reservoir. In fact, only the mean porosity value entered in
the Mindlin and Gassmann equations in order to calculate relative changes
in seismic properties for different CMPs; the consequence is that the coef-
ficients introduced in eqs. 2.7-2.9, which relate relative changes in seismic
properties to ∆S and ∆P , are spatially uniform. Neglecting lateral vari-
ations of porosity results in remarkable porosity leakage, with a noticeable
decrease on the results accuracy. In this section, the inversion is performed
with the same methods and approximations as in the previous section, the
only difference being the use of spatially variant coefficients. These are in
fact calculated independently at each CMP location, assuming that the exact
vertically averaged (using the arithmetic mean) porosity is known.
Figure 2.9a presents the true ∆S (the same as fig. 2.7a) and the figures b-c
& f-g the estimated ∆S with methods 1, 2, 3, 4, respectively. Below each es-
timation the differences between the estimated and the true ∆S are plotted.
In the waterflooded areas a positive bias appears evident with methods 1 to
3; although the use of quadratic approximations and of P and S-wave time-
shifts (figures 2.9c&f) decreases this positive bias, the negative bias below
the original oil-water contact (probably a leakage from ∆P ) remains strong.
Leaving out the gradient term in the inversion (figure 2.9g) largely reduces
the positive bias for the real ∆S and zeros the negative bias seen in the wa-
ter saturated zone, meaning that the leakage from the changes in pressure is
eliminated.
Figure 2.10a shows the real changes in pressures (the same as fig. 2.8a) and
the figures b-c & f-g the estimated changes using different method, the order
being the same as in figure 2.8. Below the estimated ∆P , the differences with
the true ∆P are plotted. In all the estimations making use of the gradient
equation, a halo characterized by a positive bias appears, its shape suggests
that it might be caused by a leakage from the ∆S variable; the halo disap-
pears if the gradient is removed, as well as the negative bias for the gridpoints
outside the oil rim. However, removing the changes in the gradient reflectiv-
ity means losing some information about the reservoir changes in pressure: at
the top of the reservoir, where changes in pressure are stronger, the predicted
∆P are smaller than the real changes in pressure.
From the comparison between the estimates from pictures 2.9 and 2.10 to
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Figure 2.9: Exact vertically averaged changes in saturation (a) versus changes in
saturation estimated with method 1 (b), with method 2 (c), method 3 (f), method
4 (g). Below each estimation, the respective difference with the truth are plotted
(plots d,e,h,i). The labels indicate the CMP numbers on the X and Y directions. At
each CMP location the vertically averaged porosity is known; excluding the gradient
reflectivity improves the estimation considerably.
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Figure 2.10: Exact vertically averaged changes in pore pressure (a) versus changes
in saturation estimated with method 1 (b), with method 2 (c), method 3 (f), method
4 (g). Below each estimation, the difference with the truth are plotted (plots d,e,h,i).
The labels indicate the CMP numbers on the X and Y directions. At each CMP
location the vertically averaged porosity is known. Excluding the gradient reflectivity
results in overall moderate differences, although at the top of the reservoir the error
can be quite large.
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methods ∆S ∆P

method 1 1.06 4.47

method 2 1.30 4.25

method 3 1.16 4.26

method 4 0.29 4.81

Table 2.3: RMSE for the four methods in estimating ∆S and ∆P .

those of figures 2.7 & 2.8 it seems that the porosity leakage decreases. Table
2.3 summarizes the performance of the different methods. The RMSE reveal
that an initial investment for an accurate knowledge of the reservoir porosity
field has the benefit of improved inversion results.

2.4.4 Reducing the leakage

Previous results indicate that a poor approximation of changes in gradient
reflectivity leads to strong leakages between ∆S and ∆P . However, in many
real cases S-waves data are not available and the equation related to the
slope reflection, providing information about changes in pressure, cannot be
neglected.
Compared to the approximations of the other seismic attributes presented in
the inversion, the one related to the gradient reflectivity is by far the least
accurate, especially when water saturation increases (figure 2.2c). The cause
of this inaccuracy lies in the fact that, for computational reasons, the higher
order terms in ∆α/α, δα/α (same holds for β and ρ) have been neglected,
as suggested in Landrø (2001). However, if second order terms in relative
changes in seismic properties, or combinations thereof, are included (for a
complete derivation see Appendix B) the accuracy of the forward approxim-
ation of the gradient reflectivity increases leading to an improvement of the
inversion results.
Figure 2.11 is exactly the same as figure 2.2c, except that a new curve is
added (and the vertical scale exaggerated): the dotted yellow line represents
changes in gradient reflectivity as a function of changes in saturation (the
initial water saturation and the change in the property are the same as in
figure 2.2c).

Figure 2.12a shows the true ∆S field (the same as in fig. 2.9a), figure 2.12b
the estimated ∆S field using method 2 (the same as in figure 2.9c), and figure
2.12c the estimated ∆S with method 5. The vertically averaged porosity is



36 2. 4D seismic inversion

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

∆S

∆
G

 

 

exact

Smith&Gidlow

II order terms

Landro

quadratic (Meadows)

Figure 2.11: ∆G versus change in water saturation for different approximations.
The dotted yellow line represents Landrø’s approximation including second order
terms in relative variation of seismic properties expressed as linear function of ∆S
and ∆P (see Appendix B).

methods ∆S ∆P

method 2 1.30 4.25

method 5 1.24 4.23

Table 2.4: RMSE for method 2 and 5 in estimating ∆S and ∆P .

known at every CMP location. Figures 2.12d&e show the differences between
the estimated and the true ∆S (fig. 2.12d is the same as fig. 2.9e). Although
including higher order terms results in an unchanged negative bias for the
CMPs in the aquifer, it decreases the positive bias for the estimated ∆S in
the waterflooded areas and slightly reduces the negative bias for ∆S estim-
ated on the top of the reservoir.
Figures 2.12f-h present the true and the estimated ∆P with the same meth-
ods as for figures 2.12a-c (fig. 2.12f is the same as fig. 2.10a, and fig. 2.12g
is the same as fig. 2.10c). Figures 2.12i&j illustrate the differences between
the estimated and the true ∆P in the same order as for figures 2.12d&e (fig.
2.12i is the same as fig. 2.10e). The halo characterized by positive variations
in pressure almost disappears (plot j), proving that the inaccuracy of the
gradient approximation is one of the causes of the leakage from ∆S into ∆P .
Table 2.4 lists the RMSE for methods 2 and 5.

2.4.5 The effect of random and systematic noise

The previous sections explained the validity of the inversion scheme from an
ideal case where no noise on seismic measurements is present. This section
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Figure 2.12: Exact vertically averaged changes in saturation (a) versus changes in
saturation estimated with method 2 (b) and 5 (c). The figures below each estimate
represent the respective difference with the truth case (plots d and e). The labels
indicate the CMP numbers on the X and Y directions. At each CMP location the
vertically averaged porosity is known. Including the higher order terms leads to a
reduction of the positive bias for the saturation changes in the waterflooded areas.
In the third line, exact vertically averaged changes in pressure (f) versus changes in
pressure estimated with method 2 (g) and 5 (h); below each estimate are plotted the
respective differences with the truth (plots i and j). Including the higher order term
in the gradient equation results in a strong decrease of the saturation leakage into
the pressure changes.

deals with a more realistic scenario as it indicates the effect of adding random
and systematic noise on the observed inputs.
Figures 2.13a (the same as fig. 2.9a) illustrates the true ∆S field and figures
2.13b-c,f-h the estimates obtained with, respectively, methods 1,2,5,3,4 in
case random noise up to 15% is added to the measurements. Below each
figure, the differences with the truth estimates are plotted. The vertically
averaged porosity is known at each CMP location. Although the images are
not as sharp as in the free noise case, the advantage of using a complete
approximation of the gradient or the advantage of replacing this attribute
with the S-wave time-shift is still evident. Figure 2.14 presents the true and
the estimated ∆P with the five methods, and their deviations from the the
truth, in the same order as in figure 2.13 (plot a is the same as fig. 2.10a).
Also for ∆P , despite the noise, the same features as in the noise free case are
recognized.
The estimates look quite robust in the presence of random noise (up to 15%);
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Figure 2.13: Exact vertically averaged changes in saturation (a) versus changes in
saturation estimated with method 1 (b), method 2 (c), method 5 (f), method 3 (g)
and method 4 (h). The figures below each estimate represent the respective difference
with the truth (plots d,e,i,j,k). The labels indicate the CMP numbers on the X and
Y directions. Seismic measurements contain random noise up to 15%. Although
the general quality of the different estimates decreases because of the noise, all the
features seen in figure 2.9 can be recognized.

however, this kind of noise, in reality, can be combined with systematic noise
which can be easily introduced by numerous factors (like the characteristics of
the source, of the receiver and of the cable characteristics, processing, energy
attenuation and absorption, tuning, etc.). The next pictures show estimates
when random noise up to 10% is combined with an error of +5% in ∆R0,
+15% in ∆G, and +10% on the time-shifts. Figure 2.15 illustrates the real
∆S (same as in fig. 2.9a), the estimated ∆S, and their deviation from the
truth in the same order as in the previous pictures. The characteristics of
each method are still relatively clear, although the magnitude of the leakages
between different parameters and of the bias in estimated ∆S have changed.
The same can be said for figure 2.16, presenting the situation for changes in
pressure (plot a is the same as fig. 2.10a). Note that a systematic error in
the inputs leads to a change in sign of the error for the ∆P estimated with
method 4 at the top of the reservoir (see figure 2.10i). Table 2.5 and 2.6
present a list of the RMSE values in case of random noise and random plus
systematic noise, respectively.
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Figure 2.14: Exact vertically averaged changes in pressure (a) versus changes in
pressure estimated with method 1 (b), method 2 (c), method 5 (f), method 3 (g) and
method 4 (h). The figures below each estimate represent the respective difference
with the truth (plots d,e,i,j,k). The labels indicate the CMP numbers on the X and
Y directions. Seismic measurements contain random noise up to 15%. Although
the general quality of the different estimates decreases because of the noise, all the
features seen in figure 2.10 can be recognized.

methods ∆S ∆P

method 1 1.09 6.25

method 2 1.38 7.23

method 3 1.19 5.53

method 4 0.33 6.32

method 5 1.42 7.28

Table 2.5: RMSE for the five methods in presence of random noise with 15%stand-
ard deviation.

methods ∆S ∆P

method 1 1.84 43.15

method 2 2.41 44.46

method 3 2.01 40.60

method 4 0.50 20.21

method 5 2.37 21.19

Table 2.6: RMSE for the five methods in presence of random noise with 15%stand-
ard deviation and systematic noise up to 15% in the observed measurements.
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Figure 2.15: Exact vertically averaged changes in saturation (a) versus changes
in saturation estimated with method 1 (b), method 2 (c), method 5 (f), method
3 (g) and method 4 (h). The figures below each estimate represent the respective
difference with the truth (plots d,e,i,j,k). The labels indicate the CMP numbers on
the X and Y directions. Seismic measurements contain random noise up to 15% and
systematic noise up to 15%. Systematic noise has a strong impact on the quality
of the estimates, in some cases enhancing the leakage and the bias present in the
different methods.

2.5 Discussion

Spatial variations in mineralogy and temperature are expected to have a
smaller impact on the inversion results than variations in porosity.
In this study, the reservoir is composed entirely of unconsolidated, loose sand,
allowing to use the Mindlin, Hashin-Strikman and Gassmann equations to
calculate seismic properties in every cell. In this scenario the fluid term of the
Gassmann equation plays a relevant role in determining the seismic properties
of the whole rock, while in consolidated sands production/injection related
fluid effects might be more difficult to detect, jeopardizing the validity of the
inversion method. However, if time-lapse changes in seismic attributes even
in case of deep-buried consolidated sands, are above the detection threshold,
the presented scheme can still be successfully applied. In case of consolid-
ated sandy reservoirs or of clay intrusions, the simple Hertz-Mindlin model
(Mindlin, 1949) cannot be used and the dry rock moduli need to be estimated
with different models (Dvorkin & Nur, 1996; Dræge et al., 2006).
It is important to note that reflection derived properties are very local, op-
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Figure 2.16: Exact vertically averaged changes in pressure (a) versus changes in
pressure estimated with method 1 (b), method 2 (c), method 5 (f), method 3 (g) and
method 4 (h). The figures below each estimate represent the respective difference
with the truth (plots d,e,i,j,k). The labels indicate the CMP numbers on the X
and Y directions. The systematic noise has a strong impact on the estimates aspect,
changing the magnitude or in some cases the sign of the biases present in the different
methods.

posed to the time-shift derived properties, as they are averaged over the whole
reservoir thickness. In this study, a relatively homogeneous vertical distri-
bution of porosity, pressure and saturation has been assumed; violation of
this condition will deteriorate the results. A way to circumvent this problem
is by using a stochastic approach with multiple realizations having different
internal reservoir parameter distributions; however, the latter solution has
not been explored in this chapter.
The inversion scheme presents the theoretical advantage of replacing the
gradient reflectivity, generally showing a low S/N ratio and requiring careful
log calibration (Whitcombe, 2002), with time-shift data. In fact, this substi-
tution results in a large reduction of the error in changes in saturation that
compensates a relatively small increase for the error in ∆P . However, the
method is not applicable for reservoirs at or below the tuning thickness, as
the time-shifts cannot be correctly estimated.
The presented scheme, as every 4D seismic inversion method, strictly relies
on the quality and the accuracy of the measurements. In this case study, the
effect of 30 years production combined with waterflooding are quite easy to
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detect on seismic attributes. Note that the method works also outside the
reservoir, where changes in saturation are zero and changes in pressure mod-
erate. This demonstrates that the method will also work at much smaller
time intervals, that is smaller time-lapse differences.

2.6 Conclusions

In this chapter, a 4D seismic inversion scheme which solves for time-lapse
changes in pore fluid and pressure has been presented; it is based on a mod-
ified form of Landrø’s (2001) equations and extended with two additional
equations expressing the time-shift induced by P- and S-wave velocity changes
as functions of pore pressure and saturation changes.
The results show that assuming spatially invariant coefficients used in the
approximations of changes in seismic attributes leads to less accurate results
as porosity leakage affects the final estimates; if the porosity field is known, or
at least the vertically averaged porosity at each CMP location, the quality of
the inversion improves considerably and the porosity imprint is attenuated.
Final estimates generally suffer from leakage between changes in saturation
and changes in pressure caused by the inaccuracy of the forward approxima-
tion of the gradient reflectivity changes. By replacing this equation with the
approximation related to the time-shift equation, the leakage almost disap-
pears. If time-shift data are not available, the leakage effect is strongly re-
duced if, in the gradient equation, the second order terms in relative changes
in seismic properties are added. The leakage problem, as mentioned by
Landrø (2001) and Meadows (2001), is exacerbated by the lack of repeat-
ability, uncertainty in the scaling factor between different angle-stacks, or
the validity of the rock-physics model. In this synthetic case, where the
uncertainty in the rock-physics model is the only source of error, it is demon-
strated that the inaccuracy of the gradient approximation is a major cause
of the leakage between different parameters.
The final estimates seem to be relatively robust to seismic noise. Changes
in saturation and pressure present fairly high accuracy in the presence of
random noise up to 15%; in the presence of systematic noise up to the order
of 10%, final estimates show biased errors but their main features can still
be recognized clearly.
The presented scheme shows good results in case the impedance contrast
between the overburden and the reservoir is high. A weaker contrast will
represent a limitation of the method as the relative noise level in the extrac-
ted attribute increases.
In the next chapters the presented inversion scheme is included in an as-
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similation scheme based on the Ensemble Kalman Filter; the objective is to
fully understand the added value of 4D seismic inversions for better reservoir
properties estimation and for an improved production forecast.
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Chapter 3

The Ensemble Kalman Filter:

origin and evolution

T
his chapter provides an introduction to the EnKF, including an overview
of proposed improvements in the literature. Particular attention is given

to methods circumventing the problem of filter divergence, often observed in
case large datasets, such as time-lapse seismic data, are assimilated with the
EnKF.

3.1 The origin of the Ensemble Kalman Filter: the

Kalman Filter

Introduced by Evensen (1994) in oceanography, the EnKF has been applied
in petroleum engineering only recently (Lorentzen et al., 2001). Since it has
gained an increasing interest for solving history matching problems.
The EnKF is based on the classical Kalman filter (KF) introduced by Kalman
(1960). This section introduces the KF and the derivation of the EnKF.

KF is an ideal tool when all the dynamics and noise statistics are exactly
known. In order to introduce the KF, we define two concepts. The ”truth”
is the actual physical system that we are interested in. The model is the
mathematical description, which is used for the filter design stage.
Kalman filtering represents the link between a model and measurements.
This technique processes the measurements in a physically consistent way,
taking into account the model. This is achieved by extending the determin-
istic model represented by:

xk+1 = M(xk) (3.1)

45



46 3. The Ensemble Kalman Filter: origin and evolution

to a stochastic model:

xk+1 = M(xk) +wk (3.2)

In the equations x indicates the true state vector -that is the vector containing
the variables to estimate like for example permeability, porosity, OWC, etc- ,
M represents one time step of the numerical simulation model, the subscript
refers to the time at which a vector is considered (time k or time k+1), and
wk represents the model forecast error at timestep k. This is assumed to
be a stochastic perturbation with zero mean wk = 0 and covariance matrix

wk (wk)
T = C

f
xx.

All the available data for time k are stored in a vector dk. The ”true” data
or the ”true” values measured without errors are supposed to be related to
the true state according to a linear observation model:

dk = Hkxk
T (3.3)

Through the observation model operator H, a forecast for the observed data
locations can be made from the forecast of the state. Uncertainties in the
measurements need to be specified as well. Therefore, the vector dk from
equation (3.3) is expanded as follows:

dk = Hkxk
T + ǫk (3.4)

where ǫk is the observation error. It consists of the measurements error
due to imperfect measurements and the representation error caused by the
discretization of the dynamics. This vector is assumed to be of zero mean
(ǫ(tk) = 0). Its covariance matrix is defined as Cǫǫ = ǫkǫ

T

k
and it is assumed

to be uncorrelated with the model error wkǫk)T = 0 (Hanea, 2005).
Kalman filtering tries to combine the information from the model and from
observations to update the state vector. Using Bayes theorem (1.5) as in
Cohn (1997) and Maybeck (1979), the posterior density function of the ana-
lyzed state xa can be expressed as

f(xa|d) ∝ exp

(

−
1

2
J[xa]

)

(3.5)

where

J[xa] =
(

xf − xa
)T (

Cf
xx

)−1 (

xf − xa
)

+(d−Hxa)T (Cǫǫ)
−1 (d−Hxa)

(3.6)
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The function J can be read as in section 1.5: the first part represents the prior
information, or the initial guess about the state, while the second term is the
conditional probability of the data given the state of nature. The minimum
of J is found by differenciating it with respect to xa. The minimum of this
function, which corresponds to the maximum likelihood estimate is

xa = xf +K
(

d−Hxf
)

(3.7)

The matrix K is called the Kalman gain and it is expressed as

K = Cf
xxH

T
(

HCf
xxH

T +Cǫǫ

)−1

(3.8)

The Kalman gain is the ratio between the covariance of the model error with
the observations and the sum of the covariance of the predicted observations
with the forecast error covariance matrix. This can be interpreted as the
ratio between the model uncertainty and the sum of the uncertainties related
to the model and to the observations.
The analyzed (posterior) model error covariance analysis is expressed as

Ca
xx = (I−KH)Cf

xx (3.9)

which can be derived as the minimum error variance of the analyzed estimate
(Evensen, 2009). Therefore, the Kalman filtering seeks for the maximum
likelihood estimate which coincides with the minimum variance estimate in
case of Gaussian priors and model linearity.

3.2 The EnKF: introduction

The KF was adapted to work with nonlinear modes with the introduction of
the extended Kalman Filter (EKF). The EKF uses linearizations of the model
and observation equations around the estimated mean of the state (tangent
linear model, TLM). This algorithm was used for parameter estimation in
hydrology (Eigbe et al., 1998), but the quality of the EKF update is severely
jeopardized in case of highly nonlinear models. Another important shortcom-
ing of the EKF (and of the KF in general) is that the prior and the posterior
true error covariances need to be stored and propagated in time. This gives
rise to two limitations. First,the true error is never known; second, since
those matrices have equal size as the square of the state vector, the method
is not easily applicable to high dimensional models. Therefore, during the
last decades, several alternatives to the EKF have been developed.
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The EnKF (Evensen, 1994) is a Monte Carlo, sequential method which cir-
cumvents these two important limitations of the KF by representing the error
covariance matrix with an ensemble of model realizations. Unlike in the KF
or EKF, in the EnKF N realization representing the state vectors (called
’ensemble members’) are treated as a sample from the prior distribution of
the model state at a certain time, and their mean is treated as the state
estimate from the forecast model in the standard KF (Anderson, 2009). On
the other hand the spread in the ensemble (standard deviation) represents
the initial model uncertainty around the mean.
In the forward step of the EnKF, the model equations are applied to each of
the ensemble members (see eq.3.2 in case of linear models). The update step
is computed using the form of the KF equation but avoids the computation
and the storage of the full covariances matrices for model and measurement
uncertainties. As the initial realizations are drawn randomly from the prior
model variables distribution, the EnKF circumvents the limitation of assum-
ing an infinite distribution (as a real Gaussian distribution would be). How-
ever, the analysis step, same as in KF, is still based on the first two-points
statistics of the distributions, limiting the performance of the filter when the
Gaussian assumption is strongly violated.
The first application of the EnKF in reservoir engineering was presented in
Lorentzen et al. (2001), where, using well measurements, improved predic-
tions of pressure behavior were obtained. The successful application of the
EnKF in this paper, motivated Nævdal et al. (2002) to apply the EnKF to
the update the permeability field in near-well reservoir models. The authors
obtained improved production forecasts.
After these initial studies, the number and the complexity of the case studies
where the EnKF was implemented, rapidly increased (Naevdal et al., 2005;
Gu & Oliver, 2005). Skjervheim et al. (2007) for the first time proved the ad-
ded value of 4D seismic in the data assimilation process based on the EnKF
on a 2D synthetic model and on a 3D field case. In the 2D case, with the as-
similation of changes in elastic impedances, the permeability estimate largely
improved; in the 3D case, the assimilation of changes in Poisson’s ratios, ad-
ded to production data, led to a different estimation of the permeability field,
with respect to the case where only production data were used. Skjervheim
& Ruud (2006) applied the EnKF method to assimilate production and wave-
form data on a 2D synthetic model with the result of an improved production
forecast and porosity/permeability estimate compared to the base case.
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3.3 The EnKF formulation

In section 3.1, the measurement operator was assumed linear and therefore
indicated with H. In the EnKF, the measurement operator relating the true
model state to the observations is nonlinear and therefore indicated with H.
Hence, the EnKF analysis equation reads:

Aa = A+PfHT
(

HPfHT +R
)−1

(D−H (A)) , (3.10)

In this equation A indicates the matrix comprising the state vectors (or
augmented state vectors, that is the vectors containing state and parameters
to update) of theN ensemble forecasts (in the KF corresponding to the vector
a). A is defined as:

A = (x1,x2, ...,xN) (3.11)

with x1, x2, xN being the state vectors for all the N members. The term Pf

indicates the ensemble forecast covariance matrix defined as:

Pf =
A′AT

N − 1
, (3.12)

with A′ being the ensemble perturbation matrix. It is expressed as:

A′ = A−A = A(I− 1N ) (3.13)

with A being the matrix storing the ensemble mean in each column and
1N being the matrix with all elements equal to 1/N. The ensemble forecast
covariance matrix corresponds to the model error covariance matrix defined
in section 3.1 C

f
xx.

The term PfHT is the ensemble cross-covariance matrix between modeled
parameters/states and observations while H

(

Pf
)

HT indicates the ensemble-
based error covariance matrix of simulated measurements.
D denotes the ensemble matrix of perturbed measurement vectors, defined
as

D = (d1,d2, ...,dN) (3.14)

with dj being the N vectors of observations perturbed with white noise.
These are given as

dj = d+ ǫj j=1,...,N (3.15)
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From the ensemble perturbations ǫj the measurement error covariance R can
be constructed in a stochastic way (Evensen, 2004; Skjervheim et al., 2006).
This is done by storing the ensemble perturbations in the matrix E:

E = (ǫ1, ǫ2, ..., ǫN ) (3.16)

and multiplying E by its transpose divided by N-1:

R =
EET

N − 1
. (3.17)

The matrix R in the EnKF replaces the true observation error covariance
matrix Cǫǫ in the KF equation.
However, in the following experiments the observation error matrix has been
constructed differently. The standard deviation for each measurement error
is specified upfront. The reservoir simulator generates N samples of a Gaus-
sian distribution centered around the true measurement value and with a
standard deviation equal to the one specified.

The term PfHT
(

HPfHT +R
)−1

is the Kalman gain and it can be read in
the same way as described in section 3.1. From the EnKF analysis equa-
tion it can be observed that the term Aa is a weighted linear combination
between the model prediction Af and an adjustment related to the obser-
vations; hence, Aa inherits the predictor-corrector structure from the KF
analysis.
Evensen et al. (2007) describes the EnKF as a method for solving the general
state and parameter estimation problem in a Bayesian framework. The main
objective of the EnKF is to sample from the posterior state distribution con-
ditioned to observation data using Monte Carlo integration in time. If this
distribution is conditioned to data from all the previous timesteps then the
’smoother’ solution is obtained (Ensemble Kalman Smoother or EnKS). The
EnKS equation can be derived in a bayesian framework as

f (A0, ...,Ak | d1, ...,dk) =
f (A0, ...,Ak−1 | d1, ...,dk−1) f (Ak | Ak−1) f [dk | Ak]

∫

(...)dA

(3.18)

where f (A0, ...,Ak | d1, ...,dk) is the a posteriori state distribution at time
k, f (A0, ...,Ak−1 | d1, ...,dk−1) is the a posteriori distribution of A at time
k-1, f (Ak | Ak−1) is the model evolution from time k-1 to time k given by a
first-order Markov process (see eq. 3.1-3.2), and [dk | Ak] is the probability
distribution of the measurement at time k given the state at that time.
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Eq. 3.18 defines the smoother solution over the interval t ∈ [t0, tk] using data
vectors d1, ...,dk. In the same probabilistic framework the EnKF equation
is derived as

f (Ak|d1, ...,dk) =
f (Ak|d1, ...,dk−1) f[dk|Ak]

∫

(...)dA
(3.19)

Here the information is carried only forward in time and the state at time tk
is dependent on all the previous data d1, ...,dk, meaning that data can be
used to obtain updates at different times than the observation times. At the
final time k the estimate is identical for the smoother and the filter, while at
all previous times the estimate will be suboptimal since future observations
have not been used to derive it (Evensen & van Leeuwen, 2000).
Another variant of the EnKF, introduced by Sakov et al. (2010), to assimil-
ate observations taken at a time different than the assimilation time is the
Asynchronus Ensemble Kalman Filter (AEnKF). The filter is based on the
idea of inferring the linearized model dynamics from the ensemble, assum-
ing that the evolution of the corrections and of the ensemble anomalies is
linear. In this case in fact, the expansion coefficients of the corrections for
the ensemble anomalies remain constant along the forecast system trajectory.
Therefore, the transform matrices calculated for assimilation at the time of
the observation can be used for assimilation at other timesteps. In this way
the AEnKF makes it possible to ’move’ the assimilation time of observations
without affecting the results.

3.4 The EnKF: limitations

Evensen et al. (2007) showed that for a linear model with Gaussian statistics,
the analyzed ensemble converges to the correct posterior distribution. Nev-
ertheless, Zafari & Reynolds (2007) investigated the EnKF performance for
nonlinear models and multimodal model variable distributions; they showed
that in those cases the EnKF fails to capture the structure of the posterior
pdf. Section 3.5 provides a background information on the different modi-
fications that can be applied to the standard EnKF in order to achieve a
better performance in case of nonlinear problems and non-Gaussian variable
distributions.
Another potential limitation of the EnKF is that the solution space invest-
igated is limited to the space spanned by the forecast ensemble, as shown by
Evensen (2004). Hence, the ensemble members can be considered as basis
functions in the parameter search space. These basis functions should, in
principle, span the entire parameter search space, but that would require an
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infinite ensemble. In practice, the EnKF forces the state covariance to be of
the same rank as the ensemble size, which is in general in the order of mag-
nitude 100, much smaller compared to the number of unknowns in the state
vector (variables and state for the reservoir gridpoints) (Anderson, 2009). For
this reason, the characteristics of the prior ensemble members (initial para-
meters and states) and their number (ensemble size) strongly condition the
final analysis. Section 3.6 provides an overview of the variations that can be
implemented in the EnKF algorithm in order to decrease the sampling errors
due to the stochastic nature of the filter. A further limitation of the filter is
that it can not handle a number of independent observations larger than the
ensemble size (see for references section 3.7); therefore section 3.7 provides
a review of all the possible modification to the filter when large amounts of
data are available for history matching.

3.5 The EnKF with Non-Gaussian priors and strongly

nonlinear systems

The EnkF is particularly efficient when the prior probability distributions are
Gaussian and when the relationships between the model parameters, state
variables, and observation variables are approximately linear. Violation of
even only one of these conditions these two assumptions may introduce severe
problems in the model update. This section examines separately different
approaches for dealing with nonlinearity in the dynamical system and the
complex non-Gaussian distributions for model parameters.

3.5.1 Restarting the simulation

Thulin et al. (2007) established consistency between the model forecast ob-
tained from the last data assimilation and the one obtained by rerunning the
simulation from time zero. However, this consistency only holds for dynam-
ical systems with no modeling error and where the predicted data are linearly
related to the state vector. For the nonlinear problems involved in history
matching this consistency fails (Thulin et al., 2007; Evensen, 2009). A rerun
from time zero, although computationally demanding in some cases, repres-
ents the advantage of eliminating any material balance errors introduced by
truncating nonphysical values of saturations or porosities to physically plaus-
ible values during the EnKF update. This however at the cost of a potential
divergence between the optimal solution obtained with the EnKF and the
resulting model after the re-run. Chapter 6 shows an example of a rerun
experiment after the assimilation of time-lapse data.
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3.5.2 Parameterization to ensure Gaussian distributions and

Particle Filter

In order to avoid non-normal variable distributions in the EnKF update, ap-
plying upfront a Gaussian transform to such variables is the most common
and intuitive procedure to improve the filter performance.
Bertino et al. (2003) changed strictly positive and strongly skewed concentra-
tions of phytoplankton into a nearly Gaussian distributed variable by using
a log-normal transformation: it resulted in an improved filter performance.
zha (n.d.) used a similar approach by applying a normal score transform to
water saturation before updating it. This helped to avoid unphysical updated
values.
Jafarpour & McLaughlin (2007a) and Jafarpour & McLaughlin (2007b) in-
troduced the use of the discrete cosine transform (DCT). The DCT allows to
reduce the number of basis functions by retaining only the ones with higher
weights. The weights are established according to the prior information,
emphasizing large-scale events like channels or long range high permeabil-
ity structures. The advantage introduced by this technique is a reduction in
computational costs for the EnKF, extremely useful for real time applications
when working with large models.
Gu & Oliver (2006) replaced water saturation in the state vector with a
geometrical variable locating the position of the water front. The result for
a 1D model showed improved saturation updates. Chen et al. (2009) fur-
ther developed this idea, replacing the saturation values for gridblocks at the
waterfront (with bimodal distribution) with the water-phase arrival times
for the same gridblocks. Because arrival times is quasilinearly related to
the petrophysical properties of the reservoir (Wu & Datta-Gupta, 2002), this
parameterization ensures a Gaussian distribution of the variables in the state
vector. As the variable distribution becomes similar to a Gaussian function
then using saturation data, results show improved an model update, with no
abnormal saturation values, with respect to the case where no parameteriz-
ation is applied. Chapter 6 shows an example of a similar approach where
observed saturation data coming from seismic inversion are parameterized
into waterfront arrival times.
Another approach that has been proposed to get a correct sample of the pos-
terior distribution, in case of distributions which are not simply described by
a Gaussian curve, is the Particle filter (Doucet et al., 2001). In this method a
set of ”particles” (ensemble members) are sampled from the forward model,
then each particle receives a weight proportional to the ratio between the
joint posterior density function and an ’importance function’. The update
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for each particle is then obtained using the standard EnKF formula: hence,
the EnKF can be seen as a particle filter restricting the weights to be uni-
form. The mentioned importance function’s role is to slightly distort the
posterior density function in order to capture non-Gaussian features in the
distribution. However, weights have to remain as close as possible to one, in
order to preserve the main analyzed state characteristics. A shortcoming of
particle filters is the difficulty of locating particles in regions of high likeli-
hood when the dimension of the model space is large (Aanonsen et al., 2009).
Furthermore Gordon (1993) proved that the weights converge to zero after a
few time steps. No applications to large-scale systems have been published.
Improvements to this filter have been proposed in literature. Stordal et al.
(2011) presented a way to avoid the collapse of the weights by forcing them
to be uniform with an artificial increase of the uncertainty associated with
each particle. This means that each sample, or weight, is smoothed with a
Gaussian density leading to the ’Gaussian mixture filter’. A recent develop-
ment of this type of filter is the adaptive Gaussian mixture filter (Anderson &
Moore, 2005; Bengtsson et al., 2003; Kotecha & Diurić, 2003). The difference
with the Gaussian mixture filter is the introduction of a tuning parameter
α ∈ [0, 1]. The condition that α = 0 gives the uniform weights of the EnKF
and reduces the weight degeneracy problem, while with α = 1 weights are the
same as in the Gaussian mixture filter leading to a better preservation of non-
Gaussian features of the marginal distributions. The approach is ’adaptive’
as an optimal α is sought at each assimilation step.

3.5.3 Iterative ensemble filters

When the relation between model and observation variables becomes strongly
nonlinear the EnKF might lead to unphysical updates. Obviously truncation
represents the simplest, but not very elegant solution. Fortunately, more
sophisticated alternatives, like iterative methods have been introduced. Most
iterative forms of the EnKF can be viewed as algorithms that minimize a
stochastic objective function or, equivalently, maximize the posterior condi-
tional probability distribution of the ensemble.
Zupanski (2005) proposed an ensemble maximum likelihood filter for general
nonlinear observations. The ensemble method is used to approximate the
Hessian and the gradient of the objective function in the subspace spanned
by the ensemble. The iteration avoids non-physical results which would be
caused by a single large update step.
Motivated by this study Reynolds et al. (2006) and Li & Reynolds (2009)
introduced an iterative method that attempts to generate realizations of the
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reservoir model parameters at each time-step by solving an iterative equa-
tion. In each iteration it is necessary to perform one forward simulation from
time zero to the current assimilation timestep and one solution of the adjoint
system backward from the current assimilation timestep to time zero in or-
der to compute the gradient of the objective function at each iteration step.
During each iteration, the ensemble is used to approximate the Hessian of
the model variables to update. As each ensemble uses a separate gradient
computed locally, the method is able to preserve multipoint statistics. Gu
& Oliver (2007) proposed an iterative ensemble method a bit different from
the previous ones as it uses in the iterations the ensemble to compute the
sensitivity matrix. The result is that the method does not require an adjoint
code to compute gradients, but it uses one descend direction for all the real-
ization.
Lorentzen & Naevdal (2011) proposed an iterative EnKF based on the iter-
ated EKF (Lefebvre et al., 2004) In this approach the measurement model is
linearized around the analyzed state estimate. The predicted measurements
are expressed as function of the updated model parameters and state vari-
ables to produce updated and improved simulated measurements. Although
results from simple models show for this approach a more accurate update
than obtained with the EnKF, the method is not usually applicable as the
observational model is usually not known.
Other examples of Iterative filters are the ”Iterative Ensemble Filter for
Plausibility” (Wen & Chen, 2006, 2007; Gu & Oliver, 2006). In these meth-
ods, the estimates of model parameters are iteratively updated using the sim-
ulator to forecast from the last assimilation time k-1 with the state variables
obtained at time k-1 and new model parameters at time k. Although the
approach ensures physically plausible state variables, it is difficult to justify
as it updates model parameters but not the state variables at the previous
assimilation time.

3.6 Adjusting the EnKF to reduce sampling errors

3.6.1 Resampling

Evensen (2004) showed that the EnKF analysis can be expressed as a lin-
ear combination of the different ensemble members. Hence, these repres-
ent the initial parameter search space and should in principle be infinite.
For computational reasons the ensemble has to remain finite and relatively
small. However, Evensen (2004) introduced a method aiming at increasing
the solution space. It consists in generating a large number of realizations
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and selecting the initial ensemble from singular vectors associated with the
largest eigenvalues of the approximated covariance. In this way, remarkable
improvements in the EnKF update were achieved while keeping the ensemble
size constant. One problem with this approach is that the property realiza-
tions in the initial ensemble might be relatively smooth and not necessarily
consistent with the prior geological model. Evensen (2004) also suggested a
rescaling to obtain the correct variance. An application of this approach for
reservoir models is presented in Oliver & Chen (2009).

3.6.2 Square-Root Filters

Basic EnKF may introduce sampling errors because of the stochastic per-
turbations added to the observations. However, these sampling errors can
be avoided by performing the update of the ensemble mean separately from
the ensemble perturbations update (Evensen, 2004). This is the idea behind
Ensemble Square-Root Filters (EnSRF) (see Whitaker & Hamill (2002), Tip-
pett et al. (2003), Evensen (2004)). In these filters while the ensemble mean
is updated according to the standard approach, the analyzed ensemble anom-
alies are obtained through factorization of the theoretical analysis covariance
matrix, assumed to be known in advance. This approach results in no per-
turbation added to the measurements and in a reduced tendency for the ana-
lysis pdf to become Gaussian after few updates (as Lawson & Hansen (2002)
empirically found). Another empirical finding is that analysis may become
progressively skewed (Lawson & Hansen, 2002; Leeuwenburgh et al., 2005)
even when symmetric transformation matrices are applied (Sakov & Oke,
2008). It has also been noticed that the analyzed ensemble may collapse into
one single state as a result of a single outlier; fortunately this problem can be
avoided by using a simple randomization (Leeuwenburgh et al., 2005). Wang
et al. (2004) noted that some solutions for generating the ensemble anomalies
do not preserve the ensemble mean during the transformation. Therefore,
Sakov & Oke (2008) recommended that only mean-preserving transforma-
tions should be used with EnSRF.

3.7 The EnKF and large amounts of data

When the number of observations to assimilate is large, i.e. when assimilat-
ing 3D or time-lapse seismic data, two major problems occur with the basic
EnKF method: (1) It is not computationally feasible to compute or invert
the matrix

(

HPfHT +R
)

in the Kalman gain (see eq. 3.10), and (2) as
discussed in section section 3.6, each updated ensemble member is a linear
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combination of the corresponding initial members, so there are no sufficient
degrees of freedom to properly assimilate data when the number of independ-
ent data is larger than the ensemble size.
Although this problem could be eliminated by using a large ensemble, effi-
ciency requires an ensemble relatively small. A very effective approach to
improve the EnKF efficiency when dealing with large amounts of data is us-
ing localization methods: the two most common localization methods are
the local analysis and the covariance localization. Local analysis (Sakov &
Bertino, 2011), consists of setting ensemble anomalies outside a certain local
window to zero during the update, while covariance localization consists of
setting to zero part of the covariance matrix during the update. The other ap-
proach is covariance localization which consists of multiplying the ensemble
covariances element-wise (Hadamard or Schur product) by a local support
matrix C resulting in a localized covariance estimate.
Covariance localization seems to provide an improved update with respect to
local analysis (Sakov & Bertino, 2011); furthermore, covariance localization
methods were first introduced in literature (Houtekamer & Mitchell, 1998)
and enjoy a broader and progressively growing attention. For those reasons it
has been chosen in this thesis as a method to improve the EnKF performance
for the assimilation of large time-lapse (seismic) datasets.

3.7.1 Covariance Localization

Covariance localization allows updates to use a different linear combination
of realizations for each grid cell. For this reason the global update can be
obtained from a much larger space than just the span of the ensemble real-
izations (increase in the effective ensemble size). The other primary reason
behind localization is the reduction of spurious correlations in the ensemble
covariances which can be explained as sampling artifacts induced by the lim-
ited ensemble size (Mysrseth et al., 2012).
In the earliest applications (Houtekamer & Mitchell, 1998) the localized
EnKF update reads:

Aa = A+
(

CA′A′ ◦AA′T/ (N − 1)
)

∗

HT
(

H
(

CA′A′ ◦A′A′T/ (N − 1)
)

HT +R
)−1

(D−HA)

(3.20)

Where for simplicity we assume here a linear measurement operator H

as in the referred papers.
In later applications (Houtekamer & Mitchell, 2001; Fertig et al., 2007), it
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was assumed that:

(

CA′A′ ◦AA′T/ (N − 1)
)

HT ≈ CPH ◦PfHT (3.21)

and that

H
(

CA′A′ ◦AA′T/ (N − 1)
)

HT ≈ CHPHHPfHT (3.22)

It can be noted that the dimensions of the compact support matrices C are
inconsistent in these expressions (Chen & Oliver, 2010). However, these as-
sumptions may hold if most types of measurements have compact support
much smaller than the localization range (Leeuwenburgh et al., 2011).
When these assumptions hold, it can be noted that localization applied on
the model-error covariance matrix becomes equivalent to localization applied
on the matrix of ensemble covariances between state/parameters and meas-
urements and on the ensemble covariance matrix of predicted outputs. This
allows the use of localization with non-linear model propagation and it does
not require the calculation of the model error covariance matrix, usually very
large (Leeuwenburgh et al., 2011). For this reason in the mentioned pa-
pers and in other later studies -like in Hamill et al. (2001) and Keppenne &
Rienecker (2002), among others- localization has been applied to ensemble
covariances.
Another modification, introduced in later applications (Houtekamer &Mitchell,
2001; Keppenne & Rienecker, 2003; Bertino et al., 2003; Houtekamer &
Mitchell, 2005), is the replacement (in the local support matrix C) of the
sharp cutoff (binary matrix) with a tapering de-correlation function: this is
a scalar, compactly supported, positive, monotonically decreasing function
which takes values between zero and one (Gaspari & Cohn, 1999). In this
way sharp discontinuities in the updates have been eliminated.
Hamill et al. (2001) investigated the effect of noise in the analysis estimate.
They also computed the eigenvalues of the estimated covariance matrices
with different localization regions showing that these become full rank if
localization is applied. Lorenc (2003) showed that when the Gaspari-Cohn
correlation function is used for localization, the optimal choice regarding the
localization radius increases as the ensemble size increases. For this reason
Furrer & Bengtsson (2007) contributed to solving the problem of estimating
an optimal distance-dependent localization function. Their approach involves
the minimization of the difference between the true covariance matrix and
the localized ensemble estimated covariance. Results showed that the op-
timal localization function determined by this method, depends on two cru-
cial factors: (1) The true covariance structure, and (2) the ensemble size. For
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Figure 3.1: Monodimensional behavior of Gaspari-Cohn (plot a) and of Furrer-
Bentson (plot b) function. For the second function the ensemble size N is set to 100
and the true covariance has exponential variogram. Both the expressions depend on
the variable c. In both these examples c is set to 3. Gaspari-Cohn presents a gentler
slope, but Furrer-Bengtson presents a more extended high value plateau.

a mathematical derivation the reader can also check Aanonsen et al. (2009)
and Schulze-Riegert et al. (2009).
Figure 3.1 compares the Gaspari-Cohn localization function with the func-
tion later introduced by Furrer-Bengtson (estimated using an exponential
variogram and an ensemble of 100 members). Both functions depend on
a single-length factor indicated with ”c”. In Gaspari-Cohn the value of c
corresponds to the distance at which the function decreases to the value of
0.2; in Furrer-Bengtson, the value of c corresponds to the distance at which
the function drops to zero. In both these examples c is set to 3. Gaspari-
Cohn curve presents a gentler slope, but Furrer-Bengtson presents a more
extended high value plateau, allowing for stronger updates. For this reason,
and for its dependence with the ensemble size and real correlation pattern,
this Furrer-Bengtsson function is often preferred in recent distance-dependent
localization studies (Chen & Oliver, 2010) as in this thesis.

3.7.2 Application in Reservoir Engineering

In reservoir engineering applications, localization is often applied directly to
the Kalman gain instead of on the covariance matrixes (Chen & Oliver, 2010;
Devegowda et al., 2007; Arroyo-Negrete et al., 2006; Chen & Oliver, 2009);
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in this case the EnKF update reads as:

Aa = A+ C ◦

(

PfHT
(

HPfHT +R
)−1

)

(D−HA) . (3.23)

In reservoir engineering, the earliest applications of covariance localization
are from Skjervheim et al. (2007), and Dong et al. (2006). In both stud-
ies, localization has been used for the assimilation of seismic data. Dong &
Oliver (2003) showed, using a simple 2D model, that the combination of seis-
mic data (as P-wave impedances) and production data resulted in a better
estimation of those static properties than in the case where only produc-
tion data were used. In particular, the porosity estimate was more accurate
than the permeability estimate when using seismic data. This is due to the
fact that P-wave impedances are more related to porosity than permeability.
Skjervheim et al. (2007) used a distance dependent localization that allowed
updating over a larger region. The authors did not discuss the choice of
the distance range, but they showed that decreasing the template size makes
the ensemble spread increase. Arroyo-Negrete et al. (2006) and Devegowda
et al. (2007) chose a different procedure to decide the localization regions.
In their papers, the areas of influence for production rates were not decided
according to distance criteria but based on the traveltime sensitivity to the
reservoir gridpoint permeability, calculated along the streamlines connecting
each injector to the related producers. This streamline-based covariance loc-
alization has the benefit of preserving prior geological information, retaining
the non-Gaussian distribution from the initial model. Trani et al. (2009b)
and Trani et al. (2009a) used streamlines to identify localization regions for
time-lapse saturation and pressure data. Agbalaka & Oliver (2008) applied
the EnKF to adjust facies boundaries in a 3D model. Facies constraints were
iteratively enforced using the Gaspari-Cohn distance-dependent localization
of the Kalman gain to update the Gaussian random fields for facies.

3.7.3 Covariance Localization: limitations and Improvements

Although covariance localization has been proven successful in many studies,
as described in the previous section, it presents some drawbacks as well. This
section describes the limitation of the approach and how it can be made more
efficient.
Hacker et al. (2007) used a Gaspari-Cohn localization function with optim-
ized range parameter for a weather forecast application. They found that
the optimal localization range varied with the time of the day. Hence, they
concluded that localization based on distance alone in a system with multiple
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data and state types is of questionable value.
Kepert (2009) showed that although localization filters out covariance at large
scale, it does not change the total variance; the consequence is a net gain of
covariance at small scale. Hence, localization can not be regarded simply as
a high-pass filter. This distortion in the variance introduced by localization
is likely to generate imbalance in the analysis, as reported by Houtekamer
& MItchell (2006). Another localization drawback, is that it can only be
applied on spatially correlated variables; in fact, if it is applied on spatially
uncorrelated variables (like oil-water contact or fault transmissibility multi-
pliers) the EnKF localization might have a detrimental outcome (Zhang &
Oliver, 2011a).
The adaptive localization approach has been introduced to improve the clas-
sical EnKF localization method (Hunt et al., 2007). In this method in fact,
each grid-point is treated independently and updated with different sets of
observations, like in the classical approach; however, the measurement error
matrix R is weighted by the localization factor, so that far-away, uncorrelated
measurements have large errors (R-localization).
From the previous paragraphs it is obvious that the major challenge associ-
ated with localization, is the selection of an appropriate localization region,
in order to remove the spurious correlations without eliminating the true
ones. Therefore, localization in order to be effective would require an a pri-
ori knowledge of the true covariance of model variables with measurements
(Zhang & Oliver, 2011a). Chen & Oliver (2010) and Emerick & Reynolds
(2010) defined appropriate localization functions to apply to the covariance
matrix between model variables and production data. They proved that the
region of influence depends on the prior covariance for the model variables,
on the past history of data assimilation, and on the reservoir structural geo-
logy. The results show that choosing for each measurement a localization
function including the real correlations only, the localized EnKF update is
much more accurate than the traditional approach. In fact, with the use
of localization, the filter divergence is avoided, the permeability is correctly
estimated, and the quality both of the history match and of the production
forecast improves.
The next chapter presents a study similar to the one described in Chen &
Oliver (2010). The difference is that in our approach the covariance of model
parameters and states with 4D seismic observations is analyzed, instead of
the covariance of variables with production data. Time-lapse seismic meas-
urements considered are typically those resulting from the inversion scheme
proposed in chapter 2(∆S and ∆P ). The aim of this study is to find local-
ization functions which include the region of non-zero cross-covariance only.
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Results show that the covariances mainly depends on the geological structure
(permeability field), on the well pattern and flow dynamics; furthermore, as
saturation and pressure are state variables, their cross-correlations with seis-
mic measurements change in time. In the next chapter, these localization
functions will be used to condition the EnKF update in case a large number
of seismic observations is available; the effect of knowing a priori the true
cross-covariances will be evaluated.

3.7.4 Alternatives to Covariance Localization

The first alternative approach to covariance localization to deal with large
amounts of data was introduced by Evensen (2004); Evensen et al. (2007);
Skjervheim & Ruud (2006); Skjervheim et al. (2006). In these papers the
authors used a subspace EnKF inversion scheme in which data mismatches
and simulated measurement errors are projected onto the subspace spanned
by the principal left singular vectors of H (A) Ḣowever, with this method,
there is no guarantee that the updated model parameters will honor all the
measurements, therefore the update accuracy is much smaller than the one
obtained by using a larger ensemble.
Other alternatives to covariance localization are more recent.
Anderson (2007) proposed a filter for arbitrary localization functions that do
not necessarily decrease monotonically with distance from the observation
point. The tuning ensemble used to estimate localization functions must be
several times larger than the normal ensemble (for this reason called ’Hier-
archical filter’). The procedure requires generation of 3-5 ensemble of the nor-
mal size. A regression coefficient is estimated for each variable-observation
pair in each ensemble. The mean and the variance of the regression coefficient
are used to compute a regression confidence factor (RCF) for each variable-
observation pair. The set of RCFs for each observation form a regression
confidence envelope, which can be thought of as a sort of localization.
Vallés & Naevdal (2009) applied the hierarchical filter by Anderson (2007)
on the Brugge field (Peters et al., 2009). They gave recommendations on the
number of ensembles and the size of each individual ensemble, the product
of which is the number of the simulation runs required by this method. As
this number is quite prohibitive, practical implementations of the method are
limited.
Zhang & Oliver (2011b) and Zhang & Oliver (2011a) used a similar idea
as the hierarchical filter to stripe out spurious correlations. They also cre-
ated multiple ensemble groups for as many estimates of the Kalman gain.
The difference with Anderson (2007) is that they used bootstrap sampling
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(repeated sampling method from the parent data to compute the statistics
of interest) in order to generate new ensemble realizations. For every en-
semble the Kalman gain is calculated. For every variable-observation pair,
or equivalently every entry in the Kalman gain, a distribution of the values is
calculated. Outliers, results of spurious correlations, are assigned a damping
factor, proportional to the deviation from the mean distribution value. The
advantage of such screening methods is the regularization of the Kalman gain
without applying the concept of distance. The consequence is that they can
be applied to non-spatially dependent variables, like relative permeabilities,
fluid-contacts etc..
A method used frequently in weather and oceanography applications to main-
tain the ensemble variability in case of a large amount of data is Covariance
Inflation (Anderson, 2009), although its use in petroleum engineering is rare.
Chen & Oliver (2009) showed preliminary results on covariance inflations
and the combined use with covariance localization on the Brugge field. They
proposed that the region for the covariance inflation at a particular assimil-
ation time should be chosen as the union of all the localization regions for
that time, with the magnitude of the inflation factor determined by the sum
of the localization functions. As a consequence, the actual inflation applied
varies in time and in space.

3.8 Conclusions

This chapter provides an introduction to the EnKF algorithm, which will be
used in this thesis to update the reservoir model from observed data. This
chapter also provides an overview of the modifications proposed in literature
applied to the standard EnKF procedure. Those adjustments are addressed
to specific issues causing malfunctioning of the filter like:

• Sampling errors

• non-linearity in the model

• non-Gaussianity in the prior model variable distribution

• assimilation of large amounts of data

The following chapters of this thesis aim at improving the EnKF update
performance in case of the assimilation of 4D seismic data. In general, when
seismic data are assimilated, the issues of non-Gaussianity and large amounts
of data, indicated by the last two bullet points, are of importance.
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Chapter 4

Covariance Localization analysis

and 2D Results

T
he previous chapter introduced the EnKF algorithm and the covariance
localization approach to improve the performance of the filter when

large amount of data have to be assimilated. The difficulty with covariance
localization is essentially that it requires localization functions large enough
to include the true regions of non-zero cross-covariance but small enough
to enlarge the effective solution space. Hence, localization, in order to be
effective, would actually require some knowledge of the real covariances which
is not the case in real case studies. The first part of this chapter shows an
analysis of the covariances between model variables and time-lapse seismic
measurements like changes in fluid saturation and in pore pressure for a
synthetic case. The objective is to build guidelines for defining localization
functions for the effective assimilation of time-lapse seismic observations. In
the second part of the chapter, these guidelines will be used to regularize
the covariances in the Kalman gain in case time-lapse seismic surveys are
frequently applied.

4.1 Introduction

The first part of the chapter takes its main idea from the work presented in
Chen & Oliver (2010). In this study the authors analyzed the ensemble-based
covariance for model parameters like permeability and model states like water
saturation and pressure with well production measurements like bottom-hole
pressures (BHP), oil and water-rates (OR and WR) using a 2D model with
a repeated five-spot well pattern. Results showed that the regions of non-
zero cross-covariances extend further than a single five-spot area. Emerick &
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Reynolds (2010) deepened the work of Chen & Oliver (2010) by proposing,
for the assimilation of production data, large localization regions equal to the
sum of the drainage area plus the permeability correlation length. The first
part of this chapter can be considered as an extension of these two previous
studies. In fact, it aims at building guidelines for the definition of localiz-
ation functions to apply on distance- based localization of model variables
covariances with time-lapse changes in saturation and in pressure. The work
presented in this thesis is done on a similar model as in the mentioned stud-
ies: a 2D model with a repeated five-spot pattern.
The second part of the chapter shows the results of an analysis carried out
on a 2D synthetic reservoir model (similar to the one used for the covariance
analysis) demonstrating the effects of a perfect vs. an imperfect localization
on EnKF updates. The standard approach without any localization is com-
pared to two localized updates: In the first case the localization functions
as recommended by the covariance analysis in the first part of the chapter
are used; in the second case the localization radius is chosen too small, a
situation that could easily occur in a real case where the true covariance is
unknown. The effect of a localization radius chosen too large has not been
investigated separately, since this corresponds to some extent to the base
case, where no localization is performed at all. The aim of this exercise is
to illustrate the effect of a priori knowledge of the covariance appearing in
the Kalman gain on the reservoir state estimation. In the next chapter, the
recommended localization functions for the cross-covariance regularization in
the Kalman gain will be applied on a 3D synthetic model, larger and more
realistic than the one used in this chapter.

4.2 Cross-Covariance analysis

4.2.1 Introduction

The study of the true correlations between model variables and observations
may help in building compact support functions for an appropriate localiza-
tion of the covariance matrix appearing in the Kalman gain. In this section,
the covariances between model variables and simulated seismic measurements
(∆S and ∆P ) are analyzed. The cross-covariances are computed from a large
ensemble of 1000 members, all created with the same statistics, in order to
approximate the truth covariances. The correlations are analyzed for two
different ensemble groups created with different variograms and at different
production stages. These are: an early time of 400 days, which is before the
water breakthrough occurs for all the producers, an intermediate time of 850
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days, which corresponds to a time shortly after all the reservoir producers
experience some water breakthrough, and a late time of 1300 days, when the
water production is in the same order as the oil production. The objective is
to evaluate the cross-correlations as the water invades the reservoir.
The basis is a 61 x 61 gridblock synthetic reservoir model, where each grid-
point measures 33 x 33 x 10 m. The reservoir has a five-spot well pattern
-with one injector and four producers at the corners- repeated 9 times, lead-
ing to a total of 9 injectors and 16 producers.
Two groups of ensembles were created with the aim of evaluating the im-
pact of the geological structures on the localization functions. The porosity
for both the ensembles is kept constant with a value of 0.3; the (logarithm
of the) permeability for the first ensemble group (A) consists of 1000 un-
conditioned, sequential Gaussian simulations using an isotropic, exponential
variogram with a range of 10 gridblocks and nugget effect equal to 1. The
permeability for the members of the second group (B) are sequential Gaus-
sian, unconditioned simulations with anisotropy introduced by a variogram
with an azimuth of 45◦W. The variogram has the same correlation length and
nugget effect as used for ensemble A. For both of the ensembles the logarithm
of permeability has a mean of log(125)md and a standard deviation equal to
log(0.05) md. Figures 4.1 and 4.2 show two realizations from ensemble A and
B, respectively. The positions of the wells are also indicated.

4.2.2 Analysis before water breakthrough

The next figures show the correlations (covariances rescaled by the product
of the standard deviations of model variable and observations) between the
two types of seismic measurements and the three model state/variables (per-
meability, water saturation and pressure). The correlations are calculated
before water breakthrough has occurred in any of the producers. The seis-
mic measurements are changes in water saturation and in pressure (∆S and
∆P ) between time 0 and time 400 days. During the simulations, water in-
jection occurs simultaneously to oil production, the producers are controlled
by fixed bottom-hole pressures (BHP) and injectors are constrained to fixed
liquid rates.
Figure 4.3 shows the correlation between seismic measurements at the grid-
point indicated by a black diamond and the log-perm. Plots a&b indicate
the correlation between ∆S and log-perm for ensemble A and B, respect-
ively. The cross-correlation is positive between the injector and the obser-
vation gridpoint, up to its closest producer; the correlation is negative on
the opposite side of the injector and around the other producers of the same



68 4. Covariance Localization analysis and 2D Results

10

20

30

40

50

60
0 10 20 30 40 50 60

0

10

20

30

40

50

60
0 10 20 30 40 50 60

0

2.5

3

3.5

4

4.5

2

log(md)

a b

Figure 4.1: Two realizations from ensemble A. All the realizations are created using
the same isotropic variogram. The black rounds indicate the position of the injectors
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Figure 4.2: Two realizations from ensemble B. All the realizations are created using
the same variogram having azimuth of 45◦W. The black rounds indicate the position
of the injectors and the black crosses the position of the producers. The number
denote the gridpoint coordinate in the X− and Y− directions.
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five-spot pattern. In plot b the structure of the correlation is similar, except
that the permeability anisotropy tends to distort the correlation pattern in
the same direction of the permeability azimuth. The negative correlations
on the opposite side of the injector appear also to be more stretched. This
is explained by the fact that the correlation length used in the variogram
to built ensemble B is larger than the correlation length used for ensemble
A. For these examples, since injecting wells operate at fixed injection rate,
increasing the permeability in the region of the drainage area around the seis-
mic measurement increases the flow rates towards that point. Furthermore,
because of the mass conservation law, if the water flow increases towards the
measurement location, it must decrease on the opposite side of the injector
(Emerick & Reynolds, 2010). Although the sensitivity is highest near the
measurement location (drainage area), the localization function necessary
for an appropriate update, should not ignore the other producers: it should
be as large as the five-spot pattern.
Plot c illustrates the correlation between log-perm and ∆P observed at the
same point as in the previous plots (black diamond). The correlation with
the permeability is negative around all the producers draining water from
the closest injector, with a negative peak around the closest producer. This
can be explained as follows: as producers are constrained to fixed BHP, a
decrease in permeability around these wells would render the water drainage
more difficult. Since the injectors operate at fixed WR, this decrease in wa-
ter drainage would contribute to a pressure build-up in all the five-spot well
patterns, including the measurement location. Plot d shows the same cor-
relation but now calculated with ensemble B. Also in this case, the azimuth
and the correlation length of the permeability variogram cause, respectively,
a reorientation and a stretch of the correlations.
Figure 4.4 illustrates the correlation between ∆S and ∆P (calculated at the
same point as in the previous figures) with the water saturation field. The
correlations are shown both for ensembles A and B, in the same order as in
the previous figures. Plot a shows the correlation between ∆S at the black
diamond and the water saturation, and it is calculated using ensemble A.
In all plots of figure 4.4 the circular structures reflect the position of the
oil-water front after 400 days. The correlation is clearly positive from the
injector up to the measurement gridpoint, and negative on the opposite side
of the producer. This correlation can be explained by the fact that since the
injector is constrained to a fixed water rate, an increase in saturation towards
the measurement point and its closest producer means, because of the mass
balance, a decrease in water flow towards the other producers of the same
five spot pattern. A similar correlation structure is observed in ensemble B
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Figure 4.3: Cross-correlation between the logarithm of permeability and seismic
measurements at the location indicated by the black diamond. Plot a presents the
cross-correlation between ∆S and log-perm, calculated with ensemble A; plot b shows
the same cross-correlation calculated with ensemble B. Plot c presents the cross-
correlation between ∆P and log-perm, calculated with ensemble A; plot d shows the
same cross-correlation calculated with ensemble B. The numbers denote the gridpoint
coordinates in the X− and Y− directions.
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(plot b). This correlation structure reflects the correlation of saturation with
water injection rate and and oil production rate presented in Chen & Oliver
(2010): positive between the injector and the producing well, negative in the
rest of the five-spot pattern.
In the second row, plot c shows the correlation between ∆P and the satura-
tion field. The structure of the correlation reflects the general position of the
water fronts advancing from the injectors and its value is very negative in
the undrained area next to the producers. Plot d shows a similar correlation
structure, note that the waterflooded areas present a more elliptical shape,
with respect to plot c, due to the anisotropic permeability.
Figure 4.5 displays the correlation of seismic measurements with the pres-

sure field for ensemble A and B, in the same order as in the previous pictures.
Plot a shows the correlation, calculated with ensemble A, between ∆S at the
black diamond and the pressure field. The area of non-zero correlation is very
large and choosing a localization function for this covariance seems to be a
difficult task. The same conclusion can be drawn as for the covariance calcu-
lated with ensemble B (plot b). At the bottom row, plots c&d illustrate the
correlation of ∆P at the black diamond with the pressure field. The (auto-
)correlation monotonically decreases with distance but nowhere approaches
zero, making the choice for a localization function rather difficult. The per-
meability anisotropy does not seem to affect this correlation pattern strongly
(plot d).

4.2.3 Analysis during and after water breakthrough

As shown by Chen & Oliver (2010), the cross-correlations of model variables
with production measurements, or at least the length of the true correlations
(which defines the localization radius) do not change between a time shortly
after the water breakthrough for all the reservoir producers (intermediate
time) and a later stage (late time). The same is observed for cross-covariances
between model variables and seismic measurements. For this reason, only the
covariances calculated at the intermediate time will be shown.
Figure 4.6 shows the cross correlation of seismic measurements with log-
perm, in the same order as in figure 4.3. The comparison between these
figures suggests that, in general, the structure of these correlations does not
change much after wells experience water breakthrough (note that permeab-
ility is a parameter, therefore time-independent). However, looking carefully
at the correlation of log-perm with ∆S (plots a&b) it can be noticed that
the negative correlations around the producers located on the opposite side
of the injector with respect to the measurement point seems to be a bit lar-
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Figure 4.4: Cross-correlation between the water saturation and seismic measure-
ments at the location indicated by the black diamond. Plot a presents the cross-
correlation between ∆S and water saturation calculated with ensemble A; plot b shows
the same cross-correlation calculated with ensemble B. Plot c presents the cross-
correlation between ∆P and satuation, calculated with ensemble A; plot d shows the
same cross-correlation calculated with ensemble B. The numbers denote the gridpoint
coordinates in the X− and Y− directions.
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Figure 4.5: Cross-correlation of the pressure field with seismic measurements at the
location indicated by the black diamond. Plot a presents the cross-correlation of ∆S
with pressure, calculated with ensemble A; plot b shows the same cross-correlation
calculated with ensemble B. Plot c presents the cross-correlation of ∆P with pres-
sure, calculated with ensemble A; plot d shows the same cross-correlation calculated
with ensemble B. The numbers denote the gridpoint coordinates in the X− and Y−
directions.
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ger than at an earlier time. This correlation structure is consistent with the
correlation of log-perm with OR found by Chen & Oliver (2010) i.e. positive
around the measurement well location and negative around other wells.
The correlation with ∆P (plots c&d) also seems slightly changed with respect
to the one at an earlier stage (4.3). At a later stage, the negative correlations,
albeit very small, extend to producers far away from the measurements (see
producer with X=20, Y=11).
Figure 4.7 displays the cross correlation of seismic measurements with the

water saturation field, in the same order as in figure 4.4. Plot a shows the
correlation of ∆S with the water saturation. As in plot a of figure 4.4, the
correlation is positive between the injector and the measurement gridpoint,
negative on the opposite side of the injector, and zero elsewhere. The satur-
ation fronts have reached the producers and appear as a straight line passing
through them. These features can be explained by the image theory, first
introduced by Ferris et al. (1962).
The image theory is based on the assumption that well drainage area have
infinite areal extent. The effect of a geological impermeable barrier on the
drawdown in the producing well is the same as if the aquifer had an infinite
extent and a discharging image well was located across the boundary on a
line normal to it and at the same distance from the boundary as the real pro-
ducing well. The production rate of the imaginary well would be the same
as the real one. On the other hand, the effect on drawdown in a production
well due to another well operating at the same constraint is the same as the
effect of a barrier boundary normal to the line connecting the wells.
The anisotropy in the permeability and therefore in the saturation fronts,
stretches the correlations in the same direction as the permeability azimuth
(plot b).
This correlation structure is consistent with the correlation of the saturation
field with OR at producing wells in Chen & Oliver (2010), positive between
the injector and the producing well at which the measurement is taken, negat-
ive on the opposite side of the injector; the non-zero cross-covariance region
extends beyond the five-spot well pattern of the producing well, and each
five-spot well pattern is separated from the adjacent ones by straight sharp
lines.
Plot c presents the correlation of ∆P at the black diamond with the water
saturation field. As in the previous two plots, the saturation fronts appear
as sharp boundaries delimiting different five spot patterns. The correlation
is negative in the area around the closest producer and it is also slightly
negative in the areas between distant injectors and producers draining water
flowing in the direction of the measurement location. The permeability an-
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Figure 4.6: Cross-correlation of the logarithm of permeability with seismic meas-
urements at the location indicated by the black diamond. Plot a presents the cross-
correlation of ∆S with log-perm, calculated with ensemble A; plot b shows the same
cross-correlation calculated with ensemble B. Plot c presents the cross-correlation
of ∆P with log-perm, calculated with ensemble A; plot d shows the same cross-
correlation calculated with ensemble B. The numbers denote the gridpoint coordinates
in the X− and Y− directions.
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isotropy does not change the correlation pattern (plot d).
The region of non-zero values extends much further than the five spot re-
peated pattern, through the entire model and sharp lines passing through
the producers delimit different covariance regions corresponding to the each
five-spots well groups.
Figure 4.8 presents the cross-correlation of seismic measurements with the

pressure field, in the same order as in figure 4.5. The correlation of ∆S with
the pressure, calculated with both of the ensembles (plots a&b), shows again
non-zero values in an extended part of the model. The cross-correlation of
∆P with the pressure, like in plots c&d of figure 4.5 shows decreasing values
with distance but nowhere in the model approaching zero. This correlation
structure reflects the cross-covariances of the pressure field with production
measurements as observed by Chen & Oliver (2010): There is no area in
the model where the covariances of pressure with production measurements
decreases to zero, neither at an early nor at a later stage.

4.2.4 Building the localization template

The real correlation of 4D seismic measurements with parameters and state
variables has been observed through the previous plots. The knowledge of
these real correlations during localization applied on the Kalman gain, al-
lows the removal of spurious correlations without stripping the real ones.
This way, the simulated ensemble-based covariance information can be fully
exploited without being affected by noisy correlations or by filter divergence.
From the presented plots some guidelines for building appropriate localiza-
tion functions can be extracted.

localizing permeability

The analysis of the correlation of (log-)permeability with changes in satura-
tion (figs. 4.3a & b & fig.4.6a & b) suggests that it would be appropriate to
localize this covariance using a Furrer and Bengtsson type function centered
around the measurement location and with a plateau (indicated by the red
area, in which the function value is higher than 0.8) covering the whole five-
spot well pattern to which the measurement belongs. This choice would be
consistent with the localization function proposed by Chen & Oliver (2010)
for the cross-covariance of permeability with well OR or WR: this function
was centered around the producer and extended over an area slightly larger
than the five-spot repeated pattern.
In order to localize the correlation of log-perm with changes in pressure(figs.4.3c
&d & fig.4.6c&d) it would seem a safe choice to use a localization function
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Figure 4.7: Cross-correlation of the water saturation with seismic measurements at
the location indicated by the black diamond. Plot a presents the cross-correlation of
∆S with water saturation calculated with ensemble A; plot b shows the same cross-
correlation calculated with ensemble B. Plot c presents the cross-correlation of ∆P
with satuation, calculated with ensemble A; plot d shows the same cross-correlation
calculated with ensemble B. The numbers denote the gridpoint coordinates in the X−
and Y− directions.
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Figure 4.8: Cross-correlation of the pressure field with seismic measurements at the
location indicated by the black diamond. Plot a presents the cross-correlation of ∆S
with pressure, calculated with ensemble A; plot b shows the same cross-correlation
calculated with ensemble B. Plot c presents the cross-correlation of ∆P with pres-
sure, calculated with ensemble A; plot d shows the same cross-correlation calculated
with ensemble B. The numbers denote the gridpoint coordinates in the X− and Y−
directions.
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Figure 4.9: Localization functions proposed for the cross-covariance of log-perm
with ∆S (plot a) and with ∆P (plot b). The localizing functions are of Furrer type,
centered around the measured point. In plot a the plateau covers the five-spot well
pattern of the observation while in plot b the plateau extends up to the next lines
of producers. The numbers denote the gridpoint coordinates in the X− and Y−
directions.

centered around the measurement location, with a plateau extending further
than the five-spot well pattern, up to the next line of producers. This func-
tion would ensure that the negative small correlations as observed at distant
wells after the water breakthrough (fig.4.6c&d) will be fully taken into ac-
count in the update.
Figure 4.9 illustrates the Furrer and Bengtsson type function proposed to
localize the covariance of log-perm with ∆S (plot a) and with ∆P (plot b).

localizing saturation

The analysis of the correlation of saturation with changes in saturation (figs.
4.4a&b and 4.7a&b) suggests that an appropriate localization function must
be centered around the measurement with a plateau extending beyond the
five-spot well pattern to which the measurement belongs, up to the next line
of producers. This function would be as large as required for the localization
of the covariance of log-perm with changes in saturation.
More cumbersome appears to be the decision regarding the localization ra-
dius for the covariance of saturation with measured changes in pressure (figs.
4.4c&d and 4.7c&d), as it approaches zero only at very far distances. One
option would of course be to apply no localization on this covariance. How-
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Figure 4.10: Localization functions proposed for the cross-covariance of saturation
with ∆S (plot a) and with ∆P (plot b). The localizing functions are of Furrer and
Bengtsson type, centered around the measured point. In plot a the plateau reaches
the first line of producers outside the five-spot well pattern in which the seismic
measurement is taken, in plot b the plateau radius covers the whole five-spot well
pattern of the observation while in plot b the plateau is equal to twice the diagonal of
a single five-spot pattern. The numbers denote the gridpoint coordinates in the X−
and Y− directions.

ever, in order to increase the ensemble spread, we propose to use localization
with a function centered around the measurement and with a plateau radius
equal to twice the diagonal of a single five-spot pattern. Such a large local-
ization function would ensure that far distant real correlations will still be
taken into account.

”localizing” pressure

The plots showing the covariances of pressure with seismic measurements
indicate that in no area of the model their values approach zero. Hence, it
would seem appropriate not to localize pressure when using seismic observa-
tions. This choice is consistent with the findings by Chen & Oliver (2010)
in which pressure was not localized in the case production measurements are
available.
Figure 4.11 plots the localization functions suggested to use for pressure when
changes in saturation (a) and changes in pressure (b) are used: in both cases
the template size coincide with the entire model and the function is con-
stantly equal to one. This is equivalent to not localizing the pressure state.
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Figure 4.11: Localization functions proposed for the cross-covariance of pressure
with ∆S (plot a) and with ∆P (plot b). The localizing functions extend through the
entire model and they are in both cases constantly equal to one. This is equivalent
to not localize the state of pressure. The numbers denote the gridpoint coordinates
in the X− and Y− directions.

4.3 Applying the localization functions: Descrip-

tion of the model

4.3.1 Description of the model

In order to test the validity of the covariance study, a synthetic 2D model
has been constructed.
The reservoir model has the same size as the models previously used, i.e.
61x61 gridblocks each with size of 33.3x33.3x10 m. The well configuration
is also quite similar, except that the central five spot pattern of one injector
and four producers has been replaced by a single producer penetrating the
exact center of the model. This results in less production data allowing
time-lapse seismic data to play a larger role in the updating process. The
permeability distribution for the truth model is obtained using a sequential
Gaussian simulation with an exponential variogram with major and minor
correlation lengths of 3000 and 1000 m, respectively, with an azimuth of
45◦W, and with a nugget effect equal to zero. The reservoir permeability
ranges from 2 mD (no flow areas) up to 5000 mD with a mean value of 2500
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Figure 4.12: (Logarithm of) permeability for the truth model. The black circles
indicate the positions of the injectors and the black crosses of the producers. The
axis labels denote the gridpoint index in the X− and Y− directions.

mD. Secondary anisotropy has been introduced with a spherical variogram
having azimuth of 45◦E, major and minor correlation lengths of 1000 and
500m, respectively, and a nugget effect equal to zero. Figure 4.12 shows the
true permeability field with the wells configuration on top; the general trend
corresponds geologically to a coastal depositional environment: the elongated
high permeability structures resemble tidal channels or tidal sand barriers,
the low permeability areas are considered inter-channel or lagoon deposits.
The reservoir porosity, similar to the models presented in the previous part
of the chapter, has been set constant with a value of 0.3.
A total of 100 ensemble members was created, with permeabilities based
on sequential Gaussian simulations with other variograms than used for the
truth model. The aim is to keep the parameters search space sufficiently
large in order to obtain a good fit to the observations. Table 4.1 reports
the characteristics of the variograms for the ensemble members. Figure 4.13
illustrates the permeability distributions for five randomly picked ensemble
members.
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Figure 4.13: (Logarithm of) permeability for five different ensemble members. Plot
a refers to member 37, plot b to member 44, plot c to member 67, plot d to member
84, and plot e to member 96. The black rounds indicate the positions of the injectors
and the black crosses of the producers. The axis labels denote the gridpoint index in
the X− and Y− directions.

Ensemble members Primary Anisotropy Secondary anisotropy

type of variogram Azimuth nugget effect major corr. length minor corr. length type of variogram Azimuth nugget effect major corr. length minor corr. length

1-10 spherical 0◦ 0 500 400 NA NA NA NA NA

11-20 exponential 45◦E 1 2000 500 exponential 0◦ 1 1000 300

21-30 spherical 0◦ 1 3000 500 exponential 45◦W 0.5 1000 500

31-40 spherical 45◦E 1 2000 1000 NA NA NA NA NA

41-50 spherical 45◦W 0 3000 1500 spherical 45◦E 2 300 150

51-60 spherical isotropic 0 2000 1000 NA NA NA NA NA

61-70 exponential 90◦W 1 2000 1000 exponential 45◦W 0.8 800 400

71-80 exponential 0◦ 1 6000 3000 NA NA NA NA NA

81-90 spherical 90◦W 0 2000 1000 NA NA NA NA NA

91-100 spherical 45◦W 1 2000 1500 spherical 0◦ 1 1000 500

Table 4.1: Variogram characteristics of the ensemble members.
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Figure 4.14: Furrer tapering functions used to localize the cross-covariance of the
(log-)permeability with changes in pressure. Plot a refers to the function used in case
4; note that this function is same as in fig. 4.9b which was suggested after analyzing
the true covariance. Plot b refers to the function used in case 5, where the template
radius, with respect to case 4, has been reduced by approximately 20%.

4.3.2 History match and production forecast

With the ensemble introduced in section 4.3.1, five different simulations have
been carried out. Case 1 corresponds to the run without any data assimila-
tion performed (prior); case 2 refers to the run where only production data
are assimilated, case 3 is the run where production data and seismic data
are assimilated jointly; case 4 refers to the run where again both seismic and
production data are assimilated but after applying covariance regularization.
For the case of assimilating production data only the localization functions
correspond to the ones suggested by Chen & Oliver (2010) while for seismic
data, the localization functions are those recommended by the covariance
analysis in the first part of this chapter. Case 5 is similar to case 4, except
that the radius of every template used to localize cross-covariances of state
and parameters with seismic measurements has been reduced by approxim-
ately 20%; in this way, the region of real correlation is not entirely included
in the template size. Figure 4.14 plots the tapering functions used to localize
the cross-covariance of permeability with changes in pressure in cases 4 and
5. Table 4.2 summarizes the characteristics of the cases.
The production data consist of Bottom Hole Pressures (BHP), water rates
(WR), and oil rates (OR), with uncertainties estimated at 0.35 MPa (50 psi)
for BHP, and 10% for water- and oil-rates.
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Case 1 Case 2 Case 3 Case 4 Case 5

NO DATA
Assimilation

Production
Only

Prod. and
Seismic

Pr. & Seis.
Localized

Pr. & Seis.
Local.
Template
Small

Table 4.2: Characteristics of the different cases.

Seismic observations consist of inverted time-lapse changes in saturation and
pore pressure; given the large grid dimensions compared to the bin size, seis-
mic measurements from different CMP’s are averaged over the entire gridb-
locks, available for 1281 gridpoints. The standard deviation of the measure-
ment error is 0.1 for changes in saturation and 1 MPa for changes in pressure.
The baseline survey is shot at time 0 and the monitor surveys are repeated
every 150 days. At time 0 the ensemble members have the same saturation
and pressure fields as the truth case. In this situation, the information from
time-lapse measurements can be used to update the model at the times of
the monitor surveys, with no need to update state variables at earlier times.
This legitimates a sequential assimilation of 4D seismic measurements with
the EnKF, without the use of the EnKF smoother to update state variables
back at time zero.
The simulations have been run for 1400 days, where the first 600 days are
used to obtain a history match. As often observed in literature (Chen &
Oliver, 2010; Emerick & Reynolds, 2010; de Wit & van Diepen, 2007) after
matching history data the updated ensemble can be reinitialized. The ad-
vantage of this approach was explained in section 3.5.1. Hence, at the end of
history matching, the simulations have been re-run until time 1400 days.
Figure 4.15 presents the water rates for producer 9 (see fig. 4.12). The first
row refers to the history matching period, the second row to the period after
restarting the model; the columns refer to the different cases. In blue the
ensemble members are plotted, in yellow the ensemble mean, in black the
analyzed ensemble, in green the mean of the update and in red the observa-
tions. Note how in the history match of cases 2,3,4,5 all the lines coincide.
The truth model registers a late water breakthrough at about 1300 days. The
prior shows a noticeable ensemble spread and an early water breakthrough
time (plots a&f). The assimilation of data results in all cases in a better
match than in case 1, as no water breakthrough is seen in this period (plots
b,c,d,e). With the assimilation of production data, the prediction of the wa-
ter breakthrough is shifted to a later time but still far from the truth such
that the ensemble spread does not cover the truth (plot g). With the assim-
ilation of production and seismic data, the ensemble mean is shifted much
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Figure 4.15: Water rates for producer 9 for the different cases. The first row
refers to the history matching period (600 days), the second row to the full period
(1400 days) after restarting the model; the columns refers to the different cases. In
blue are plotted the ensemble members, in yellow the ensemble mean, and in red the
observations.

closer to the real water breakthrough time; however, because of an excessive
spread reduction, the ensemble spread does still not include the observed
data (plot h). In case a localization that takes into account the size of the
real correlations is applied, the ensemble mean forecast almost overlaps with
the truth and the spread nicely covers it (plot i). Using a smaller template
for the assimilation of seismic data, although increasing the ensemble spread,
seems to move the ensemble mean away from the measurements (plot j).
Figure 4.16 shows the history match and the forecast for the oil rates at pro-
ducer 12 (see fig. 4.12) for the different cases, in the same order and with
same legend as in the previous figure. As for the water rate, the oil rate shows
a large ensemble spread (plots a&f). The assimilation of production data is
able to largely improve the history match (plot b), however, the oil produc-
tion forecast is not really satisfying (plot g). When adding a large number
of seismic observations to the production data, the history match becomes
worse. This can be explained by the fact that the extreme reduction in the
model covariance causes the update to be influenced by the model forecast
only and not by the measurements: plot c presents a clear example of filter
divergence. The malfunctioning of the filter results in a bad oil production
forecast, as shown in plot h. The use of a correct localization criterion moves
the update closer to the measurements (plot d) and leads to an almost perfect
production forecast (plot i). If covariance regularization is performed with
a smaller localization radius (plot e), this leads to an inferior model update
with respect to the previous case, although the ensemble spread increases.
Probably this is the effect of loosing some of the true correlations in the loc-
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Figure 4.16: Water rates for producer 9 for the different cases. The first row refers
to the history matching period (600 days), the second row to the full period (1400
days) after restarting the model; the columns refers to the different cases. In blue are
plotted the ensemble members, in yellow the ensemble mean, in black the analyzed
ensemble, in green the mean of the update and in red the observations.

alization process. Although the history match from case 5 is not as optimal
as in case 4, the forecast is still satisfactory (plot j).
The observed figures show the improvement obtained through a correct use
of localization only for two production measurements. A measure to estimate
the performance for all the wells is the RMSE of production rates summed
over all the producers. For a single well rate the RMSE is defined as the
square root of the squared sum of the differences between the true and the
mean of the ensemble rates at different time steps; summing over all the
producers the total RMSE in water rates reads as:

RMSEWR =

NProd
∑

j=1







√

√

√

√

1

NT imeSteps

NTimeSteps
∑

i=1

(

WRTrue
i −WREns

i

)2






, (4.1)

where NProd denotes the total number of producers, and NT imeSteps the total
number of timesteps at which the rates are sampled during the rerun period
(0-1400 days). Analogously, the RMSE can be calculated for oil rates. Table
4.3 reports the RMSE for the water- and oil-rates in barrel per day (bbl/dd)
for the different cases. It is worth noticing that the best performance is
provided by the case where a correct localization is applied; the use of local-
ization functions neglecting part of the real correlations increases the RMSE
leading to a performance comparable to that of the cases where seismic in-
formation lacks or where seismic data cause filter divergence.
Figure 4.17 presents the true (log-)permeability field (plot a) versus the en-
semble mean (log-)permeability estimated for the different cases at the end
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Case 1 Case 2 Case 3 Case 4 Case 5

RMSE (WR) 2707.8 593.7 544.7 303.9 677.9

RMSE (OR) 3239.2 875.9 808.7 434.7 736.3

Table 4.3: RMSE for water- and oil-rates for the different cases in bbl/dd.

Case 1 Case 2 Case 3 Case 4 Case 5

1.23 0.95 1.05 0.1 0.93

Table 4.4: RMSE for the (log-)permeability estimate reported from the different
cases at the end of the history match. These errors are calculated in log(mD).

of the history matching period (i.e. 600 days). While the prior does not show
any relevant structure (plot b), already with the assimilation of production
data only the main permeability trend is recovered (plot c) quite well. The
limited number of measurement however is reflected in a weaker update than
obtained in the following cases including seismic measurements. With the
assimilation of both seismic and production data (plot d) the main permeab-
ility trend is recovered but with some extreme outliers, which may be an
indication of filter divergence. With the use of a correct localization function
(plot e), the permeability is much better estimated than in the previous case;
reducing the localization template leads to a mean permeability field with the
true trend recovered but again with extreme outliers in certain areas (plot
f).
Table 4.4 summarizes the analysis of figure 4.17 by reporting the RMSE
between the truth and the ensemble mean (log-)permeability for all the dif-
ferent cases. The best estimate is clearly provided by case 4; It is worth
noticing, that, including seismic data without localization results generally
in an overall worse estimate than the one obtained by using production data
only because of filter divergence.
Figure 4.18 shows the standard deviations of the log-perm calculated over all
the reservoir gridblocks. The prior (plot a) presents, obviously, the highest
standard deviation; case 2 has a reduced standard deviation, especially for
gridpoints in correspondence with the wells. In case 3 (plot c) the standard
deviation is overall unrealistically reduced, an indication of filter divergence.
In case 4 (plot d) the ensemble covariance is slightly higher than in the pre-
vious case, necessary to ensure a better functioning of the filter; in case 5
(plot e), the standard deviation is overall higher than in the previous case.
Table 4.5 reports the standard deviation in the (log-)permeability for all the
model gridpoints for all different cases. From the analysis of this table and
of the previous figures, it can be argued that when using localization (case
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Figure 4.17: Permeability estimates from the different cases at the end of the his-
tory match. The axis labels denote the gridpoint index in the X− and Y− directions.

4 vs. case 5), a larger ensemble spread does not necessarily correspond to a
better update.

4.4 Conclusions

This chapter presents an analysis of the covariance of model state and para-
meter variables with time-lapse seismic measurements provided by the inver-
sion scheme in the chapter 2. The goal is to understand the extension of
the non-zero real covariance regions. Knowing the real covariances, localiz-

Case 1 Case 2 Case 3 Case 4 Case 5

0.98 0.58 0.07 0.18 0.27

Table 4.5: Average standard deviation of the ensemble permeability from the dif-
ferent cases at the end of the history match. The standard deviations are expressed
in log(mD).
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Figure 4.18: Standard deviation for the reservoir gridblock permeability at the end
of the history match for the different cases. The axis labels denote the gridpoint
index in the X− and Y− directions.

ation functions can be constructed to regularize the ensemble Kalman gain.
The results demonstrated that the covariances between time-lapse seismic
measurements and parameters/states depend on the geological permeability
structure of the ensemble realizations, the flow dynamics (associated with
the well pattern), and the production stage (or time).
The second part of the chapter is dedicated to a new approach for the as-
similation of 4D seismic measurements with the EnKF. The traditional ap-
proach, using production data with or without seismic information, is com-
pared with two updates obtained after localization; in the first case the loc-
alization functions are designed to include the a priori knowledge of the true
correlations between model variables and observations, while in the second
example the template used to regularize the covariance with seismic meas-
urements is chosen smaller; this is done to mimic a realistic case in which
the true covariance is not necessarily known and can lead easily to a wrong
choice of the template.
Results from a 2D synthetic model show that with the assimilation of produc-



4.4. Conclusions 91

tion data only the permeability trend is not fully recovered. Adding seismic
data causes an excessive ensemble covariance contraction with a detrimental
outcome (filter divergence); in fact, in this case in the history match of pro-
duction data the update moves away from the truth, the production forecast
is poor and and the permeability estimate presents extreme values. The use
of covariance localization to include only the real correlations improves the
update considerably: the filter divergence is avoided allowing the analyzed
ensemble to move closer to the observed rates, the permeability field is cor-
rectly estimated, and as a consequence, the reservoir forecasts fully reflect the
true behavior. The use of a tapering localizing function smoothly decreasing
with distance avoids the introduction of sharp boundaries in the analysis;
this helps in obtaining consistent ensemble updates.
It might occur that when the real correlations are not known, the template
used for the Kalman gain covariance regularization is too small to include
them all. If this is the case, the increase in ensemble spread, which is neces-
sary to avoid filter divergence, is even more pronounced than in the case of
a larger, more appropriate template; however, a more evident increase in the
effective ensemble size is not necessarily accompanied by an improvement in
the update. In fact, cutting out some real correlations through localization
results in an inferior quality production history match and in a lower accur-
acy of the permeability estimate.
In the next chapter, a similar study will be performed on a more realistic 3D
field where the traditional EnKF update, with production data only or in-
cluding seismic data, is compared to the localized update; in this latter case,
the localization functions for the cross-covariance regularization in the Kal-
man gain are based on the conclusions from the covariance analysis presented
in this chapter.
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Chapter 5

3D Results

T
his chapter presents a comparison between a traditional history match
based on an EnKF approach versus a localized version applied to a large

3D reservoir model. The aim is to verify the effect of covariance regulariza-
tion on the assimilation of seismic data in a synthetic, though realistic case.
Seismic data are assimilated either as vertically averaged observations (as
proposed in the inversion from chapter 2) or, assuming higher seismic ver-
tical resolution, as observations assigned to single reservoir gridblocks. The
localization regions for the covariances regularization in the Kalman gain
have been selected following the rules-of-thumb determined in the previous
chapters based on smaller 2D models with a regular well pattern. Results
show that, with the use of localization, an improvement in the match and in
the prediction of production data is achieved, as well as a moderate improve-
ment in the overall permeability estimate.

5.1 Introduction

This chapter, showing the effect of localization in an EnKF approach for his-
tory matching applied to a full 3D synthetic reservoir, starts with a descrip-
tion of the 3D model (section 5.2). Subsequently, results of different EnKF
updates with and without localization are compared (section 5.3). Section
5.4 provides a broader discussion on this case study and finally, section 5.5
lists conclusions and recommendations for future work.

5.2 Model description

The truth model used in this study is the same as presented in chapter 2 con-
sisting of an anticlinal structure with a fault cutting through the reservoir.

93
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Figure 5.1: Initial saturation for layer 5. The injectors, indicated with black circles,
are located at the OWC, while the producers, indicated with red crosses, penetrate the
higher part of the model. The numbers denote the gridpoint indexes in the X− and
Y− directions. The producers indicated by arrows were chosen to display production
profiles in later figures.

The reservoir thickness is about 30 m and the reservoir rock is ”trapped” in
between impermeable shale layers. The positions for all the injectors and the
remaining producers were kept identical. Water is injected near the OWC.
Since there is no aquifer drive and the over- and the underburden have ex-
tremely low permeability, in- and outflow only occur at the wells. Figure 5.1
shows the original OWC for layer 5, and the well positions.
100 ensemble members were created, populated with porosities obtained
through sequential Gaussian simulation without conditioning to well data.
For all the realizations, the variogram used is the same as for the truth: long
and short horizontal correlation lengths of 5000 and 500 m, respectively, and
a vertical correlation length of 25 m. For 60 realizations the azimuth is the
same as for the truth (80◦W); 20 realizations have a variogram with an azi-
muth of 70◦W, and for the remaining 20 realizations the azimuth is 90◦W.
The same poro-perm relationship (and the related uncertainty) as for the
truth was used to derive the ensemble permeabilities, displayed in figure 5.2.

Figure 5.3a&b plot the porosity for layer 1 and 5 of ensemble member 50;
below each plot the respective permeabilities are plotted (c&d). Note the
resemblance between the porosities in the different layers resulting from the
imposed vertical correlation.

5.3 History matching results

With the presented ensemble, six different simulations were run. Case 1 in-
dicates the run without data assimilation (prior). Case 2 refers to the run in
which only production data are assimilated. Cases 3 and 4 are the runs in
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

No Data
Assimilation

Production
Only

Prod. and
Seismic
(vertically av-
eraged)

Prod. and
Seismic (per
gridblock)

Prod. and
Seis. (vertic-
ally averaged)
LOCAL

Prod. and
Seis. (per grid-
block) LOCAL

Table 5.1: Characteristics of the different cases.

which production data are assimilated together with seismic data: in the first
case (3) seismic measurements are inverted to vertically averaged changes in
saturation and pressure, and in the second case (4), those changes are in-
verted per gridblock. Case 5 and 6 refer to the runs in which production
and seismic data are assimilated with covariance localization: in case 5 the
seismic measurements are the same as in case 3, while in case 6 the seismic
measurements are the same as in case 4. Table 5.1 summarizes the charac-
teristics for the different cases.
This chapter investigates the possibility to extend the conclusions provided
by the study of Chen & Oliver (2010) and by chapter 3 from a 2D model
with a regular well pattern to the 3D model here introduced. Chen & Oliver
(2010) suggest some rules-of-thumb to build localization functions for the
covariances of states and parameters with production data:

• The localization functions to localize the cross-covariances of states
and parameters with any kind of production measurements should be
centered around the well location and include at least the closest pro-
ducers and injectors;

• The template size to use for the localization of the covariance of log-
perm with BHP should be smaller than the template size for the local-
ization of the covariance of log-perm with OR or WR;

• The template sizes to use for the localization of saturation with BHP
at one injector and with WR or OR have to be very large to include
far distant producers;

• The cross-covariance of pressure with production data should not be
localized.

Figure 5.4 plots the Furrer tapering functions, based on the listed rules-of-
thumb, which will be used in this study for the localization of covariances of
parameters and states with production measurements.
Analogously, the covariance study in chapter 3 of this Thesis, can provide
some rules-of-thumb to build localization functions for the covariances of
states and parameters with seismic data. The rules can be summarized as:
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Figure 5.4: Localization function used in the update of permeability and saturation
with production measurements. The crosses indicate the position of the producers
and the circles the injectors locations. The wells at which the measurements are
taken are colored in green. The numbers indicate the gridblocks X- and Y-indexes.

• The localization functions to localize the cross-covariances of states and
parameters with any seismic measurements should be centered around
the measured location and include at least the closest producers and
injectors;

• The template size to use for the localization of log-permeability with
changes in saturation should be smaller than the template size used to
localize the cross-covariance of log-perm with changes in pressure;

• The extension of the non-zero region for the cross-covariance of satur-
ation with ∆S is larger than the non-zero region of the covariance of
log-perm with ∆S;

• The extension of the non-zero region for the cross-covariance of satura-
tion with ∆S is smaller than the non-zero region for the cross-covariance
of saturation with ∆P ;

• The template size used for the localization of covariances of parameters
or states with Oil-Rates is as big as the template size used to localize
covariances of parameters and states with Water-Rates.

• The cross-covariance of pressure with seismic data should not be local-
ized.

Figure 5.5 plots the resulting Furrer tapering functions used for the localiz-
ation of covariances of parameters and states with seismic measurements.
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Figure 5.5: Localization function used in the update of permeability and saturation
with seismic measurements. The CMP at which the measurements are taken is in-
dicated by a green diamond. The yellow crosses indicate the position of the producers
and the black circles the injectors locations. The numbers indicate the gridblocks X-
and Y-indexes.

All the simulations were run for 30 years, with the first 11 years (4000 days)
corresponding to a history match and the remaining period of 19 years to
a forecast. Production data consist of Bottom Hole Pressures (BHP), water
rates (WR), and oil rates (OR), with uncertainties of 0.35 MPa (50 psi) for
BHP, and 10% for rates. These data are collected every 16 months (500
days).
Seismic surveys are acquired every 1000 days starting from time 0 (at this
time, similar to the 2D case described in chapter 4, the truth and the en-
semble members have the same pressure and saturation). Seismic observa-
tions consist of inverted time-lapse changes in saturation and pore pressure;
given the large grid dimensions compared to the bin size, seismic measure-
ments from different CMP’s are averaged over the entire gridblocks. Seismic
measurements are available at 592 CMP’s distributed over 8 Inlines and 74
CrossLines. This means that in cases 3 and 5, at each monitor survey, the
changes in saturation and in pressure to assimilate are 592, while in cases 4
and 6 those are 4144 (592*7). The standard deviation of the measurement
error is 0.1 for changes in saturation and 1 MPa for changes in pressure,
identical for all cases.
The next figures present the history match and the forecast from the different
cases for water and oil rates for three different wells. These are producers
7, 13, and 6, ordered according to the distance from the initial OWC and
therefore, to the true water breakthrough time (see figure 5.1). Producer 7
registers a waterphase arrival late in the history matching period; producer
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13 records a water breakthrough time at the very end of the history match,
while producer 6 only sees water arriving long after the history matching
period ends. In each graph, the ensemble members forecast is plotted in
blue, the ensemble mean in yellow, the ensemble update in black and the
update mean in green; the observations are plotted in red. Every figure con-
tains six graphs, each one referred to with a letter; the plots’ alphabetical
order corresponds to the numerical order of the different cases.
Figure 5.6 shows the water rates from producer 7. Case 1 (plot a) presents
a large ensemble spread; the assimilation of production data (b) results in
a poor match in the late history matching period. A possible explanation
is that the use of production measurements only is enough to start filter
divergence; therefore, localization might be required also for this case (see
next chapter). The consequence of a poor match is an underestimation of
the true water rate and a later estimation of the water breakthrough time.
By introducing seismic data, either vertically averaged (plot c) or assigned
at single gridblocks (plot d) the match and the forecast improve: As seen in
Fahimuddin et al. (2011), even in case the ensemble covariance contraction
associated to seismic data induces or exacerbates filter divergence, the use
of seismic data might still constrain better the matching solution than using
only production data. However, the larger the number of observations the
stronger the divergence from the observations, resulting in a poorer match
and forecast (compare plot c with d). By applying localization in the assim-
ilation of seismic data, either vertically averaged (e) or defined per gridblock
(f), the match and the prediction largely improve.
Figure 5.7 illustrates the water rate for producer 13. Again, the prior presents
a large spread and a mean far away from the truth behavior; case 2 presents a
very poor estimate of the water breakthrough time (a), which is only slightly
improved if vertically averaged seismic data are assimilated (c); however, the
larger number of seismic observations increases the bias from the truth beha-
vior (d). The use of localization on vertically average seismic data partially
improves the water breakthrough time estimate (compare e with c). In case
6, where localization is applied on the higher resolution inverted seismic data,
the water breakthrough time estimate clearly improves; still, the production
estimate is not fully consistent with the truth.
Figure 5.8 presents the water rate for producer 6, which registers a late water
breakthrough time (≈8000 days). For this well, the assimilation of produc-
tion data only (b), or with seismic data (c&d) results in an estimate of the
water-phase arrival time much later than the truth. The introduction of loc-
alization on seismic vertically averaged data provides a perfect estimate of
this time; the localization on higher resolution inverted seismic observations
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Figure 5.6: Water rates from producer 7 obtained with the different cases. The
ensemble members forecast is plotted in blue, the ensemble mean in yellow, the en-
semble update in black and in green the update mean; the observations are plotted in
red.
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Figure 5.7: Water rates from producer 13 obtained with the different cases. The
ensemble members forecast is plotted in blue, the ensemble mean in yellow, the en-
semble update in black and in green the update mean; the observations are plotted in
red.
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Figure 5.8: Water rates from producer 6 obtained with the different cases. The
ensemble members forecast is plotted in blue, the ensemble mean in yellow; the update
coincide with the truth and it is not visible. The observations are plotted in red.

(f), with respect to the traditional update (d), improves considerably the wa-
ter breakthrough time estimate and the mean ensemble production forecast.
However, despite the improvements introduced by localization, in no cases
the ensemble production forecast reproduces the truth behavior.
Table 5.2 reports the average error (in days), from the different cases, in
the water breakthrough time estimate for the producing wells; the producers
are divided into two groups: one group with early water breakthrough time
(¡4000 days) and another group with later water breakthrough time (¿=4000
days). The use of production data only and of production and seismic data
without localization, with respect to the prior case, increases the average
error in both the groups; the introduction of covariance localization largely
improves the water breakthrough time estimate, especially for well with a
later water breakthrough.
The next three figures show the oil rates for the same wells. Figure 5.9 refers
to producer 7. Like the truth, all the ensemble members show a decreasing
production with time, resulting in a prior estimate that is not far from the
real behavior (plot a); this consideration holds for all the producers. Case
2 (b) shows a bad history match and a production forecast worse than the
prior, confirming that already with production data filter divergence might
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Early
Group

506.4 718.5 767.9 875.6 645.6 676.1

Late
Group

2492.1 2206.6 2213.1 2218.2 1564.8 1308.2

Table 5.2: Average error (from the different cases) of the water breakthrough
time estimates from the producers. The average errors are reported in days and the
producers are divided into two groups: one group with early water breakthrough time
(¡4000 days) and another group with later water breakthrough time (¿4000 days).

occur. As seen in figure 5.6, with the introduction of vertically averaged seis-
mic data (plot c), even if the ensemble spread decreases, both the quality of
the match and of the forecast improve. However, if the number of available
seismic observations becomes too large, the filter divergence becomes more
evident and the quality of the match and of the production forecast decrease
(plot d). Using localization on both types of seismic data results in ensemble
mean forecasts overlapping with the truth (e&f).
Figure 5.10 plots the oil rates for producer 13. The prior shows a large en-
semble spread but a relatively good mean (a). In the history matching period,

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 5000 10000

b
b
l/

d
d

days

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 5000 10000

b
b
l/

d
d

days

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 5000 10000

b
b
l/

d
d

days

a b c

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 5000 10000

b
b
l/

d
d

days

f

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 5000 10000

b
b
l/

d
d

days

d

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 5000 10000

b
b
l/

d
d

days

e

Case 1 Case 2

Case 4 Case 5 Case 6

Case 3

Figure 5.9: Oil rates from producer 7 obtained with the different cases. The en-
semble members forecast is plotted in blue, the ensemble mean in yellow, the ensemble
update in black and in green the update mean; the observations are plotted in red.
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Figure 5.10: Oil rates from producer 13 obtained with the different cases. The
ensemble members forecast is plotted in blue, the ensemble mean in yellow, the en-
semble update in black and in green the update mean; the observations are plotted in
red.

the assimilation of production data (plot b) results in a divergence from the
truth; this divergence becomes even larger if the number of measurements
to assimilate increases: going from case 1 to case 3 the divergence becomes
progressively more pronounced (plots b to d), leading to poor forecasts. The
use of covariance regularization results in a match improved if compared to
the respective traditional approach (compare plot e with c and f with d);
however, case 6, probably because of more detailed information on reservoir
states given by a higher resolution in seismic data, provides a much better
forecast than case 5.
Figure 5.11 shows the oil rate for producer 6. As for the previous figures,
the prior mean is not far from the truth, although there is certainly room for
improvement (plot a). Case 2 (plot b) presents already a slight divergence of
the update from the truth, which is exacerbated by the use of seismic data
(plot c&d): as observed in the previous figure, the divergence is proportional
to the number of measurements, becoming more evident going from case 3
to 4. The consequence is an incorrect forecast. The localization of produc-
tion and seismic data (plots e&f) leads to an increase in the ensemble spread
improving both the match and prediction.
As in the previous chapter, the RMSE averaged over all the producing wells
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Figure 5.11: Oil rates from producer 6 obtained with the different cases. The
ensemble members forecast is plotted in blue, the ensemble mean in yellow, the en-
semble update in black and in green the update mean; the observations are plotted in
red.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

609.7 672.5 673.1 674.9 665.8 663.3

Table 5.3: RMSE error in the oil production averaged over all the producers. The
error is calculated over the whole time of the simulations and it expressed is in days.

might be used to evaluate the performance of the different cases in matching
the truth oil production. This error is defined as in equation 4.1. Table 5.3
reports the RMSE averaged over all the producers from the different cases;
the rates are sampled at various timesteps from time 0 to time 30 years and it
is expressed in days. In general the use of only production data or production
and and non-localized seismic data leads to large errors; the error decreases
with the use of localization, but still higher than in the prior case.
Figure 5.12 shows the true and the ensemble mean permeability at layer 1
and 3 for the different cases at the end of the history match period; for
each case, two plots are presented, the upper one referring to layer 1 and
lower one to layer 3. Plots a&b present the truth permeability; in the prior
(c&d) no structure is present. With the assimilation of production data the
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Figure 5.12: True and estimated permeability from the different cases for layers 1
and 3. For each case two plots are presented, the upper one referring to layer 1 and
lower one to layer 3. The numbers denote the gridpoint indexes in the X− and Y−
directions.

predominant permeability trend is recovered although the more extreme per-
meability values are not captured. Case 3 to 6 (plots g&h to m&n) present
a similar permeability estimate as case 2, although the extreme values are
better recovered than in the case where only production data are used. The
localization of vertically averaged seismic data (k&l), with respect to case 3,
seems to better define the permeability field in the central part of the layer
3, where there is a dense succession of thin high/low permeability structures
(see area between gridpoints with X-index 20 and 50, in the upper part of the
plot). The estimate from case 6 (plots m&n), with respect to that from case
4 (plots i&j) seems to contain less extreme values; furthermore, the estimate
from case 4 is not overall correct (for example, in layer 1, the high permeab-
ility streak beginning at gridpoint with X-index 15 extending towards NE is
prolonged towards SW up to the model edge); the use of covariance regular-
ization seems to improve the permeability estimate at least in those areas.
Although cases 2 to 6 all recover the general trend from the truth case, in no
case a fully satisfactory match with the reference case can be observed.
Figure 5.13 plots the histograms of the mean (log-)permeability updated at
the end of the history match period from the different cases. The true spec-
trum covers a quite broad range of permeability values and a distribution
not perfectly Gaussian. The prior mean presents a very narrow spectrum,
while all the other estimates presents a perfectly Gaussian spectrum, much
broader than the prior. This translates into a more heterogeneous permeabil-
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Figure 5.13: True and estimated (log-)permeability histograms from the different
cases. The truth has a broad spectrum and an overall distribution not perfectly
Gaussian; The prior has a very narrow spectrum, while all the other cases present
a completely Gaussian, broader spectrum which can better reproduce the truth flow
pattern.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

2.421 2.677 2.665 2.664 2.422 2.412

Table 5.4: RMSE error in the (log-)perm at the end of the history match period
for the different cases.

ity structure (as observed in figure 5.12), more able to capture the true flow;
however, no case presents a broad spectrum as the truth.
Table 5.4 lists the RMSE for the mean (log-)permeability estimates from the
different cases at the end of the history match period; the error is expressed in
log(mD). Case 2,3 and 4 present comparable RMSE, higher than the prior;
the error is lowered if localization on seismic and production data is used
(cases 5 and 6). The use of localization results in an error similar to the prior
but not smaller, even though, as seen from the previous figure, its spectrum
is extremely narrow compared to the truth one.

5.4 Discussion

From the presented results it appears clear that the introduction of a large
number of seismic observations (like in cases 2,3, and 4) is likely to cause
an excessive ensemble covariance contraction and therefore, filter divergence.
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In case the seismic resolution is lower and seismic can only provide vertic-
ally averaged observations, the reduction in the ensemble is not so extreme;
hence, defining case 3 as a representative example of filter divergence ap-
pears dubious. Despite this, in this chapter a covariance localization applied
on the assimilation of vertically averaged seismic data has been included; the
motivation is, apart from increasing the effective ensemble size, to evaluate
the effect of Kalman gain regularization in cases averaged measurements are
provided. This procedure, although common in reality, is not sufficiently
documented in literature (Leeuwenburgh et al., 2011); therefore, it requires
more investigation.

5.5 Conclusions and recommendations

This chapter shows an example of assimilation of time-lapse changes in sat-
uration and in pressure with the EnKF from a synthetic, realistic 3D model.
Different simulations were compared. Results indicate that the assimilation
of production data only might be sufficient to cause filter divergence; as a
consequence, if localization is not applied, the match and the prediction of
well data might be poor, as well as the final estimate of the permeability
field. The introduction of seismic data, either vertically averaged or with the
resolution equal to the model gridblocks thickness, may exacerbate the pro-
cess of filter divergence, degrading the match for some wells and the overall
permeability estimate.
Kalman gain regularization through covariance localization has been applied
for the assimilation of production and seismic data in order to avoid the fil-
ter divergence and improve the match with well data. The used localization
functions are of Furrer type, aiming at smooth updates. The localization
radii for the different covariances have been chosen according to some rules-
of-thumbs obtained by previous covariance studies; those studies investigated
the extension of the non-zero cross-covariance region of state and parameters
variables with production and seismic measurements, and these were conduc-
ted on smaller 2D models with a regular well pattern (five-spot repeated).
The introduction of covariance localization avoids filter divergence, improv-
ing the match with well data; results indicate also an improvement in the
estimate of the water breakthrough time especially for wells distant from the
original OWC, that is with a late water breakthrough time. With the use
of localization also the permeability estimate slightly improves, even though
in none of the cases a fully accurate estimate is obtained, or at least the
improvement is not as clear as in the 2D case (chapter 4).
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As the improvements in the model update from the use of localization in the
assimilation of production and seismic data on this 3D case is not so evident,
in the next chapter, an alternative, innovative approach for the assimilation
of 4D seismic observations with the EnKF will be presented.



Chapter 6

Seismic History Matching of fluid

fronts using the Ensemble Kalman

Filteri

T
ime-lapse seismic data provide information on the dynamics of multi-
phase reservoir fluid flow in places where no production data from wells

are available. This information could in principle be used to estimate un-
known reservoir properties. However, the amount, resolution and character
of the data has long posed significant challenges for quantitative use in as-
sisted history matching workflows. Previous studies have therefore generally
investigated methods for updating single models with reduced parameter
uncertainty space. Recent developments in ensemble-based history match-
ing methods have shown the feasibility of multi-model history matching of
production data while maintaining a full uncertainty description. Here we
introduce a robust and flexible reparameterization for interpreted fluid fronts
or seismic attribute isolines that extends these developments to seismic his-
tory matching. The seismic data set is reparameterized in terms of arrival
times at observed front positions, thereby significantly reducing the number
of data, while retaining essential information. A simple 1D example is used
to introduce the concepts of the approach. A synthetic 3D example with spa-
tial complexity that is typical for many water floods is examined in detail.
History matching cases based on both separate and combined use of produc-
tion and seismic data are examined. It is shown that consistent multi-model
history matches can be obtained without the need for reduction of the para-

iThis chapter has been accepted for publication as a journal paper in SPE Journal

(Trani et al., 2012). Note that minor changes have been introduced to make the text
consistent with the other chapters of this thesis.
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meter space or for localization of the impact of observations. The quality
of forecasts based on the history matched models is evaluated by simulating
both expected production and saturation changes throughout the field for a
fixed operating strategy. It is shown that bias and uncertainty in the fore-
casts of both production at existing wells and of the flooded area are reduced
considerably when both production and seismic data are incorporated. The
proposed workflow therefore enables better decisions on field developments
that require optimal placement of infill wells.

6.1 Introduction

Time variations in reflection seismic data can be attributed to changes in
pore saturation and pressure, when ignoring compaction and repeatability
issues. Time-lapse seismic data therefore provide information on the dynam-
ics of multi-phase reservoir fluid flow in places where no direct measurements
from wells are available. While this has led to time-lapse seismic becoming
a valuable qualitative monitoring tool, for example in oil recovery projects
-e.g. de Waal & Calvert (2003), Foster (2007)-, quantitative use of seismic
data in assisted history matching workflows still remains challenging. Often
a single solution in terms of seismic properties (i.e. seismic velocities and/or
densities or seismic impedances) is derived through seismic inversion without
a formal error estimate. Moreover, the interpretation in terms of pressures
and saturations requires additional rock physics models, of which the uncer-
tainty is difficult to quantify. Model based stochastic inversion methods such
as proposed by Leguijt (2001, 2009) can take the non-uniqueness and the
uncertainty of the solution properly into account. However, it is not com-
mon practice yet to combine such results quantitatively with assisted history
matching methods. Practical and computational constraints posed by the
available seismic inversion and history matching algorithms or software tools
are often the reason.

Several studies have been reported over the past 10 years in which quant-
itative approaches were investigated for incorporating the large numbers of
data associated with seismic acquisition into existing workflows for assisted
history matching of production data (Arenas et al., 2001; van Ditzhuijzen
et al., 2001; Gosselin et al., 2006; Fagervik et al., 2001; Dong & Oliver, 2003;
Portella & Emerick, 2005; Haverl et al., 2005; Stephen & MacBeth, 2006;
Roggero et al., 2007; Dadashpour et al., 2007). For computational reasons
the workflows used in most of these studies require significant reduction of
the uncertainty space, or produce only a single history matched model.

Parallel to these efforts, new algorithms to solve the mathematical data-
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assimilation problem have been explored that offer the possibility of proper
handling of all uncertainties as well as multi-model history matching. One
example of such algorithms is the Ensemble Kalman Filter (see e.g. Aanonsen
et al. (2009) for a recent review). The Ensemble Kalman Filter (EnKF) was
introduced as a method for solving reservoir parameter estimation problems
by Nævdal et al. (2002), after having been successfully applied to dynamic
state estimation problems in fields such as meteorology and oceanography.
It has since been shown to be well suited for reservoir history matching un-
der many different settings. Some of the attractive features as a method for
history matching are its sequential nature, which enables the incorporation
of new data without the need to reconsider all previous data, the repres-
entation of uncertainty through the use of a model ensemble, the consistent
time-evolving weighting of model and data contributions based on model
and measurement error covariances, the flexible treatment of any kind and
number of data or uncertain parameters, a large and active research com-
munity, and a rigorous theoretical basis. The main assumptions underlying
the EnKF model update are that the errors in all variables approximately
adhere to a multi-variate Gaussian distribution and that this uncertainty can
be adequately characterized by an ensemble of models (or ’realizations’) of
limited size.

Application of the EnKF to seismic history matching has been studied
in both synthetic and real field settings (Skjervheim et al., 2007; Haverl &
Skjervheim, 2008; Fahimuddin et al., 2011; Leeuwenburgh et al., 2011). While
several successes could be reported, different authors have noted that incor-
poration of very large numbers of data may cause gradual loss of rank in the
ensemble, leading to unreliable uncertainty estimates and eventually to filter
divergence. The standard approach to address this problem is localization,
which aims to increase the effective dimension of the solution space as well as
reduce sampling errors -for applications in reservoir contexts see e.g. Arroyo-
Negrete et al. (2006); Chen & Oliver (2010); Emerick & Reynolds (2010)-.
A potential disadvantage of localization is the introduction of geologically
unrealistic discontinuities in the property fields.

Results from 2D and 3D synthetic studies (Skjervheim et al., 2006; Leeuwen-
burgh et al., 2011) have suggested that when the base survey data is properly
incorporated and local updating is performed, the extraction of information
from grid-based time-lapse seismic may still not be as effective as one would
perhaps expect. Possible reasons are the fact that the error variance of differ-
ence data is twice that of the individual data, and accumulation of errors in
the estimated initial state, or in the simulated base survey data, due to non-
linearity or non-Gaussianity (Zhao et al., 2008). The strongly non-Gaussian
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distribution of both states (saturation) and seismic attributes at fluid con-
tacts and flood fronts violates a basic assumption underlying Kalman-type
filters. Some solutions have been proposed for dealing with non-Gaussian
state updates, including the use of constrained and Gaussian mixture ver-
sions of the EnKF (Phale & Oliver, 2011; Dovera & Della Rossa, 2010), and
transformation or reparameterization of state variables (Gu & Oliver, 2007;
Chen et al., 2009). The latter study proposed a time reparameterization for
saturation states near the front position, similar to the concept of time-of-
flight used in methods based on streamline simulation. Unlike amplitude
sensitivities, travel-time sensitivities have been shown to be quasilinear with
respect to reservoir properties (He et al., 2001) and to follow a more Gaus-
sian distribution (see figure 5 of Chen et al. (2009)). Wu & Datta-Gupta
(2002) used this result to introduce a generalized travel-time reparameter-
ization of production data for use in history matching with finite-difference
simulators. Their inversion method involved sensitivity-based optimization
of the time-shift in the simulated WCT profile. Kretz et al. (2004) suggested
that the time-of-flight concept could be used for seismic history matching as
well. They proposed a method based on streamline simulation and applied
it to matching of water flood fronts resulting from a classification of ’seismic
facies’ in simple 2D cases. The geostatistical properties of the permeability
field were lost however as updates were primarily determined by the stream-
line pattern. Jin et al. (2011) recently also considered the use of flood front
information for seismic history matching. They used a global optimization
method to estimate a small number of parameters by minimization of the
difference between observed and simulated flooded area. No further details
of their approach were provided.

In this chapter we describe a new and robust approach to multi-model
seismic history matching of displacement-type recovery processes that com-
bines the strong points of the EnKF with those of approaches based on time
reparameterization, and can be used with full-physics finite-difference reser-
voir simulators. In particular, we argue that any type of seismic attribute
data grid can be reparameterized into travel times for any number of isolines
of that particular attribute, and that these can subsequently be incorpor-
ated into an ensemble of models using the Ensemble Kalman Filter. This
approach potentially has several strong points. The isoline corresponding to
the fluid front position can in most cases be reliably detected from any seismic
attribute. This means in principle that no inversion of seismic amplitudes
to reservoir properties is required. The specification of a limited number of
isolines (one corresponding to the case where only the flood front is identified)
results in a severe reduction in the number of data while still capturing the
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most reliable and important information contained in the data. The num-
ber of isolines can be chosen based on the accuracy of the data. The EnKF
enables adherence to specified two-point geostatistics as well as improved un-
certainty management because of the use of an ensemble of models. Finally,
both the more favorable distribution and the reduction in the number of data
are expected to enhance the functioning of the EnKF relative to alternative,
computationally expensive or otherwise sub-optimal approaches.

Good examples of time-lapse seismic anomalies that can be attributed to
saturation changes, and that can easily be transformed into front position
data are extensive in the literature (for an overview, see Calvert (2005)). In
particular the example of the Draugen field (Gabriels et al., 1999) is rep-
resentative of the type of reservoir that will be investigated in this study.
The same technique could probably be applied for CO2 storage in aquifers as
well, where similar fronts could be discerned. This is exemplified in a study
carried out at (Arts et al., 2009).

The chapter is organized as follows. First, we introduce the basic ideas
behind the proposed approach with a simple example. Next, we apply the
method to a realistic 3D reservoir case. We describe a series of history match-
ing experiments that include both production and seismic data and discuss
the quality of both history match and production forecasts obtained with the
updated models. Finally, we investigate the quality of forecasts of fluid front
positions and discuss the potential for improved reservoir management.

6.2 Methodology

In order to introduce the ideas behind the proposed method, we will start by
considering a quasi-1D oil reservoir with a length of 1000 m and a width and
height of 25m. For simulation purposes the reservoir is discretized into 250
grid cells of 4 m length each. An injection and a production well, operated at
constant pressures of 300 and 250 bar respectively, are positioned at opposite
ends of the reservoir. We assume that the permeability in the reservoir is
not known exactly, and that an ensemble of 250 log-normally distributed
permeability realizations adequately represents the uncertainty (figure 6.1d).
One additional realization is chosen as the truth. A weakly non-linear poro-
perm relationship is used to generate porosity values. Incompressible and
immiscible flow dynamics are used to simulate the replacement of the oil by
water flooding. Figure 6.1a shows the water saturation profiles for the model
ensemble and truth after 1.6 years. The variability in permeability values
produces a wide range of front positions for different ensemble members.
The position of the oil-water front is easily identified as the distance from
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Figure 6.1: Water saturation and permeability profiles for a quasi-1D oil reservoir
with a water injector and a producer positioned 1000 m apart. The gray lines corres-
pond to a model ensemble and the black line represents the true profile. (a) Water
saturation profiles after 1.6 years. (b) Change of water saturation with time at a
fixed location. (c) Water saturation profiles after a single permeability update with
the EnKF based on front arrival times. Fronts are defined as the 0.35 saturation
points and the observed front position is interpreted from the true saturation profile.
The observed arrival time at this position corresponds to the time of the survey, i.e.
1.6 years. (d) True permeability and and five randomly chosen ensemble profiles
before updating.
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the injector at which a sharp jump is observed in the saturation. In this
example, the front position is defined as the distance at which the saturation
equals 0.35.

Some quick observations can already be made based on figure 6.1; (1)
by far the largest change in saturation is observed right at the front, (2)
saturation levels behind the front increase monotonically with the distance
to the front, (3) behind the front, the saturation curves level off quite rapidly,
and subsequently show a very small rate of increase in saturation over time,
(4) precise saturation levels behind the front may be very difficult to resolve
from the data considering typical measurement error magnitudes, (5) if the
front has not yet arrived at a specific location, the saturation at that location
does not provide any information on the actual position of the front.

We note that while in the 1D case the position of the front corresponds
in a unique way to the distance from the injector, this is not necessarily the
case in 2D or 3D, or in cases with multiple injection wells. An alternative
measure that may be used in such general cases is the time at which the
simulated oil-water front arrives at the observed position. Figure 6.2a shows
the ensemble distribution of the log time of arrival of simulated fronts at the
position indicated by the solid black line in figure 6.1. It can be seen that the
distribution of simulated log arrival times is close to Gaussian, in agreement
with the conclusion of He et al. (2001) that the sensitivity of the travel-time
along streamlines is quasilinear with respect to reservoir properties.

As already mentioned, this may not exactly be the case in more complex
reservoir settings in which different flow paths may be followed in different
model realizations, but it is likely to be a good first order approximation.
Note that some additional simulation time is generally required to obtain
arrival times for all ensemble members, similar to the requirement for use of
generalized travel-times to match water cut data.

The Gaussian character of the ensemble distribution of the data after
reparameterization in terms of time makes it particularly suitable for history
matching with the EnKF. One model ensemble update was performed with
the EnKF based on a single measurement of the front arrival time at the
observed position. The implementation of the EnKF used in this study is
based on the perturbation form introduced by Burgers et al. (1998). In this
scheme the uncertainty in the data is taken into account by generating an
ensemble of measurements by adding random perturbations proportional to
the measurement error to the measured value. For further details on the
EnKF we refer to Aanonsen et al. (2009). Here, a measurement error of
0.1 was assumed (this value can be compared with the ensemble distribution
shown in figure 6.2a, suggesting that the measurement in this case is more
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Figure 6.2: Histograms showing the distribution of simulated front arrival times.
The true value is indicated by the triangle. (a) Prior ensemble. (b) Posterior en-
semble after one EnKF update.

accurate than the model forecast). Figure 6.1c shows the water saturation
profiles resulting from simulating the updated ensemble again for 1.6 years,
while figure 6.2b shows the updated distribution of log arrival times. The
plots confirm that the updated models reproduce the observed saturation
profile quite well by repositioning of the front.

In the above example, the front is identified as the position where the
saturation equals 0.35. In 2D this would be a closed contour, while in 3D the
front positions would constitute a surface. If the accuracy of the data is such
that variations in saturation values could be resolved behind the front, addi-
tional saturation thresholds can be specified as secondary, tertiary etc. fronts.
Arrival times associated with these secondary fronts can then be incorporated
in exactly the same way as for the primary front. Some consideration should
be given here to the estimation of appropriate measurement errors for the
secondary front arrival times. Assuming for example that saturation values
can be interpreted from the seismic data with an accuracy of 0.1, in the 1D
example this will translate to a positioning uncertainty of the primary front
of a few 10s of meters at most, since the jump from initial to front saturation
is typically much larger than this (almost 0.4 in the above example). Accur-
ate positioning of a secondary front becomes much more difficult, however,
since a saturation error of 0.1 easily translates to several hundreds of meters
in lateral displacement for thresholds higher than the front saturation. These
positioning errors translate to large errors in arrival time of the secondary
front (figure 6.1b). In order to test the added value of incorporating second-
ary front information, a second EnKF update was performed with the 1D
model using the time that the 0.6 threshold was exceeded as a measurement.
A modestly increased measurement error of 1.0 was assumed. The resulting
update was found to be very weak and simulated saturation profiles were
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visually almost indistinguishable from those based on incorporation of the
primary front arrival time only (not shown). This suggests that, even when
high-accuracy seismic data are available, history matching of the primary
front arrival time will be by far the most effective way to incorporate the
information that can be extracted from (time-lapse) seismic data.

6.3 Realistic 3D test case

In this section we will apply the proposed methodology to a realistic synthetic
3D reservoir. The reservoir has an anticlinal structure, and the geometry is
based on the synthetic Brugge Field (Peters et al., 2009). The reservoir
model consists of 74 × 24 × 7 grid blocks, with average grid block size of
150× 150× 4.5 m, corresponding to a total area of approximately 11.1× 3.6
km. The reservoir rock is assumed to consist of sandstones with Gaussian
distributed porosity between values of 0.05 and 0.34, and log-normally dis-
tributed permeability values between 5 and 5000 mD. A poro-perm relation-
ship links porosity and permeability. Sequential Gaussian Simulation (SGS)
is used to generate realizations of porosity and permeability to define both a
synthetic truth and an ensemble of 100 models to be used with the EnKF.
The ensemble is not conditioned to the properties of the synthetic truth at
well locations. The variogram used for the SGS has major and minor hori-
zontal correlation lengths of 5000 m and 500 m respectively, and a vertical
correlation length of 30 m, which corresponds roughly to the thickness of the
reservoir. The azimuth used for the synthetic truth is 80oW while random
azimuths between 65oW and 90oW are used for the ensemble members in
order to introduce additional uncertainty. The same poro-perm relationship
is used for the synthetic truth and for the ensemble members. Figure 6.3
shows the permeability and the porosity for layers 1 and 6 of the synthetic
truth. Figure 6.4 shows the permeability and the porosity for an arbitrary
ensemble member. Elongated features with relatively strong property con-
trasts are present, which are expected to result in highly variable preferential
flow paths and front positions.

The reservoir is filled with water and undersaturated oil, with the initial
oil-water contact (OWC) positioned about 90 m below the top of the anticline.
A total of 17 producing wells are located on the crest, and 10 water injectors
are positioned along the initial OWC in order to maintain sufficient pressure
for the gas to remain completely dissolved during production. A boundary
fault and a non-permeable top layer seal the reservoir completely, allowing in-
and outflow to occur only at the wells. During the simulation, the producers
are constrained by fixed bottom hole pressure, and the injectors by fixed
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Figure 6.3: Natural logarithm of permeability and porosity for layers 1 and 6 of
the synthetic truth.
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Figure 6.5: Well configuration and initial saturation for the 3D model. The
injectors (dark gray) are positioned along the initial OWC. The producers (light
brown) penetrate the top of the anticline. The white circles indicate the positions of
grid blocks A, B, and C.

injection rate. Production wells are not shut in after reaching high water
cuts. The positions of the wells are shown in figure 6.5.

Figure 6.6 shows map views of the water saturation in layer 1 (the top
layer) after 5000 days of production for the synthetic truth and two arbitrary
ensemble members. Also indicated by contours are the positions of the water
front in layers 1 and 6. The front (OWC) can be seen to advance progressively
towards the top of the anticline. Differences in apparent position of the front
in the top and bottom layers can be related to the slope and thickness of
the reservoir. The strong heterogeneity in the reservoir properties causes
a highly uneven lateral front and saturation profile behind the front. Here
and in later experiments, the front is identified with the contour where the
variation in saturation is 0.1. The grid cells corresponding to this contour
are identified by a search through the grid for cells fulfilling the conditions
that they have a saturation value higher than the front saturation value and
at the same time also have neighboring cells with saturations lower than this
value.

6.4 Description of history matching experiments

The 3D reservoir model discussed in the previous section will be used in a
series of history matching experiments. In this section both the production
and seismic measurements will be described.
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Figure 6.6: Water saturation in the top layer (gray scale) and front positions in
the top layer (solid contour) and layer 6 (dashed contour) after 5000 days. (a) true
reservoir (b) ensemble member 2 (c) ensemble member 3.
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Bottom hole pressures (BHP), water rates (WR), and oil rates (OR) are
measured at all wells, with measurement error standard deviations of 50 psi
for BHP, and 10% relative errors for rates. Because of the rate and pressure
constraints imposed, a total of 10 independent BHP and 34 independent rate
measurements are assumed to be acquired at 500 day intervals.

In addition to well data, four maps of saturation changes, as obtained for
example by inversion of time-lapse seismic data, are assumed to be available
from seismic surveys at 2500 day intervals. Note that any attribute could be
used, but we use saturation since it is already available after simulating the
true reservoir model. The observed position of the fluid front at the time of
each seismic survey is determined from the corresponding saturation map as
described in the previous section. In our model this results in identification
of respectively 812, 693, 673 and 623 front positions at the four repeat survey
times. The ensemble realizations are subsequently simulated in order to de-
termine the times at which the simulated fronts arrive at the observed front
position. This is done by monitoring the saturation levels at the grid cells cor-
responding to the observed front and registering the time at which the front
saturation is first exceeded. This simple procedure can be implemented with
most, if not all, industry-standard simulators. For the front cells for which
no arrival time has been obtained 20000 days after the time of the seismic
survey ti, a value of ti+20000 is assigned in order to limit computation time.
Note that in general, additional simulation time can be further restricted by
the user if desired. A log10 transformation is applied to all time values and a
standard deviation of 0.3 is prescribed for the measurement error. Note that
at 104 days, this corresponds to an uncertainty of several hundreds of days.
In practice, the value of the measurement error will be related to the spatial
resolution of the seismic data, systematic and random noise, and inversions
errors. We will defer detailed consideration of such errors for now.

Several history matching cases were defined, in which production and
seismic data were matched either individually or simultaneously. In Case 1
no data matching and model updating is performed. It illustrates the per-
formance of the prior model ensemble, based only on information about the
geostatistical properties of the reservoir. Case2 refers to the case where only
production data are matched with the EnKF. Case 3 is the case where only
seismic data are matched, and Case 4 refers to the case where production and
seismic data are matched simultaneously. The different cases are summarized
for reference in Table 1.

In order to maintain consistency between reservoir parameters and dy-
namic states, only static reservoir parameters are updated and the simula-
tions are restarted from the initial time after each update -see e.g. Wang
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case 1 case 2 case 3 case 4

no history matching well data only seismic data only well and seismic data

Table 6.1: Summary of the experimental cases. Well data are oil and water rates
and bottom hole pressures, seismic data are saturations at individual grid blocks.
Data errors are as described in the text.

et al. (2010) and Emerick & Reynolds (2011)-. Initial saturations and pres-
sures are assumed to be known exactly. After the final update at the end
of the history match period (day 10000) all updated ensemble models are
simulated from day 0 to day 40000. The period from day 10000 to 40000 (i.e.
30000 days in total) after the history match period is subsequently used to
verify the predictive power of the updated model ensemble by comparing the
predicted production and front movement with that resulting from operating
the true reservoir.

6.5 History match and prediction at producing wells

Figure 6.7 shows profiles of the watercut (WCT) of three producing wells (P9,
P10, and P1) over the history matching period for the four cases. All three
wells experience water breakthrough during the history match period. The
figure illustrates that history matching with the EnKF has produced a match
to measured production data that from visual inspection appears statistically
consistent, i.e. the measured data (true value plus random noise in this
synthetic case) continuously lie within the uncertainty band represented by
the ensemble.

Figure 6.8 shows time series of the WCT of three different producing wells
covering both history match and forecast periods. In each plot the individual
ensemble member profiles are represented by gray lines, the ensemble mean
is indicated by the dashed line, and the true WCT is indicated by the solid
black line. The three wells (P16, P3 and P13) experience water breakthrough
only after the history matching period and at substantially varying times
during the forecast period. The main factors controlling early breakthrough
are the position of the producer with respect to the original OWC, and the
heterogeneity of the permeability field. At all three wells the prior model
ensemble (case 1) has a large spread, due to the uncertainty in porosity
and permeability, and is biased towards early water breakthrough times.
Both bias and ensemble spread are generally reduced during the forecast
after history matching to any type of data (cases 2 to 4). Incorporation
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Figure 6.7: Time series of water cut (vertical axis) for wells P9, P10, and P1
during the history match period (time is in days on the horizontal axis). The indi-
vidual ensemble members are plotted in gray, the ensemble mean is indicated by the
dashed line, and the solid black curve is the true water cut.
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Figure 6.8: Time series of water cut (vertical axis) for wells P16, P3, and P13
during the entire simulation period, including a 30000 day forecast period (time is in
days on the horizontal axis). The individual ensemble members are plotted in gray,
the ensemble mean is indicated by the dashed line, and the solid black curve is the
true water cut.
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case 1 case 2 case 3 case 4

8066 3081 1124 797

Table 6.2: RMSE of water breakthrough time in days for the different cases.

of production data only (case 2) has improved the prediction for well P16
significantly. The prediction for the other two wells, however, remains rather
poor due to substantial bias. The suggested uncertainty in the forecast, as
indicated by the ensemble spread, is consistently underestimated as evidenced
by the fact that the true values are not covered by the ensemble at any time
during the forecast period. While the water cut profile for P16 has improved
considerably, the estimation of the timing of the water breakthrough at wells
P3 and P13 is still rather poor. This can be understood from the positions
of the latter two wells, which are situated further away from the original
OWC as well as from the position of the front at the end of the history
match period. As stated in observation (5) of the Methodology section, the
saturation (or in this case, WCT) does not provide any information on the
position of the water front since it has not yet arrived at these well positions.
Therefore no direct improvement coming from data can be expected at these
locations. The assimilation of seismic data only (case 3) improves the timing
of the water breakthrough for all wells relative to the unconditioned ensemble.
In particular the prediction for the two wells located far from the OWC
has improved considerably. The case with production data only provides a
poorer prediction than the case with seismic data only, except for well P16,
in which water breakthrough occurs shortly after the history match period.
The combined use of production and seismic data (case 4) is seen to result
in a compromise between the positive contributions of each data type. The
prediction of the WCT for P16 and P13 are in fact better than the predictions
based on production or seismic alone. Except for the period immediately
following water breakthrough at well P3, the forecast uncertainty is consistent
with the true values.

Table 6.2 lists the root-mean-square error (RMSE) in days for the pre-
diction of the water breakthrough times in all production wells provided by
the four different cases. While incorporation of production data considerably
reduces the forecast error relative to the prior ensemble, seismic data is seen
to be particularly valuable in improving the forecast. The reason for this will
become clear when we consider the effect of the repositioning of the front in
the next section.

Figure 6.9 shows the true and the estimated natural logarithm of per-
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the corresponding estimates at the end of the history match for the four cases.
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meability for layers 1 (left column) and 6 (right column) at the end of the
history match for the four different cases. The field represent the mean over
all ensemble members. The prior mean does not show any predominant struc-
ture due the fact that no conditioning was done at the well locations, resulting
in a nearly homogeneous field. Elongated structures, similar to those seen
in the synthetic truth, are recovered in all three history match cases. Visual
inspection suggests that magnitudes and scales of the permeability structures
are in agreement with those of the truth. Since the global EnKF analysis
used here can be shown to be a linear combination of the prior ensemble
members, we expect scales to remain consistent with the a priori specified
geostatistics. We do not see over-estimation of amplitudes.

6.6 History match and water front prediction

So far we have assessed the quality of the history match and the subsequent
forecast in terms of behavior in the producing wells, and by the similarity of
the estimated property distribution in the reservoir with that of the synthetic
truth. In this section we will investigate the reason for the relatively poor
forecast resulting from the use of production data only, and for the substantial
improvements obtained by the use of front information.

Figure 6.10 illustrates the uncertainty in the position of the front in layers
1 and 6 for a forecast up to time 40000 for all four cases. The uncertainty
is indicated by the dark gray zone and represents the collection of front cells
in the entire ensemble. For reference both the true position and the initial
OWC are also indicated in each panel . The forecast based on the prior
ensemble produces a very large spread in front positions. Incorporation of
production data only is sufficient to reduce the spread considerably. However,
the remaining spread represents an uncertainty of up to 0.5 km in the front
position and 10000 days in front arrival time. The two cases incorporating
front arrival time information result in a further reduction of the uncertainty,
and a repositioning of the ensemble fronts around the true position.

These results are further quantified in Table 6.3, which lists both the
mean value and the standard deviation of the errors in the simulated front
arrival times calculated for all grid cells along the observed front position
at time 40000 days. Both the error in the mean forecast and the estimated
forecast uncertainty (spread around the mean) are reduced by incorporating
data, with the smallest errors obtained when both production and seismic
are used. It should be noted here that the estimated forecast uncertainty
appears to consistently underestimate the actual forecast error, and at this
point should therefore probably be used with caution. Further discussion on
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Figure 6.10: Prediction of the water front position in layers 1 and 6 (top view)
at time 40000 days for the four cases. The original OWC is indicated in light gray.
The collection of ensemble front positions is shown in dark gray, and the true front
position is shown in black. The circles indicate the positions of the grid blocks A, B
and C.

case 1 case 2 case 3 case 4

STDV 0.213 0.065 0.057 0.039
RMSE 0.641 0.582 0.591 0.580

Table 6.3: Average standard deviation of ensemble spread in predicted front arrival
time along the grid cells of the observed front (STDV), and root-mean-squared error
in the predicted front arrival time at the grid cells of the observed front (RMSE).
Both values are in log10 days and are determined at the end of the forecast period
(40000 days).
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the reliability of forecast uncertainty in the EnKF can be found in Lorentzen
et al. (2011) and Thulin et al. (2011).

Figure 6.11 shows predictions of the change in saturation over time in
the 3 grid blocks labeled A, B and C in figure 6.5. As for the three wells
shown in figure 6.8, the grid blocks were selected based on the different times
at which the front (or OWC) arrives at these locations. In all three grid
blocks, the front arrives a significant time after the end of the history match
period, thus providing a good means to validate the predictive power of the
history matched models. As in figures 6.7 and 6.8, the saturation profiles
for the ensemble members are plotted in light gray, the ensemble means
are indicated by the dashed black lines, and the true change in saturation
is indicated by the solid black line. The results are very similar to those
found for the prediction of the water breakthrough at producing wells. The
spread in the prior ensemble reflects the huge uncertainty associated with the
property distribution in the reservoir, and at points B and C is strongly biased
towards too early arrival times. The incorporation of production data leads
to a reduced front progression, but predictions remain systematically biased,
and uncertainty estimates are inconsistent with the true data at points A and
C, as indicated by poor overlap between the ensemble and true saturation
profiles. Only proper use of seismic data is able to eliminate this inconsistency
at all three points, where the combined use of production and seismic data
also tends to remove the bias, and additionally produces the forecast with
the smallest uncertainty.

Finally, figure 6.12 shows the distribution of water front arrival times at
the three grid points A, B and C, before and after incorporation of both pro-
duction and seismic data. Note that these grid positions do not correspond
to any of the well positions, and therefore highlight the forecast capability
outside of existing wells. The light gray histogram shows the distribution of
times simulated by the prior model ensemble, while the dark gray histogram
shows the times simulated by the history matched ensemble. The ensemble
mean arrival times are indicated by a downward pointing triangle and aster-
isk, and the measured arrival time is indicated in each panel by an upward
pointing triangle. While the prior distribution generally looks somewhat less
like a Gaussian, or at least a little more irregular, than in the 1D example,
the updated ensemble produces histograms that are nearly Gaussian, a well
known property of stochastic (i.e. perturbation based) EnKF algorithms.
More importantly, while the arrival time forecast from the prior ensemble is
heavily biased at points B and C, the updated ensemble appears to correctly
predict the arrival of the water flooding front at all three positions.

Figures 6.10 to 6.12 suggest that field development decisions involving
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Figure 6.11: Time series of saturation change at the same grid blocks (A, B,
and C) as in figure 6.12. The individual ensemble members are plotted in gray, the
ensemble mean is indicated by the dashed line, and the solid black curve is the true
saturation change profile.
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Figure 6.12: Histograms showing the ensemble distribution of simulated front
arrival times at 3 different grid blocks (A, B and C). The prior distribution is shown
in light gray, and the posterior distribution after history matching to production
and seismic data (case 4) is shown in dark gray. The sum of all counts equals
the ensemble size which is 100. The downward pointing triangle indicates the prior
mean, and the upward pointing triangle the true value. An asterisk indicates the
mean after history matching.

the placement of infill wells can be taken with significantly higher confid-
ence when seismic data are properly incorporated in the history match. By
reducing the uncertainty in the front position, a better estimate of optimal
locations can be made at the time of any revision in the development plan.
Moreover, production scenarios for existing well configurations can be optim-
ized based on estimated arrival times of the front. These results are consistent
with those of Peters (2011), who demonstrated that a good history match
and prediction for existing wells based on production data only does not
guarantee an accurate prediction for new infill wells.

6.7 Discussion

A reparameterization of seismic data into front arrival times, and subsequent
incorporation in an ensemble-based assisted history matching scheme was
presented. Such a reparameterization could be compared with the approach
taken in streamline-based history matching -for reviews and references see
e.g. Datta-Gupta & King (2007); Thiele et al. (2007); Stenerud (2007)-.
In the streamline-based approach, streamline simulation is used to identify
streamtubes that carry a fixed volumetric flux. Within each tube, the flow
problem is transformed into 1D, with the state variable being the time of
flight. By adjusting the permeability along the streamlines, the time of flight,
or the travel time of water along the streamlines, can be influenced very
efficiently since streamline simulators are generally fast. Their advantages
may disappear to some extent for cases that involve changing well or field
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conditions that affect drainage areas, or more general, in cases where the
flow is less defined as in capillary and gravity dominated flow or in strong
compressibility induced flow (Thiele et al., 2010).

In the EnKF-based approach the parameters that are to be estimated are
not limited to grid block properties along flow paths such as porosity and
permeability. No approximations are required in the physics, although this
leads to some additional computational cost relative to the streamline ap-
proach. Furthermore, the method includes an automatic implicit assessment
of uncertainty, and consistent weighting of models and data types, that may
evolve over time with both the dynamics in the reservoir and with changes
in the well configuration.

The reparameterization of seismic data into front arrival times is similar
to the reparameterization of WCT data into travel-times of Wu & Datta-
Gupta (2002). They noted that the quasilinear sensitivity of travel-time
misfit to reservoir properties will speed up iterative minimization procedures.
We find that it also has several advantages for the functioning of the EnKF.
It enables the transformation into a quantity with a more continuous and,
most probably, more Gaussian-like distribution than saturation or simulated
seismic attributes. This motivated the use of a similar reparameterization
of saturation by Chen et al. (2009) for the purpose of updating dynamic
reservoir model states with the EnKF. Furthermore, it enables the reduction
of the data set to a select number of isolines only. It has been observed
that the huge amount of data associated with seismic surveys may have a
detrimental effect on the functioning of the EnKF. Including fewer seismic
measurements, while preserving the most relevant information, improves the
functioning of the filter without the need for remedies like localization and
inflation.

In this study we considered the availability of inverted saturation maps
only. In general, neglecting compaction or subsidence effects, time-lapse vari-
ations of seismic attributes are the combined expression of changes both in
saturation and in pressure (Landrø, 2001; Trani et al., 2011). We focused
on waterflooding fieldcases, where changes are predominantly ascribed to
changes in saturation -e.g. Gabriels et al. (1999)-. Other potential applic-
ations are related to C02 injection experiments like at Sleipner (Arts et al.,
2009) for which the main changes in seismic attributes are predominantly
caused by saturation changes. In such cases explicit inversion into satura-
tion changes is not necessary, and seismic attributes can be reparameterized
directly into front arrival times. In cases where the front can not be sharply
resolved from the data, e.g. bottom drives with a vertically climbing front,
inversion of the seismic waveforms to some type of attribute will ultimately
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still result in an estimate of volume displacement, and therefore indirectly a
contact displacement, at a particular location. So while the front or contact
cannot perhaps be directly detected in the data, its position is typically in-
ferred through alternative routes. While this would take away the benefit of
not requiring explicit seismic inversion, the benefits of the reparameterization
for the functioning of the history matching scheme will still hold.

In this synthetic experiment the prescribed measurement error for repara-
meterized seismic data was chosen somewhat arbitrarily for the purpose of
demonstrating the proposed method. In actual field cases, the error in the
arrival time measurement results from the limited accuracy of the seismic
data, including uncertainties in (time-lapse) acquisition, processing and in-
terpretation. The main source of uncertainty in acquisition and processing
can be attributed to the lack of repeatability, whereas the interpretation of
time-lapse results requires some understanding of the processes through an
underlying rock physics model. Other acquisition errors are in principle as-
sociated with the fact that the seismic survey may take several days to be
completed, however this period is very short relative to reservoir processes
such as water flooding and this error contribution is therefore expected to be
very small. The spatial accuracy with which the position of the front can be
picked is also related to the resolution of the seismic data. This spatial resol-
ution is generally sufficient to allow a clear identification of the front. More
difficult may be the association of the interpreted front with e.g. a particular
saturation value. On the coarse grid resolution of a typical reservoir model, a
small error in saturation value may be related to a significant error in arrival
time for a specific grid block. Also, this error may be systematic rather than
random along the front. Since such a bias translates to a bias in the flooded
area, for prescribed water injection totals, this could be interpreted as a bias
in pore volume behind the front. Further study may be required into ways to
identify and correct such systematic errors. Factors that affect the validity of
the reservoir model flow dynamics include relative permeabilities, well con-
straints, initial OWC, structural uncertainty etc. None of these uncertainties
were included in this study, and only uncertainty in grid block properties
was considered. It should be pointed out, however, that all of these types
of uncertainties can be handled by the EnKF, as demonstrated by numer-
ous examples from the literature. It should be obvious that application of
the methods described in this manuscript to actual field cases would require
consideration of uncertainties relevant for each individual case.
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6.8 Conclusions

In this study a new robust approach to seismic history matching was proposed
that combines a reparameterization of seismic data into front arrival times
with incorporation in an ensemble-based assisted history matching scheme.
It was demonstrated in synthetic 1D and more realistic 3D examples that the
method performs very well and produces models with improved match to both
production and seismic data and with considerably improved forecast skill
both at and in between wells. The proposed approach builds on earlier work
on reparameterization of both states and data, and incorporates features of
streamline-based approaches while maintaining the flexibility and full physics
options of finite difference simulators. The method can be implemented with
any industry-standard simulator and offers interesting potential advantages
with respect to alternative approaches that have been presented elsewhere:
the reparameterization into arrival times enables a very large reduction in
number of data while retaining the essential information content, there is
no need for a seismic inversion when only the primary front is interpreted,
the flexibility to define any desired number of secondary fronts depending
on the quality of the data, a more linear sensitivity to reservoir properties
and a more Gaussian distribution of simulated measurements, which tends
to improve the functioning of inversion methods, while use of the EnKF
in particular provides an efficient means to obtain a multi-model history
match that incorporates and retains geological information formulated in
terms of two-point geostatistics. Any additional simulation time relative to
conventional EnKF workflows can be controlled by the user. No localization
was required in the experiments and the ensemble spread remained a reliable
estimate of model uncertainty.



Chapter 7

Conclusions and recommendations

T
he main objective of this thesis is to provide an accurate estimate of
changes in saturation and pore pressure induced by waterflooding in

case of EOR, and to improve the flow model through the assimilation of
time-lapse seismic data with the Ensemble Kalman Filter.
This chapter presents the conclusions of this thesis and gives recommenda-
tions for future research.

7.1 Conclusions

In order to achieve the first part of the research objective, a 4D seismic
inversion scheme is presented. This is based on a modified form of Landrø’s
(2001) equations and extended with two additional equations expressing the
time-shift induced by P- and S-wave velocity changes as functions of pore
pressure and saturation changes. This thesis demonstrates that:

• Inversion results of time-lapse seismic data to pressures and saturations
improve considerably when taking time-shifts into account. However,
the importance of a proper incorporation of lateral variations of porosity
remains important.

• By replacing the P-wave gradient equation with the approximation re-
lated to the time-shift equation, the leakage between the two estimated
variables almost disappears; if time-shift data are not available, the
leakage effect is strongly reduced in case the second order terms in rel-
ative changes in seismic properties are added in the gradient equation.

• The final estimates seem to be relatively robust to seismic noise. Changes
in saturation and pressure present fairly high accuracy in the presence

135
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of random noise up to 15%; in presence of systematic noise, final estim-
ates show biased errors but their main features can still be recognized
clearly.

The second part of the research objective has been achieved by proposing
two innovative approaches for the assimilation of seismic measurements with
the Ensemble Kalman Filter.
The first one is the assimilation of time-lapse changes in fluid saturation
and pore pressure. It is well known from literature, that if the number of
observations to assimilate is large with respect to the ensemble size, the filter
cannot work properly. This effect is called ’filter divergence’. The most
successful remedy to this drawback, and probably the best documented in
literature, is covariance localization.
The second approach consists of assimilating water front arrival times. This
method can be considered as a time-reparameterization of saturation data at
the front location.
The conclusions from this study are:

• When the initial ensemble spans the true uncertainty range, the use of
seismic measurements, vertically averaged or per gridcell, improves the
history matching and the forecast of production data, and the poros-
ity/permeability fields characterizations.

• Covariance localization applied to the Kalman gain is a very effective
remedy to filter divergence caused by an excessive number of observa-
tions to assimilate. In order to be optimally applied, covariance loc-
alization would require the knowledge of the true covariance of meas-
urements with the parameters/states to update. In this thesis it is
demonstrated that the covariance of time-lapse changes in saturation
and in pressure with the permeability, saturation and pressure fields is
influenced by the permeability structure, the past history match (time),
and the wells disposition.

• If correctly applied the localized ensemble Kalman filter update outper-
forms the standard approach with or without any seismic information.
Compared to both cases, the localized ensemble Kalman filter update
largely improves the history match and the forecast for production data.
Furthermore, it improves the porosity and the permeability fields es-
timates.
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• The reparameterization into arrival times enables the assimilation of
seismic data with no need for a seismic inversion when only the primary
front is interpreted (assuming the waterfront position can be properly
identified on time-lapse seismic data). This approach allows the flex-
ibility to define any desired number of secondary fronts. With respect
to using saturation data per gridcells, history matching the fluid front
arrival time largely reduces the number of data to assimilate, while re-
taining the essential information content.

• The reparameterization into arrival times presents a more linear sens-
itivity to reservoir properties, and a more Gaussian distribution of sim-
ulated measurements. This tends to improve the functioning of the
EnKF which provides an efficient means to obtain a multi-model his-
tory match that incorporates and retains geological information formu-
lated in terms of two-point geostatistics.

• The information contained in the arrival times is in itself sufficient
to improve the production data fit, resulting in improved estimations
of water breakthrough time over both the history match and forecast
periods. Furthermore, the combination of production and seismic data
provides very accurate predictions of the watercuts at well locations
and of front positions. Improving the prediction of the front location
is of large value for infill well planning.

7.2 Suggestions for future research

Suggestions for future research are proposed:

• The inversion scheme presented in this thesis should be applied on a
real case. This would validate the robustness of the method to real
data conditions.

• A study investigating the true covariance between state/parameters to
update and seismic measurements might be performed on different 2D
and 3D realistic models. This would confirm the guidelines for optimal
localization functions as proposed in this thesis or provide suggestions
on how to modify those guidelines according to different well configur-
ations, model sizes, geological structures.
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• Alternative reparameterization techniques for the assimilation of seis-
mic measurements should be investigated (such as using the distance
to the water front, instead of time). Rules-of-thumb for the use of dif-
ferent EnKF parameterizations would be highly appreciated by the oil
industry.



Appendix A

The Gauss-Newton method applied

to the inversion scheme

According to Newton’s method the zeros of a function can be iteratively
found with the following formula:

xn+1 = xn −
f (xn)

f ′ (xn)
. (A.1)

For an optimization problem Newton’s method can also be used to find the
zeros of the derivative (minimum):

xn+1 = xn −
f ′ (xn)

f ′′ (xn)
. (A.2)

Given m functions (f1, f2, ..fm) in n variables s = (α, β, γ,...), with m ≥ n,
the Gauss-Newton algorithm finds the minimum of the sum of squares

T (s) =

m
∑

i=1

f2
i (s) . (A.3)

The recurrence relation for minimizing the function, according to Newton’s
method is

sn+1 = sn −H−1G, (A.4)

where G denotes the gradient and H the Hessian of T.
The gradient is given by:

gj = 2
m
∑

i=1

fi
δfi
δsj

, (A.5)
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or in matrix notation

G = 2JTf (A.6)

Elements of the Hessian are calculated by differentiating the gradient ele-
ments with respect to sk:

Hjk = 2
m
∑

i=1

(

δfi
δsj

δfi
δsk

+ fi
δ2, fi
δsjδsk

)

, (A.7)

or in matrix notation (ignoring the second order derivatives)

H = 2JTJ. (A.8)

These expressions, substituted into the recurrence relation give

sn+1 ≈ sn −
(

JTJ
)−1

JTf , (A.9)

where f is the vector containing the non linear equations in known values
(initial guess) of pressure and saturation, and J the partial derivatives in
those values.
The diagonal elements of the 2-by-2 Hessian matrix contain the sum of the
squared derivatives of seismic inputs (∆R0, ∆G, ∆Tpp, and ∆Tss) with re-
spect to ∆S and ∆P . Since these values are nonzero (the derivative of the
linear terms in the unknowns are constants) the inversion needs no stabilizing
parameter. Furthermore, if pressure is calculated in MPa, no scaling factor
is required as the order of magnitude of ∆P is comparable with the one of
∆S.
The method shows convergence if the initial guess is sufficiently close to the
minimum (exact ∆S and ∆P ) and the functions are weakly non-linear, in
order to render valid the approximation of the Hessian.



Appendix B

Reflectivity change including

second order terms

Eq. 2.1 describes the reflection coefficient at the top reservoir level for the
baseline survey. At the time of the monitor survey the reflection coefficient
reads

R1(θ) =
1

2

(

δρ′

ρ′
+

δα′

α′

)

−
2β′2

α′2

(

δρ′

ρ′
+

2δβ′

β′

)

sin2(θ)+
δα′

2α′
tan2(θ), (B.1)

where δα′ = δα + ∆α and α′ = α (1 + ∆α/2α) with ∆α being the change
in P-wave velocity in the reservoir induced by changes in pore saturation
and pressure. The same notation holds for β and ρ. Assuming that the
relative changes in seismic properties ∆α/α ≪ 1, ∆β/β ≪ 1, ∆ρ/ρ ≪ 1,
and neglecting higher order terms or combinations thereof, R1(θ) can be
rewritten as:

R1 (θ) =
1

2

(

δρ

ρ
+

δα

α

)

−
2β2

α2

(

δρ

ρ
+

2δβ

β

)

sin2 (θ) +
δα

2α
tan2 (θ)

+
1

2

(

∆ρ

ρ
+

∆α

α

)

−
2β2

α2

(

∆ρ

ρ
+

2∆β

β

)

sin2 (θ) +
∆α

2α
tan2 (θ)

(B.2)

The time-lapse change in reflectivity ∆R (θ) is obtained by subtracting R0 (θ)
(eq.2.1) from R1 (θ); from ∆R (θ) the change in zero-offset reflectivity as well
as the change in gradient reflectivity can be extracted (eqs.2.2 and 2.3).
Eq. B.2 has been largely simplified by removing higher order terms in ∆α/α,
∆β/β, ∆ρ/ρ or combinations of them. However, if these terms are included,
the complete reflectivity at the time of the monitor survey would read (using
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Taylor expansion to the first degree for α′,β′,ρ′)

R1 (θ) =
1

2
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δρ+∆ρ

ρ
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(B.3)

To the second order, Eq.B.3 can be rewritten as

R1 (θ) = R0 (θ) +
1
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(B.4)

By subtracting R0 (θ) and the terms with no angle dependence from eq.
B.4, we obtain the gradient reflectivity change. Assuming that the relative
changes in seismic velocities are the sum of changes in pressure and in pore
saturation, while the relative change in density is only due to saturation
variations (see eqs. 2.4-2.6), from eq.B.4 the change in the gradient coefficient
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can be rewritten as
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∆αF

2α
−

2β2

α2

(

∆ρF
ρ

+
2∆βF
β

)

−
2β2

α2

[

∆βF
β

δρ

ρ
+

∆βF
β

∆ρF
ρ

+
∆βF
β

δβ

β
+

(

∆βF
β

)2

−
∆αF

α

δρ

ρ
−

∆αF

α

∆ρF
ρ

− 2
∆αF

α

δβ

β
− 2

∆αF

α

∆βF
β

−
δρ∆ρF
2ρ2

−
(∆ρF )

2

2ρ2

]

−
1

4

(

δα∆αF

α2
+

(∆αF )
2

α2

)

+
∆αP

2α
−

2β2

α2

(

∆ρP
ρ

+
2∆βP
β

)

−
2β2

α2

[

∆βP
β

δρ

ρ
+

∆βP
β

∆ρP
ρ

+
∆βP
β

δβ

β
+

(

∆βP
β

)2

−
∆αP

α

δρ

ρ
−

∆αP

α

∆ρP
ρ

− 2
∆αP

α

δβ

β
− 2

∆αP

α

∆βP
β

−
δρ∆ρP
2ρ2

−
(∆ρP )

2

2ρ2

]

−
1

4

(

δα∆αP

α2
+

(∆αP )
2

α2

)

.

(B.5)

The relative changes in seismic properties induced by saturation or pressure
changes can be rewritten in a similar way as in eqs.2.7-2.9. However, in this
case, we use a linear expansion with respect to changes in both parameters
as showed in the following equations:

∆αF

α
= kα∆S, (B.6)

∆αP

α
= lα∆P, (B.7)

∆βF
β

= kβ∆S, (B.8)

∆βP
β

= lβ∆P, (B.9)

∆ρF
ρ

= kρ∆S, (B.10)

∆ρP
ρ

≈ 0 (B.11)
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and grouping similar terms, the coefficient of the gradient reflectivity change
becomes
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(B.12)

Equation B.12 represents, according to Smith & Gidlow (1987), the time-
lapse change in gradient reflectivity including second order terms in relative
changes in seismic properties rewritten as functions of ∆S and ∆P . Al-
though these functions are linear, eq.B.12, because of the quadratic order or
the product between the relative changes, becomes a quadratic expression in
both parameters.
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Summary

T
he world energy demand still increases every year. As a consequence, the
demand for fossil fuels, by far the first energy source, is increasing, while

easily accessible fossil fuel resources are decreasing. This has stimulated re-
search and development to the optimization of hydrocarbon recovery from
existing reservoirs over the last decade. Waterflooding for enhanced oil recov-
ery is one approach to increase the recovery of an oil reservoir. In this thesis
the monitoring of waterflooding using time lapse seismic data in combina-
tion with production data is used to improve the representative flow models
of the reservoir. Such models are then used to optimize production strategies.

When constraining a reservoir model to observations, the measurement
uncertainty plays a key role. The first part of this thesis is dedicated to
developing an inversion methodology leading to more accurate estimates of
changes in saturation and pore pressure induced by waterflooding from 4D
seismic data.
Waterflooding processes induce time-lapse changes in reservoir fluid satur-
ation and in pore pressure. These are reflected in 4D variations of seismic
attributes like changes in amplitudes and time-shifts.
The improvement of the proposed 4D seismic inversion method resides in
a more correct, and possibly unbiased, estimate of time-lapse changes in
saturation and pore pressure. Existing methods often suffer from bias and
leakage between the different estimated parameters. By making use of dif-
ferent combinations of time-lapse seismic attributes based on four equations:
two expressing changes in pre-stack AVO attributes (zero-offset and gradient
reflectivities), and two expressing post-stack time-shifts of compressional and
shear waves as functions of production induced changes in fluid properties,
the estimates can be considerably improved. The impact of using different
combinations of these equations is tested on a synthetic, though realistic 3D
model, where seismic data have been simulated at various steps during the
30 years lifetime of the waterflooded reservoir.
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Results show that the inversion accuracy increases if higher order terms in
the description of the P-wave gradient reflectivity are not neglected, or if, in
case S-wave data are available, the S-wave time-shift equation replaces the
equation related to the P-wave gradient reflectivity. As in all inversion meth-
ods, the influence of prior porosity estimates remains very high and results
improve considerably, in case lateral variations of porosity are properly taken
into account. The effect of noise on the inversion results is also investigated,
with the conclusion that the method seems to be quite robust to random
noise, while the introduction of systematic noise decreases the inversion ac-
curacy more severely.

The second part of this thesis is dedicated to the investigation of the pos-
sibilities to obtain an accurate model characterization, particularly in terms
of flow, through the assimilation of seismic measurements with the Ensemble
Kalman Filter.
The mathematical process which identifies the parameter values that minim-
ize a cost-function representing the mismatch between modeled and observed
data is called Data Assimilation (or History Matching). In Data Assimila-
tion, parameter estimations for the entire reservoir model, are often based
only on the information related to sparsely distributed production data. It is
obvious that in such a case the number of observations is much smaller than
the number of parameters to estimate, making history matching a strongly
ill-posed problem. The additional information acquired from (time-lapse)
seismic data can be utilized to narrow the solution space down when min-
imizing the misfit between gathered measurements and their forecasts from
numerical models.
Although in literature numerous data assimilation methods have been presen-
ted, in this thesis the Ensemble Kalman Filter has been chosen for several
reasons. Firstly, the method is computationally feasible for large systems and
is relatively simple to implement making use of existing simulators. Secondly,
it presents a flexible treatment of any kind and number of data or uncertain
parameters. Thirdly, this method has a large and active research community,
and a rigorous theoretical basis.
This thesis proposes two innovative approaches to assimilate seismic meas-
urements with the Ensemble Kalman Filter.
The first approach concerns the assimilation of time-lapse changes in fluid
saturation and pore pressure available for every reservoir gridblock. This
method builds directly on the results of the first part of this thesis. In this
case the number of observations to assimilate can be very high, causing the
problem of ’filter divergence’. Filter divergence is a consequence of an excess-
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ive reduction of ensemble parameter covariance. The most effective method
to circumvent this problem is Covariance regularization through Localization.
This approach consists of multiplying the ensemble covariances element-wise
by a local support matrix, resulting in a localized covariance estimate.
For a correct application, localization requires the knowledge of the real cov-
ariance between measurements and states/parameters to update. Through a
2D synthetic study rules of thumb for the definition of adequate localization
functions have been determined. Afterwards these rules have been success-
fully applied on a 3D reservoir.
The second approach of seismic data assimilation is based on the assimil-
ation of fluid front arrival times. The major advantage of the method is,
that no full inversion of seismic data to saturations for each grid block is re-
quired. The focus is only on the fronts, where changes in time lapse seismic
response can be observed. In this case saturation data, impedance maps, or
even simple amplitude change maps can be assimilated as waterfront arrival
times. This approach enables a very large reduction in number of data while
retaining the essential information content. Furthermore, it offers a more
linear sensitivity to reservoir properties and a more Gaussian distribution of
simulated measurements than using saturation data. This tends to improve
the functioning of the EnKF, which represents a multi-model history match
that incorporates and retains geological information formulated in terms of
two-point geostatistics. This method has also been successfully applied on
a slightly modified version of the benchmark Brugge field, a synthetic study
reflecting to a great extent the complexity of a real field.
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Samenvatting

D
e wereldwijde vraag naar energie stijgt nog steeds jaarlijks. Hierdoor
stijgt ook de vraag naar fossiele brandstoffen, nog steeds de belangrijk-

ste energiebron, terwijl tegelijkertijd de voorraden gemakkelijk winbare olie
afnemen. Dit heeft het afgelopen decennium onderzoek en ontwikkeling naar
het optimaliseren van olie- en gaswinning uit bestaande velden enorm gestim-
uleerd. Een bekende manier om meer olie uit reservoirs te halen is middels
waterinjectie. Dit proces kan in kaart gebracht en gevolgd worden door in de
tijd herhaalde seismische metingen, ook vaak 4D seismiek genoemd. In dit
proefschrift is het monitoren met 4D seismiek in combinatie met productie
data gebruikt om de representativiteit van stromingsmodellen van het reser-
voir te verbeteren. Deze modellen worden vervolgens dan weer gebruikt om
productie strategieën te optimaliseren.

Voor het beperken van het aantal mogelijke oplossingen van een reser-
voir model met behulp van observaties speelt de onzekerheid op de metingen
een cruciale rol. Het eerste deel van dit proefschrift is dan ook gericht op
het ontwikkelen van een inversie methode van 4D seismische gegevens, die
leidt tot een nauwkeuriger schatting van veranderingen in druk en satur-
atie ten gevolge van waterinjectie in een oliereservoir. Waterinjectie zorgt
voor ruimtelijke veranderingen in de tijd van reservoir vloeistof saturatie en
druk. Deze veranderingen kunnen opgepikt worden als 4D veranderingen in
seismische attributen, zoals bijvoorbeeld veranderingen in signaalsterkte of
tijdsverschuivingen in looptijden.
De verbetering van de voorgestelde 4D seismische inversie methode leidt
vooral tot een meer correcte, voor zover mogelijk zonder bias, schatting van in
de tijd veranderende saturatie en druk. Bestaande methodes hebben vaak als
tekortkomingen de introductie van een bias en het ”lekken” van de ene naar de
andere geschatte parameter. Door gebruik te maken van verschillende com-
binaties van seismische attributen kunnen schattingen aanzienlijk verbeterd
worden. De basis hiervoor zijn vier (seismische) vergelijkingen, waarvan twee
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de veranderingen in ”pre-stack” AVO (de zero-offset en de gradient reflectiv-
iteit) beschrijven, en twee de ”post-stack” looptijdvertragingen van de druk-
en schuifgolven, als functie van de door productie gëınduceerde veranderingen
in de vloeistofeigenschappen. De gevolgen van het gebruik van verschillende
combinaties van deze vergelijkingen zijn getest op een synthetisch, doch zeer
realistisch 3D model, waarbij op een aantal tijdstappen eveneens seismische
data zijn gesimuleerd gedurende de dertig jaar productietijd van het reser-
voir.
Resultaten laten zien hoe de nauwkeurigheid van de inversieresultaten toen-
eemt, wanneer hogere orde termen in de beschrijving van de drukgolf gradi-
ent reflectiviteit meegenomen worden. Hetzelfde gebeurt, wanneer in geval
van de beschikbaarheid van schuifgolfdata, de schuifgolf looptijdveranderings-
vergelijking gebruikt wordt in plaats van de drukgolf gradient reflectiviteit.
Zoals geldig voor alle inversie methodes, blijft ook hier de invloed van de a-
priori porositeitsschatting erg groot, waarbij resultaten aanzienlijk verbeteren
wanneer ruimtelijke variaties van de porositeit netjes meegenomen worden.
Tevens zijn de effecten van ruis op de inversieresultaten onderzocht. De be-
langrijkste conclusies hiervan zijn, dat de methode robuust is voor random
ruis, maar dat systematische ruis het resultaat behoorlijk kan verslechteren.

Het tweede deel van dit proefschrift is gewijd aan onderzoek naar de
mogelijkheden om een goed reservoir model te schatten, geschikt voor vloeis-
tofstroming, door seismische metingen te assimileren met het Ensemble Kal-
man Filter. Het mathematische proces om parameters te schatten, die het
verschil tussen data en model minimaliseren, wordt data assimilatie of his-
tory matching genoemd. In data assimilatie is het niet ongebruikelijk, dat
parameters voor een heel reservoir model geschat worden slechts gebaseerd op
zeer beperkte ruimtelijke informatie zoals productiegegevens. In een dergelijk
geval is het aantal observaties dus veel kleiner dan het aantal te schatten para-
meters. Dit maakt history matching tot een ondergedetermineerd systeem.
De additionele informatie afkomstig van in de tijd herhaalde seismische data
kan dan ook gebruikt worden om de oplossingsruimte te verkleinen door het
verschil tussen metingen en de voorspelde metingen uit de numerieke model-
len te minimaliseren.
Hoewel in de literatuur een scala aan data assimilatie methodes gevonden
kan worden, is in dit proefschrift duidelijk voor het Ensemble Kalman Fil-
ter gekozen. In de eerste plaats is dit gedaan vanwege de geschiktheid van
deze methode om grote systemen door te rekenen en de relatief gemakkelijke
implementatie, waarbij geen aanpassing van bestaande simulatoren vereist
is. In de tweede plaats is deze methode uiterst flexibel, waarbij verschillende
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types gegevens in willekeurige aantallen en ieder met een eigen onzekerheid
meegenomen kunnen worden. Tenslotte is de theoretische basis van deze
methode goed onderbouwd en is er een zeer actieve onderzoeks-gemeenschap
actief.
Dit proefschrift introduceert twee nieuwe benaderingen om seismische gegevens
te assimileren met het Ensemble Kalman Filter. De eerste aanpak gaat uit
van assimilatie van in de tijd veranderende druk en saturatie per reservoir
gridblok. Deze methode is een rechtstreeks en logisch vervolg op de resultaten
uit het eerste deel van dit proefschrift. Voor deze methode kan het aantal ob-
servaties, dat geassimileerd moet worden, erg groot worden en dit kan leiden
tot zogenaamde filter divergentie. Dit wordt veroorzaakt door een excessieve
reductie van de parameter covariantie in een ensemble. Een effectieve manier
om dit probleem te omzeilen is door covariantie regularisatie met behulp van
lokalisatie. Deze aanpak bestaat uit een vermenigvuldiging van ieder ele-
mentje van de ensemble covarianties met een lokale ondersteuningsmatrix,
resulterend in een lokale covariantie schatting. Voor een correcte toepassing
van lokalisatie is echter kennis van de echte covariantie tussen metingen en de
bij te werken toestanden/parameters noodzakelijk. Middels een 2D synthet-
ische studie zijn vuistregels afgeleid voor de definitie van geschikte lokalisatie
functies, die vervolgens ook op een 3D reservoir toegepast kunnen worden.
Dit laatste is succesvol uitgeprobeerd.

De tweede voorgestelde aanpak van seismische data assimilatie is ge-
baseerd op het assimileren van vloeistoffront aankomsttijden. Het grote
voordeel van deze methode is, dat geen volledige inversie van seismische data
naar saturatie per gridblok nodig is. De nadruk ligt echt op de frontin-
formatie, waar veranderingen in seismische signalen als functie van de tijd
waargenomen kunnen worden. Dit betekent in praktijk, dat ofwel satur-
atie gegevens, ofwel impedantie data, ofwel simpele amplitude veranderingen
of zelfs andere seismische attributen getransformeerd kunnen worden naar
vloeistoffront aankomsttijd informatie en vervolgens geassimileerd kunnen
worden. Deze aanpak leidt tot een enorme reductie van de hoeveelheid
gegevens, maar waarbij de essentie bewaard blijft. Verder vertoont deze
methode een meer lineaire gevoeligheid ten opzichte van reservoir eigenschap-
pen en volgt de verdeling van de gesimuleerde metingen meer een Gauss ver-
deling dan in het geval van saturatie data rechtstreeks. Dit leidt tot een
betere werking van het EnKF, dat gezien kan worden als een multi-model
history matching procedure waarin geologische informatie geformuleerd is in
termen van tweepunts geostatistiek. De aanpak is succesvol toegepast op een
licht gemodificeerde versie van het benchmark Brugge veld, een synthetische
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studie met de ingebouwde complexiteit van een echt veld.
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