
1

Characterization of CMOS Image Sensor

Master of Science Thesis

For the degree of Master of Science in Microelectronics at Delft

University of Technology

Utsav Jain

August 31, 2016

Faculty of Electrical Engineering, Mathematics and Computer Science · Delft University of

Technology

2

Delft University of Technology

Department of

Electrical Engineering

The undersigned hereby certify that they have read and recommend to the Faculty of

Electrical Engineering, Mathematics and Computer Science for acceptance a thesis

entitled

Characterization of CMOS Image Sensor

by

Utsav Jain

in partial fulfilment of the requirements for the degree of

Master of Science in Microelectronics

Dated: 31-08-2016

Supervisor(s):

prof. dr. ir. Albert J.P. Theuwissen

M.S.EE Dirk Uwaerts

Reader(s):

prof. dr. ir. Albert J.P. Theuwissen

prof. ing. H.W.(Henk) van Zeijil

Dr. Bert Luyssaert

3

Acknowledgment
This master thesis project marks the end of my M.Sc. journey with lots of high and some lows.

The experience was full of knowledge, uncertainty, life lessons and cherishing moments. I

always wanted to pursue a master’s degree, and with the support of my family, friends,

colleagues and professors, I have accomplished my dream. I would like to thank all individuals

who have accompanied me during this journey. Thank you to all those who have contributed

in many ways to make this thesis an unforgettable experience for me.

First and foremost, I would like to give my sincere thanks to my daily supervisor Mr. Dirk

Uwaerts, System Development Manager at Caeleste for his supervision of my thesis. This work

would not have been possible without his guidance, patient supervision and encouragement. I

would also like to give my sincere thanks to Prof. Albert J.P. Theuwissen, who introduced me

to the world of image sensors. It was his unique way of teaching and enthusiasm that developed

my interest in image sensors.

Next, I would like to thanks Bart Dierickx and Patrick Henckes of Caeleste CVBA to give me

the opportunity to do my master thesis project at their company. I would like to thank the entire

test system team for helping me in performing the measurements, building the measurement

setups and learning the software environment. A special thanks to Alexander Klekachev and

Walter Verbruggen for their day to day help and support, we have spent quality time together

with all the discussions about different ways to improve measurement procedure and to upgrade

hardware and software tools. I would also like to thank design team of Caeleste for their help

in making me understand CMOS image sensor design and characteristics and for providing

constant feedback on measurement results. I would like to express my gratitude to Bert

Luyssaert who was always been there for clarifying my queries regarding measurements and

optical aspect of CMOS image sensor.

I would also like thanks my friends, Mansi Shah, Shreyans Jain and Nitant Shinde for

accompanying me on this journey. Thank you for making me laugh in moments of stress and

always motivating me to work harder on my thesis. A special thanks to my friend Sri Harsha

Achante for late night studies, performing simulations and completing course assignments.

These memories and the friendship are invaluable.

Last but not the least, I would like to thank my parents and my brother for all that they have

done for me. Only with their support, I could take the courage to study across the globe. Thank

you for your continuous love, care and encouragements throughout my life.

4

Abstract
CMOS image sensors comprise of two processes: designing and measurement/testing. They

are designed with certain characteristic performance and it is important to measure these

characteristics accurately. CMOS image sensor converts light information into digital

information which can be reproduced in the form of an image. Conventional 4T pixel with a

pinned photodiode is a popular choice for designing image sensors; with certain modification

in the pixel architecture better characteristic performance can be achieved with trade-offs.

Quantum efficiency, linearity, full-well capacity, conversion gain, noise, non-uniformity, dark

current, modulation transfer function and image lag are the main characterises of a CMOS

image sensor. The quantum efficiency defines the photon-electron conversion and collection

efficiency of the image sensor which ideally should be 100 percent i.e. 1 electron-hole pair for

every photon incident with linear photo response. Higher full-well capacity means more

number of electrons that can be stored. Conversion gain tells the image sensors ability to

convert the electrons generated into a voltage, higher the better. Noise sets the dynamic range

of the image sensor by defining the lower limit of signal level, continuous advances have been

made to reduce the noise and some image sensors can achieve noise level of 1e-. Modulation

transfer function defines the spatial resolution and contrast relation of the image sensor, which

is also the measure of crosstalk of the image sensor. Another characteristic which is more of

an advantage over CCD image sensors is the image lag which is also known as memory effect;

defines the image sensors ability to completely transfer the charge from photodiode to floating

diffusion. These characteristic parameters define the CMOS image sensor and having a

standard measurement procedure for computing this characteristic is necessary.

This report presents the standard measurement procedure to characterize CMOS image sensors.

This project is an internal project for Caeleste CVBA, Mechelen, Belgium, hence the

measurement procedures are more specific to Caeleste requirement and follows EMVA 1288

standards. Measurement procedure includes all the details to evaluate the characteristic

parameter: measurement background, block diagram, procedure and data processing are some

of the key elements of the procedures. At Caeleste different methods are performed to compute

a characteristic parameter accurately and precisely. Also, the software library and hardware

tools were updated for improving the measurement accuracy and speed.

5

Table of Contents

Acknowledgment ... 3

Abstract.. 4

List of Figures .. 9

List of Tables ... 10

 Chapter 1 .. 11

Introduction ... 11

Thesis Organization ... 11

 Chapter 2 .. 13

Overview of a CMOS Image Sensor ... 13

2.1. Background of CMOS image sensor .. 13

2.2. Pinned Photodiode .. 14

2.3. The 4T Active Pixel Sensor Architecture ... 14

2.3.1. Electronic shutter modes... 16

 Chapter 3 .. 18

LED Light Source .. 18

3.1. Stability ... 18

3.2. Spectral Response ... 19

3.3. Spatial uniformity ... 20

3.4. Conclusions ... 21

 Chapter 4 .. 22

Characteristic Parameter of CMOS Image Sensor .. 22

4.1. Quantum Efficiency and Spectral Response ... 22

4.1.1. Definition .. 22

4.1.2. Measured value versus Theoretical value ... 23

4.1.3. Fringing effect or Etaloning effect ... 23

4.2. Photo Response Curve .. 24

4.2.1. Definition .. 24

4.2.2. Non-Linearity ... 25

4.2.3. Full well capacity (FWC) ... 25

4.2.4. Saturation (Vsat) .. 26

4.2.5. Charge to voltage factor (CVF) .. 26

4.3. Modulation Transfer Function .. 27

4.3.1. Definition .. 27

4.3.2. Sources of cross talk ... 27

6

4.3.3. Slanted Edge method .. 28

4.3.4. Correct Image and Lens Setting ... 28

4.4. Noise and Non-uniformity .. 28

4.4.1. Definition .. 28

4.4.2. Temporal Noise .. 29

4.4.3. Spatial noise .. 31

4.5. Dark current .. 32

4.5.1. Definition .. 32

4.5.2. Mechanism.. 32

4.6. Image Lag ... 35

4.6.1. Definition .. 35

4.6.2. Causes of Image Lag .. 35

 Chapter 5 .. 37

Measurement Procedure Overview ... 37

5.1. Quantum Efficiency and Spectral Response ... 38

5.1.1. Objective ... 38

5.1.2. Measurement Background .. 38

5.1.3. Measurement Setup .. 39

5.1.4. Measurement Procedure ... 40

5.1.5. Accuracy of the method .. 42

5.1.6. Alignments.. 42

5.1.7. Data Processing .. 42

5.1.8. Graphs and Figures ... 43

5.2. Photo Response ... 45

5.2.1. Objective ... 45

5.2.2. Measurement Background .. 45

5.2.3. Measurement Setup .. 45

5.2.4. Measurement Procedure ... 46

5.2.5. Accuracy of the method .. 47

5.2.6. Data Processing .. 47

5.2.7. Accuracy of the method .. 51

5.3. Modulation Transfer Function .. 52

5.3.1. Objective ... 52

5.3.2. Measurement Background .. 52

5.3.3. Measurement Setup .. 53

7

5.3.4. Measurement Procedure ... 53

5.3.5. Accuracy of method .. 54

5.3.6. Data Processing .. 54

5.3.7. Graphs and Figures ... 56

5.3.8. Code Description .. 60

5.3.9. Example .. 62

5.4. Read Noise .. 63

5.4.1. Objective ... 63

5.4.2. Measurement Background .. 63

5.4.3. Measurement setup ... 63

5.4.4. Measurement Procedure ... 63

5.4.5. Data Processing .. 64

5.4.6. Accuracy of the method .. 64

5.4.7. Graphs and Figures ... 64

5.5. Dark signal and Dark current non-uniformity ... 66

5.5.1. Objective ... 66

5.5.2. Measurement Background .. 66

5.5.3. Measurement setup ... 66

5.5.4. Measurement Procedure ... 66

5.5.5. Data Processing .. 67

5.5.6. Accuracy of the method .. 67

5.5.7. Graphs and Figures ... 67

5.6. FPN and PRNU ... 69

5.6.1. Objective ... 69

5.6.2. Measurement Background .. 69

5.6.3. Measurement setup ... 69

5.6.4. Measurement procedure.. 70

5.6.5. Data processing ... 70

5.7. Image Lag ... 71

5.7.1. Objective ... 71

5.7.2. Measurement Background .. 71

5.7.3. Measurement Setup .. 71

5.7.4. Measurement Procedure ... 72

5.7.5. Data Processing .. 72

5.7.6. Graphs and Figures ... 72

8

 Chapter 6 .. 74

6.1. Summary and Conclusions ... 74

6.1.1. Conclusions .. 74

6.2. References ... 75

 Chapter 7 .. 79

Appendix ... 79

7.1. Python Code for Filtering ... 79

7.2. Python Code for MTF measurement ... 83

7.3. Camera Link and Frame Grabber ... 96

7.4. Three Point Derivative Method .. 96

7.5. SeqC .. 96

7.5.1. SeqC builder ... 97

7.6. List of Acronym .. 98

9

List of Figures
Figure 2.1-1- Physical model of a camera. .. 13
Figure 2.2-1- Cross section of the PPD structure [10]. ... 14
Figure 2.3-1- Schematic of a CMOS 4T APS with a PPD. ... 15
Figure 2.3-2- (a) Operation of a 4T APS with potential diagram, (b) Timing diagram of

signals. ... 16
Figure 2.3-3- Working principle of (a) Rolling shutter mode and (b) Global shutter mode

[19]. ... 17
Figure 3.1-1- Intensity of an LED light source as a function of time. 18
Figure 3.1-2- Temperature of the LED light source in function of time. 19
Figure 3.2-1- Spectral response of Blue, Green and Red LED light source. 19
Figure 3.3-1-3D and 2D plot of Spatial intensity of the LED light source at (a) 10cm, (b)

20cm and (c) 30cm distance between monochromator output and photodiode. 21
Figure 4.1-1-(a) Electron-hole generations by photons with different wavelength, (b) Photon-

generated carriers by a p-n junction/photodiode. .. 22
Figure 4.1-2- Fringing effect in QE and SR measurement result. ... 24
Figure 4.1-3- Principle of etalons [24]. ... 24
Figure 4.2-1- Simplified circuit of a photodiode operating in charge integration mode [40]. 26
Figure 4.3-1- Optical cross talk in a single pixel. ... 27
Figure 4.4-1- Major Noise sources in a 4T pixel PPD. ... 29
Figure 4.4-2- (a) nMOS transistor modelled as switch and a resistor in series with the floating

diffusion capacitor, (b) KTC noise sampled when switch is opened and closed. 31
Figure 4.5-1- Energy band diagram of the tunnelling process of a heavily doped p-n junction

[40]. ... 34
Figure 4.5-2- Cross section of a pinned 4T APS pixel with STI and interface defects [40]. .. 35
Figure 5.1-1-Layout of QE test structure (full pixel array is not shown). 38
Figure 5.1-2-QE structure connection diagram. .. 39
Figure 5.1-3- QE measurement setup schematic. .. 39
Figure 5.1-4 - Slit width and bandwidth configuration [43]. .. 40
Figure 5.1-5 - QE setup accuracy diagram. ... 42
Figure 5.1-6 - Plot of QE and SR as a function of wavelength. .. 44
Figure 5.2-1- Setup diagram for PR and CVF measurement. ... 45
Figure 5.2-2- Photo response curve... 47
Figure 5.2-3- Non Linearity from Photo response curve. ... 48
Figure 5.2-4- Photo response curve showing full well capacity. .. 49
Figure 5.2-5- Full well from Mean-Variance curve. ... 49
Figure 5.2-6- CVF from Photo response curve if the Quantum efficiency value is known. ... 50
Figure 5.2-7- CVF from PTC curve using mean variance method. .. 51
Figure 5.3-1-Slanted edge with ROI. .. 52
Figure 5.3-2- Relationship between PSF, ESF, LSF and OTF [44] 52
Figure 5.3-3- Setup for the MTF measurement inside the dark chamber. 53
Figure 5.3-4- ESF curve obtained by projecting data from the slanted edge image [29]. 54
Figure 5.3-5- Single row from a pixel array indicating transition point which tells the location

of the edge in the slanted edge image. .. 55
Figure 5.3-6- Spatial frequency response generated by recording transition pixel and

neighbouring pixel values from single row. .. 56

10

Figure 5.3-7- (a) Target edge with a ROI and (b) Flat-field corrected image for computing the

ESF. ... 57
Figure 5.3-8- Graph between interpolated column number and row number (a) Linear polyfit

data of the column values and (b) Raw data of the column values. .. 57
Figure 5.3-9- Edge spread function of the edge image, on y-axis normalized signal level and

on the x-axis the pixel number, (a) Using the raw data and (b) Interpolated data for the pixel

number. ... 58
Figure 5.3-10- Line spread function of the corrected edge image, (a) LSF from the actual data

and (b) LSF of a perfect edge. ... 58
Figure 5.3-11- MTF of the corrected edge image along with the perfect MTF obtained from a

perfect LSF. ... 59
Figure 5.4-1-Setup for Noise measurement. ... 63
Figure 5.4-2- a) Noise of the image sensor per row. ... 65
Figure 5.4-3- a) Noise of the image sensor per column. ... 65
Figure 5.5-1- Setup for DS and DCNU measurement... 66
Figure 5.5-2-Signal level of the image sensor as a function of integration time at different

temperatures. ... 67
Figure 5.5-3- Dark current comparisons between samples with different depletion voltage

(Vdep). .. 68
Figure 5.6-1- Setup for FPN and PRNU measurement. .. 69
Figure 5.7-1- Setup for Image lag measurement. .. 71
Figure 5.7-2- Timing diagram for Image Lag measurement. .. 72
Figure 5.7-3- Image lag for 50 frames with 5 consecutive light and dark frames. 73
Figure 7.4-1- Three-point derivative method. ... 96
Figure 7.5-1-SeqC compiler generates binary code from textual description of sequences. .. 97
Figure 7.5-2- Frontend of a SeqC builder. .. 97
Figure 7.5-3- Waveform viewer of SeqC. ... 98

List of Tables
Table 3.2-1- Spectral specification of LED light source. .. 20

11

 Chapter 1

Introduction
Standard and accurate measurement procedures are key to a successful image sensor design.

The importance and the need of standard measurement procedure for CMOS image sensor

cannot be stressed more. The measurement of any opto-electrical system is an art by itself and

it should be precise and accurate. With the ever-growing technology, many technical advances

and improvements have been reported in the CMOS image sensor literature, so it becomes

challenging to accurately determine the performance parameters, hence it is important to have

a standard procedure to characterize the image sensor.

The main motivation for my thesis was to get a deep understanding of the CMOS image sensor,

right from the fabrication process and finally to test and characterize the imager. As I first

learned about the CMOS image sensor, I was fascinated and curious to learn more and decided

to do my master thesis in CMOS image sensor. During my academic curriculum, I did research

about CMOS image sensor to get more insight about them and wrote a couple of reports about

it. This thesis project combines my motivation and challenges involved for accurate

measurements, so the objective of my thesis work is to standardize measurement procedure for

characterization of CMOS image Sensors. This work presents the standard procedure for

measurement of characteristic parameters of a CMOS image sensor.

As a part of internal project at Caeleste CVBA, Mechelen, Belgium, we performed various

measurements and testing to improve and upgrade the measurement procedure for key

characteristic parameters that includes quantum efficiency (QE) and responsivity, noise, non-

uniformity, dark current, linearity, full well capacity, conversion gain, modulation transfer

function (MTF) and image lag of the CMOS image sensor, also upgrading the software library

and hardware tools for fast and accurate measurements.

The project started with characterizing the LED light source that is used for performing

measurement on CMOS image sensors, as the light source is one of the most important device

used during the measurements of an imager. The stability, spatial homogeneity and spectral

response are the key parameters of the light source and knowledge about these parameters

assisted in accurate measurements on CMOS image sensor.

This project also addresses the influence and limitations of the instruments, environmental

condition and interfacing devices on measurement results. The fifth chapter of this report

consists of standard measurement procedures for all the characteristic parameters.

Thesis Organization
This thesis report consists of 7 chapters. The first chapter gives an introduction about this

project which illustrates the objective and motivation for this project. Then Chapter 2 gives

necessary background information for this project which includes a basic overview of CMOS

image sensor, the working principle of a pinned photodiode and working and timing operation

of conventional 4T pixel architecture. Chapter 3 elaborates on the importance of an LED light

source and its characterization and draws the conclusion about the present light source which

will be helpful in building new improved light source at Caeleste. It is followed by Chapter 4

which explains all the characteristic parameters for which the measurements are performed and

how they define the performance of the CMOS image sensor. Then Chapter 5 includes all the

12

measurement procedures that are performed at Caeleste and standardized for characterizing

CMOS image sensors that Caeleste designs. Chapter 6 contains the conclusions of the thesis

work. Finally, chapter 7 presents the appendix which includes information that supports my

work.

13

 Chapter 2

Overview of a CMOS Image Sensor
This chapter gives a brief introduction to the CMOS image sensor and a 4T CMOS active pixel

sensor which is followed by a brief explanation about the pinned photodiode and its structure

in Section 2.1. Then section 2.2 discusses the 4T APS architecture in detail and explains it’s

working. Section 2.2.1 introduces two electronic shutter modes for CMOS image sensors:

Global shutter and Rolling shutter mode.

2.1. Background of CMOS image sensor
CMOS Image Sensors (CIS) are semiconductor device used for making a digital camera. They

detect information in the form of light or any other electromagnetic radiation and create an

image that represents the information. CMOS image sensors consist of integrated circuits that

sense the information and convert it into an equivalent current or voltage which is later

converted into digital data.

Figure 2.1-1- Physical model of a camera.

In 1967, Weckler proposed the operation of charge integration on a photon-sensing p-n junction

which was treated as the fundamental principle of CMOS image sensor [1]. This charge

integration technology is still being used in the CMOS image sensors. Shortly, in 1968,

Weckler and Dyck proposed the first passive pixel image sensor [2]. In 1968, Peter Noble

described the CMOS active pixel image sensor and this invention laid the foundation for

modern CMOS image sensors [3]. Yet one had to wait until the 1990s solving the limitations

of CMOS technology for active pixel image sensors to develop rapidly [4].

In modern days, CMOS image sensors have overtaken CCD’s in most of the fields. A CMOS

image sensor as an integrated technology offers a wide range of functionality, fast read out,

low power consumption, low cost and some better characteristics parameters. Although CCDs

had an excellent imaging performance, their fabrication processes are dedicated to making

photo sensing elements instead of transistors and hence it is difficult to implement good

performance transistors using CCD fabrication processes. Therefore, it is very challenging to

integrate circuitry blocks on a CCD chip. However, if the similar imaging performance can be

achieved using CMOS imagers, it is even possible to implement all the required functionality

blocks together with the sensor, i.e. a camera-on-a-chip, which may significantly improve the

sensor performance and lower the cost. In 1995, the first successful CMOS image sensor was

demonstrated by JPL [5]. It included on-chip timing, control, correlated double sampling, and

fixed pattern noise suppression circuitries.

14

Active pixel sensors are state-of-the-art implementation of CMOS image sensor, they are

integrated circuit consisting of an array of pixels and signal processing unit. They are discussed

in detail in the following section. This work addresses important characteristic parameter of a

CMOS image sensor and test methodologies to compute and evaluate them. Ideally, a CMOS

image sensor should have 100% quantum efficiency, high frame rate, low noise, linear

response, no optical cross talk and no image lag [6].

2.2.Pinned Photodiode
The photodiode is a semiconductor device that converts light into a current. Photodiodes work

on the principle of the photoelectric effect which states that when a photon with sufficient

energy is incident on a photodiode it creates an electron-hole pair. So these free carriers can be

swept with an electric field which results in current in the diode. A pinned photodiode is a

variation in photodetector structure with large depletion region, that is currently used in almost

all CCD’s and CMOS image sensor due to its low noise, low dark current and high quantum

efficiency [7].

The pinned photodiode (PPD) has p+/n/p regions with a shallow p+ implant in an n-type

diffusion layer over a p-type epitaxial substrate layer referring to Figure 2.2-1. Pinning, refers

to Fermi level pinning or pinning to a certain voltage level, or also forcing or preventing of

Fermi level/voltage from moving in energy space [8] [9]. A PPD is designed to have the

collection region which fully depletes out when resets. As the PPD depletes it gets disconnected

from the readout circuit and will drain all charge out of the collection region (accomplishing

complete charge transfer). The major effect is that the diode can have an exact “empty” state,

and allows therefore to do “correlated double sampling” (CDS) in a simple way, cancelling the

kTC noise of the conversion node. Also, the p+ pinning layer decreases the dark current by

preventing the interface to be depleted and also by absorbing the carriers due to surface

generation and preventing them from reaching the depletion region. When, you design the

depletion of the PPD to deplete at a certain voltage you are pinning that PPD to that voltage.

Figure 2.2-1- Cross section of the PPD structure [10].

2.3.The 4T Active Pixel Sensor Architecture
A modern CMOS image sensor uses a 4T active pixel sensor system architecture for photo

sensing and readout. Earlier, CMOS image sensors used to have just a photodiode in the pixel

for photo charge collection and then came the passive pixel sensor with a photodiode and a

switch for row select in the pixel with a column amplifier. The main advantage of the PPS was

a small pixel size but the slow column read out and large noise resulted in the design of an APS

[11]. The APS consist of a photodiode, a switch and a pixel level amplifier which result in fast

readout and low noise 4T pixel.

There are two common architectures for an active pixel sensor are the 3T and the 4T pixel, the

difference seems to be of a single transistor but there is a significant difference in their

performances. The difference will be discussed in the following section which describes the

design and working principle of a 4T pixel. Figure 2.3-1 shows the schematic diagram of a 4T

15

pixel. It consists of a p+/n/p pinned photodiode, a transfer gate TG to transfer charges from the

pinned photodiode to the floating diffusion node FD of capacitance CFD to store charge from

the photodiode. Also, a reset transistor to reset the FD node after every read out, a source

follower which act as a buffer, an amplifier that isolate the sense node from the column bus

capacitance and a row select switch. The difference between the 3T pixel and the 4T pixel is

the transfer gate, which separates the pinned photodiode from the floating diffusion node or

storage node. Hence, a 4T pixel enables signal buffering that allows performing the integrate

while read operation: read out the signal of the previous frame while integrating the next frame,

which will improve the read-out speed and SNR. Also, unlike a 3T pixel, the 4T pixel enables

implementation of correlated double sampling CDS, which is a useful technique to eliminate

reset noise and will be discussed during the 4T pixel operation. The other advantage of the

transfer gate is that it prevents crosstalk between neighboring pixel which also mitigate

blooming (overflow of charges to neighboring pixel when the pixel saturates) [12].

Figure 2.3-1- Schematic of a CMOS 4T APS with a PPD.

The operation and timing of 4T APS are shown in Figure 2.3-2. The Figure 2.3-2 shows that

how the potential (voltage) of all the components of 4T pixel changes during the pixel operation

and also the timing diagram of the different signals applied to obtain the CDS signal. The first

step starts with an integration period during which the photodiode generates the free charge

carriers according to incident photons and at the same time the FD node is reset so that new

read out is not influenced by any charges from the previous read out, which also set the reset

level. Now the transfer gate is turned ON and all the charges accumulated in the photodiode

are transferred to the floating diffusion node and then the source follower buffers this charges

and converts them into voltage signal which is then sampled via row select switch [13] [14]

[15] [16].

16

Figure 2.3-2- (a) Operation of a 4T APS with potential diagram, (b) Timing diagram of

signals.

There are certain sampling techniques used during the read out of the signal to improve the

performance of the image sensor. In a CDS technique the pixel is read out twice, once for the

reset signal and once for the sample signal and the difference between the two values is the

signal value. This technique has quite some advantages in the performance of a CMOS image

sensor, not only it eliminates reset/kTC noise and the offset but also suppress 1/f noise (only

for low frequency, that is correlated) [17]. The timing diagram in Figure 2.3-2-(b) shows the

CDS readout technique in which the reset signal is read out and then after the transfer of the

charges the sample signal is readout. The other sampling technique is correlated multiple

sampling; in which both reset and signal levels of pixel outputs are sampled for multiple times

and summed up, and the difference of the average of the two levels is taken as the signal value

[18].

2.3.1.Electronic shutter modes
CMOS image sensor can operate in two types of electronic shutter modes namely global shutter

mode and rolling shutter mode. In rolling shutter mode pixels are addressed row by row i.e.

pixels of one row are exposed/reset simultaneously and then the next row and so on. This mode

of operation causes motion artifact in images, like moving blades of a fan or a helicopter, this

problem can be solved in global shutter mode. In global shutter mode, all the pixels of the

imager are exposed/reset at the same time and the charge from each row is stored and later all

the charges are read out row by row.

Figure 2.3-3 shows the timing diagram of the pixel operation for both the modes of operation.

In Figure 2.3-3 (a) shows timing sequence of the rolling shutter mode, the pixels of different

rows in a pixel array are exposed and readout one after the other resulting in total frame readout

time equal to the time between starting of the exposure of the first row to end of the readout

time of the last row. In contrary to rolling shutter mode the Figure 2.3-3 (b) shows the timing

sequence of the global shutter mode, all the rows in a pixel array are exposed simultaneously

and read out one after the other to construct an image [19].

(a) (b)

17

Figure 2.3-3- Working principle of (a) Rolling shutter mode and (b) Global shutter mode [19].

There can be many variations in the pixel architecture depending on the requirement and

specification, with the current technology it is possible to design a digital pixel sensor which

includes a pixel level ADC. There are various trade-offs between fill factor, read out speed and

size of the pixel that leads to the choice of pixel architecture.

(a) (b)

18

 Chapter 3

LED Light Source
Light emitting diodes (LEDs) offer a number of advantages over conventional light sources,

including reduced power consumption, better spectral purity, longer lifetime and lower cost.

With the rapid development of the LED industry during the past decades, LEDs have become

popular in an increasing amount of applications and are considered as key replacements for

conventional light sources.

The LED-array light sources are used for image sensor characterization; it is essential to know

their specifications. The LED light source key characteristics are spatial uniformity, temporal

and thermal stability and spectral response and this information will help while characterizing

CMOS image sensors. Caeleste uses its in-house customized LED light source which consist

of a 8×8 square matrix of LED’s; the project started with characterizing the LED light source

and the measurement results helped in designing an improved LED light source. It is very

important to have a stable and uniform light source as it directly affects the measurement results

of CMOS image sensors. This report presents a measurement procedure that was performed to

characterize the LED light source and results of the measurements.

3.1.Stability
Light sources should emit a constant optical power with constant intensity. There should be no

variation in light intensity with time and temperature i.e. the light source should have temporal

and thermal stability. LED’s take some time to get thermally stable; so it is important to know

how much time an LED light source takes to get stable. Additionally, an LED light source

should not have any hysteresis effect.

1. Measured the photocurrent by means of a reference Hamamatsu photodiode which can

be converted into light intensity for 20 min with a step of 10 seconds at a distance of

20cm between the LED light source and photodiode. The intensity of the LED source

can be set by its supply current.

2. The measured photocurrent (A) can be converted into light intensity (W/cm2) by using

a conversion factor for a specified light source wavelength available from a standard

datasheet.

3. Simultaneously measured the temperature of the light source using pt-1000.

Figure 3.1-1- Intensity of an LED light source as a function of time.

In
te

n
si

ty
 (

W
/c

m
2
)

Time (s)

19

Figure 3.1-2- Temperature of the LED light source in function of time.

From the Figure 3.1-1 it can be concluded that the LED light source takes around 10 minutes

to deliver constant intensity with intensity variation of 1nW/cm2, which is in validation with

temperature graph shown in Figure 3.1-2 which shows that the LED light source needs

approximately 10 minutes to get thermally stable.

3.2.Spectral Response
The spectral response is defined by the spectral response of the LED’s. Generally, LED’s

manufacturers provide this information. For the characteristic measurement of quantum

efficiency, it is important to know the spectral response of the light source.

1. Replaced the lamp of the monochromator with the LED light source.

2. Measure the photocurrent by sweeping the wavelength of the monochromator with a

step of 1nm.

3. This measurement was repeated for Red, Blue and Green light source.

Figure 3.2-1- Spectral response of Blue, Green and Red LED light source.

T
em

p
er

at
u

re
 (

ºC
)

Time (s)

20

Table 3.2-1- Spectral specification of LED light source.

LED Light Source Peak Wavelength Full Width Half Maximum

Red 632nm 16nm

Green 517nm 30nm

Blue 465nm 22nm

3.3.Spatial uniformity
The spatial uniformity is one of the most important characteristic of any light source. A LED

light source should be spatially uniform i.e. equal level of intensity in space at equal distance

from the source.

1. Measured spatial photocurrent by means of a reference Hamamatsu photodiode by

scanning the LED light source using precision stepper motor, with a step size of 0.5mm.

2. A 2×2cm2 3D plot of spatial light intensity is generated for the light field.

3. The measurement was performed at different distances of 10cm, 20cm and 30cm between

the light source and the photodiode.

The results of the abovementioned procedure are shown in Figure 3.3-1. The color graph shows

the 3D view of the normalized light intensity emitted from the LED light source with maximum

light intensity at the center and minimum light intensity at the corners of the LED light source.

Similarly, the black and white graph shows the 2D view of the intensity variation in gray. Also

from the results, it seems that the LED light source gets more uniform as the distance from the

light source to the photodiode is increased and for the 30cm distance, the variation is less than

1% for 2×2cm2 area which is comparable to the size of the image sensors at Caeleste.

21

Figure 3.3-1-3D and 2D plot of Spatial intensity of the LED light source at (a) 10cm, (b)

20cm and (c) 30cm distance between monochromator output and photodiode.

3.4.Conclusions
These measurements were performed at an earlier stage and based on the results Caeleste

designed an improved light source with optical feedback and proportional-integrative-

derivative controller, yielding much better accuracy and stability.

(a)

(b)

N
o

rm
alized

 In
ten

sity

N
o

rm
alized

 In
ten

sity

N
o
rm

alized
 In

ten
sity

(c)

22

 Chapter 4

Characteristic Parameter of CMOS Image Sensor
This chapter introduces all the characteristic parameters of a CMOS image sensor and provides

a brief introduction on crucial parameters that are used to evaluate the performance of a CMOS

image sensor. The purpose of the thesis is standardizing measurement procedures for these

characteristics parameters, so it is important to understand these parameters and also their

relation with the pixel design. Although some of them are mainly limited by the readout

circuitries, the vast majority of them are either determined by or already limited by the pixel

design, i.e. the quantum efficiency, dynamic range, saturation level, signal-to noise ratio, dark

current, image lag, non-uniformity and non-linearity of the photon response. This section gives

detailed explanations of these important performance characteristics.

4.1.Quantum Efficiency and Spectral Response

4.1.1.Definition
Quantum efficiency (QE) is one of the most important characteristics of any electro-optical

device including the CMOS image sensor. QE is the ratio of the average number of electrons

generated (µe) in the pixel contributing to the output signal to the average number of impinging

photons (µp) on the pixel during the exposure time. The Figure 4.1-1 shows electron-hole pair

generation in a p-n junction due to incident photons with a certain wavelength and energy.

QE(λ) =
μe

μp
 (4.1-1)

When a photon is absorbed by the PPD, it generates free carriers (electrons-holes) and these

free carriers contribute to the conductivity of the material and the phenomena is known as

photoelectric effect. In general, PPDs have two modes of operation: Photovoltaic mode, where

the electron-hole pair is converted to electron current by the built-in electric field and photo

resistive mode where the free carrier(s) increase the overall conductivity of the material and

QE quantifies the relation between photons absorbed and free carriers generated that contribute

to output signal.

Figure 4.1-1-(a) Electron-hole generations by photons with different wavelength, (b) Photon-

generated carriers by a p-n junction/photodiode.

In the field of CMOS image sensors, one typically considers the total quantum efficiency

including fill factor i.e. QE that is referred to the total area occupied by an image sensor single

pixel (not only the light sensitive area). QE is expressed in units of percent or simply a value

from zero to one.

23

Ideally for an image sensor QE should be as high as 100 percent i.e. 1 electron-hole pair for

every impinging photon, but in reality, the photoelectric phenomena in a PPD is not perfect

there are some limitations associated with it. The first limitation is the loss of impinging

photons which can be due to various optical phenomena like photons reflection at the sensor’s

surface or photons absorption by the layers above the depletion region and hence the impinging

photons do not reach the photosensitive area of the pixel and thus QE of the system decreases.

The second limitation is the inefficiency of the photodiode to collect all the electron-hole pairs

generated by the impinging photons, this inefficiency is the result of free carrier’s generation

outside the depletion region of the PPD. As the absorption of impinging photons depends on

the absorption coefficient of silicon which depends on its wavelength, so photons with longer

wavelength will penetrate deep inside the PPD and the free carrier generated by these photons

can be outside the depletion region and hence it will be difficult to collect those carriers’ and

this will result in lower QE.

Another important characteristic of an image sensor is called Spectral Response (SR) or

Spectral Sensitivity and it determines how much photocurrent is generated by the image sensor

per impinging photon of given energy and it is expressed in units of A/W. Both QE and the

spectral response of a photodiode depend on the energy and the wavelength of the impinging

photons hence the term spectral [20].

SR [A/W] =
QE∙λ∙q

hc
 (4.1-2)

Where,

λ: Wavelength of the impinging photon [nm]

q: electron charge = 1.602*10-19 [C]

h: Planck’s constant = 6.626*10-34 [J·s]

c: speed of light= 2.99792*1010 [cm/s]

4.1.2.Measured value versus Theoretical value
Nearly every CMOS image sensor today is fabricated using silicon material, therefore the

spectral properties of the image sensor are governed by silicon and the spectral response of the

PPD is defined by the spectral response of silicon, hence QE and SR are fabrication process

dependent. With the information of the absorption coefficient of silicon, thickness of the silicon

and wavelength of the impinging photons, a designer can estimate the QE value of the image

sensor at the designing stage. The QE should be measured including the fill factor (FF) and the

designer knows how much light (photons) will reach the pixel depending on the pixel design,

so while designing, the QE value can be estimated [21].

Also, there is a standard set of results available, based on various test and measurement

performed for different pixels to evaluate QE and SR. So if the technology, fabrication material

and thickness of the material are known, the QE of the image sensor can be estimated.

The other way to crosscheck the accuracy of the measurement results is to verify the results

from the alternative method by computing QE from the CVF (Charge to voltage factor) data

available for the image sensor. This method is described in the measurement procedure.

4.1.3.Fringing effect or Etaloning effect
In the measurement results; QE and SR can suffer from fringing effect as shown in Figure

4.1-2, this is due to the optical phenomena that occur within the different layers above the PPD.

24

Figure 4.1-2- Fringing effect in QE and SR measurement result.

When a photon with a certain wavelength hits a PPD, it transverse through SiO2 layers and part

of the epitaxy layer before reaching the depletion region. Spectral fringing is a result of the

interference patterns created by multiple reflections of the photons back and forth within these

layers which are due to the difference in reflective and transmission ability of these layers and

the layers behave as etalons; they don’t allow 100% transfer of photons [22] [4.3]. The Figure

4.1-3 describes the principle of etalons for the light transmitting through two surfaces separated

by air, similar phenomena occur when impinging photons transmit through different layers in

the pixel [23].

Figure 4.1-3- Principle of etalons [24].

4.2.Photo Response Curve

4.2.1.Definition
The photo response of an image sensor is the measure of the sensor’s ability to convert optical

incident power (number of impinging photons on the sensor for a given integration time) into

an electrical signal (gain of the system multiplied by the number of electrons generated). It is

a function of wavelength.

Photo response curve gives a good insight into many characteristic parameters of CMOS image

sensor like CVF if the QE value is available, non-linearity, saturation voltage and full well

capacity of the image sensor. Photo response is generally performed for a specific spectral

wavelength (mostly at peak response wavelength).

25

4.2.2.Non-Linearity
Ideally, a CMOS image sensor should have a linear behaviour i.e. it should respond linearly to

the incident light (photons) but due to nonlinear devices in the pixel and in the signal processing

unit, the sensor deviates from a perfectly linear response. The major source of non-linearity in

the image sensor comes from the source follower MOSFET in the 4T pixel design, as it is used

as trans-impedance amplifier and its gain depends on the source resistance which induces the

non-linearity [25]. Other transistors are just used as a switch and thus do not contribute much

to the non-linearity of the image sensor. Other sources of non-linearity are [26]:

1. Image lag in the PPD.

2. The non-linearity of the photodiode or of the floating diffusion.

3. Non-linearity’s in the further downstream analog processing and multiplexing.

The non-linearity can be classified into Integral non-linearity (INL) and differential non-

linearity (DNL). INL is the measure of maximum deviation or error from the ideal response

and DNL quantifies the deviation of two consecutive output values corresponding to ideal

output values of the image sensor. In the case of an image sensor, only INL is calculated, as

there are no DACs used in the imager for signal processing. So the photo response tells the

response of the sensor for incident optical power and ideally it should be linear, and INL is

evaluated from the actual response to the ideal response of the sensor [27].

INL[%] =
Emax

FS
× 100 (4.2-1)

Where,

INL = Integral non-linearity,

Emax = maximum error from best-fit straight line [Volts/DN],

FS = full-scale value or maximum output of sensor [Volts/DN].

4.2.3.Full well capacity (FWC)
FWC defines/tells the charge generating/storing capacity of the pixel and the state when the

pixel reaches its FWC is called as saturation. Image sensors absorb photons and generate free

carriers (electrons-hole), depending on the way the PPD is designed. Usually, a PPD has a wide

depletion region where all the free carriers are collected and the amount of charge that can be

collected by PPD depletion region defines the FWC. The other way to define the FWC is the

capacity of the floating diffusion to store charges and for a good pixel design both of this

quantity should be equal. So according to the design, there is a limit to the number of free

carriers that can be generated in a PPD and it should be equal to the amount of charge that can

be stored on the floating diffusion.

The FWC can be computed by calculating the maximum amount of charge that can be stored

in the floating diffusion capacitance during the charge integration process. The formula for

FWC can be derived by considering a photodiode operating in charge integration mode as

shown in Figure 4.2-1. Vres is the reset voltage of the photodiode, iph is the photocurrent, CPD is

the photodiode capacitance, and VPD is the photodiode voltage [40].

26

Figure 4.2-1- Simplified circuit of a photodiode operating in charge integration mode [40].

 For the photodiode shown in Figure 2-3, its full-well capacity is given as:

 FWC =
1

q
∫ CPD ∙ VPD dV

VPD(min)

Vres
 (4.2-2)

Where, q is electron charge and VPD(min) is the minimum value of VPD. The full well capacity is

expressed in number of electrons.

The FWC can be determined by the photo response of the image sensor, but first it is important

to define the full well capacity. For the measurements at Caeleste, FWC is defined w.r.t. the

saturation level of the image sensor; so it is defined as the point of intersection of the best line

fit and the line joining the 10% and 90% saturation level points on the image sensor photo

response.

4.2.4.Saturation (Vsat)
A pixel is said to be saturated when it reaches its FWC for incident optical power and the output

of the sensor does not depend on illumination level anymore. It can be graphically computed

from the photo transfer curve as the point after which the image sensor output becomes

constant.

4.2.5.Charge to voltage factor (CVF)
Charge to voltage factor also known as conversion gain is the conversion factor that tells how

much output voltage (Vsignal) is corresponding to a particular number of electrons (µe) generated

by the pixel. It is defined at the output of the image sensor. The conversion gain is one of the

most important parameters of a CMOS imager pixel. The linearity and uniformity of the pixel

response, light sensitivity, and the pixel noise are all influenced by its value and distribution.

CVF [μV/e−] =
Vsignal

μe
 (4.2-3)

Where,

CVF: Charge to voltage factor/ Conversion gain,

Vsignal: mean output signal from the sensor,

µe: number of photon-generated electron.

It can be calculated from the photo response curve; as the curve gives the relation between

output voltage and incident optical power (i.e. the number of photons). The number of photons

can be converted into number of electrons from the QE value of the pixel at that wavelength;

which results in a relation between the output voltage and the electron (charge) i.e. the CVF.

The CVF can be classified as internal and external conversion factor. Internal conversion factor

27

takes the path gain into the consideration which allows Caeleste to compare different pixel

design, independent of the surrounding circuit and external CVF is the property of the chip,

which is important for their customers.

An alternative method used for determining CVF is the mean-variance curve; it is based on the

basic laws of physics. The method employs the fact that the photon shot noise (PSN) level is

proportional to the square root of the signal level [28]. Hence CVF can be determined as the

slope of the curve between Noise (Variance) and the mean signal.

4.3.Modulation Transfer Function

4.3.1.Definition
The MTF (modulation transfer function) is the image sensor’s ability to transfer contrast at a

particular spatial frequency. It is a direct measure of the sensor image quality and resolution.

The ideal response of a pixel is an impulse of a certain width defined by the pixel pitch, but the

pixel suffers from optical and electrical cross-talk i.e. pixel shares their information with the

neighbour pixel which is shown in the Figure 4.3-1. Hence this result is more or less a Gaussian

response rather than an impulse response. This optical and electrical cross-talk can be

quantified by the MTF which is basically the FFT of the pixel response [29].

Figure 4.3-1- Optical cross talk in a single pixel.

To compute the frequency response, the pixel can be exposed to alternating black/white lines

pattern with a line thickness equal to pixel pitch. The special situation where the black/white

spatial line frequency corresponds exactly to 2 times pixel pitches is called the “Nyquist

frequency” (fN). The MTF at Nyquist frequency is often used as a crosstalk measure [30].

4.3.2.Sources of cross talk
1. Lateral diffusion of the photons when incident light (photons) bounces around inside

the chip.

2. Optical crosstalk due to different optical phenomena like diffraction, refraction,

scattering, interference and reflection of light (photons).

3. Electrical crosstalk results from photo-generated carriers having the possibility to

move to neighboring charge accumulation sites (pixels).

4. Other physical limitation like the limit of the main (cameras) lens or angle of incidence

of incident light also contribute to crosstalk.

28

4.3.3.Slanted Edge method
There are several methods to measure the MTF of the image sensor like the sine target method,

knife edge method but this method suffers from drawbacks of long computation time and also

needs a large number of images respectively. But the slanted edge method is fast and requires

just 1 image to compute the MTF. The method is based on ISO 12233 standard; consists of

imaging an edge onto the detector, slightly tilted with regard to the rows (or the columns). So

a vertically oriented edge allows obtaining the horizontal Spatial Frequency Response (SFR)

of the sensor. In that case, the response of each line gives a different edge spread function (ESF)

due to different phases and the ESF data is used to compute the MTF [29].

4.3.4.Correct Image and Lens Setting
Images that are captured suffer from non-uniformities and offset. So to measure the MTF

accurately, captured images need to be corrected first and to remove this artifact flat-field

correction is applied.

C =
(Edge−Dark)∙m

(Light−Dark)
 (4.3-1)

Where,

C: Corrected image

Edge: Raw image of target edge.

Dark: Dark frame.

Light: Flat-field light image.

m: Average value of (Light-Dark)

It is also important that the slanted edge is located at the center of the image and the center of

the lens; the image contrast and resolution are typically optimal at the center of the image, and

due to the imperfect lens; deteriorate toward the edges of the field-of-view. Another important

point to consider is that while capturing images using a lens, a defocus reduces the sharpness

and contrast of the image and thus degrades the MTF. Hence, it is very important to have a

well-focused image. Basically, any optical aberration degrades MTF of the system [31] [32].

4.4.Noise and Non-uniformity

4.4.1.Definition
Every integrated circuit suffers from noise and so do CMOS image sensor. Image sensors

convert light information into an electrical signal and while processing the information, a

CMOS image sensor suffers from two types of noise; temporal noise and spatial noise. Noise

is any fluctuation in signal value and the noise waveform can be conventionally modelled as a

random process. Mathematically, the noise power can be estimated by computing the variance

of the signal. Hence, by computing the variance of the fluctuation in signal gives the mean

signal and thus mean number of electrons [33]. The current state-of-the-art CMOS image

sensors can achieve noise level as low as of 1e-
rms.

Before measuring the noise, it is important to know what type of noise comes from which part

of the sensor. Below in Figure 4.4-1 a CMOS image sensor based on a standard 4T pixel

architecture is shown and it describes what kind of noise originates from which specific part of

the pixel. This Figure 4.4-1 only indicates the major source of the noise: reset noise, dark

current, flicker noise (1/f noise), photo response non-uniformity (PRNU) and dark signal non-

29

uniformity (DSNU), there are other noise components as well which contribute to the total

noise of the system.

Figure 4.4-1- Major Noise sources in a 4T pixel PPD.

4.4.2.Temporal Noise
Temporal noise is the variation in pixel response for a constant illumination over a period of

time. It can be evaluated by computing the standard deviation of the pixel response for every

pixel through a number of frames taken over a period of time for a specific illumination.

Temporal noise consists of the following noise components:

1. Johnson noise of all resistive components (Thermal noise).

2. 1/f noise of the MOS transistors (mainly from the source-follower in CMOS pixels).

3. kTC noise (if not cancelled by CDS).

4. Quantization noise of the ADC.

5. EMI and other interference.

6. Timing jitter.

7. Any other noise contribution from the extra electronics on-chip or off-chip.

To estimate the noise in the image sensor, it is important to model the noise mathematically.

The most often used random variable in noise analysis is the Gaussian random variable. It is

used to describe the magnitude distribution of a large variety of noise sources including;

thermal noise, shot noise and 1/f noise. If the noise signal is a Gaussian random variable, then

the white noise process is a white Gaussian noise (WGN). Two of the most important noise

processes in integrated circuits, thermal and shot noise, are modelled as WGN processes [33].

4.4.2.1.Photon shot noise

The photon shot noise is due the statistical variation on generated/excited electron-hole pairs

due to random arrival of impinging photons under illumination and it obeys a Poisson statistic.

Therefore, the magnitude of the photon shot noise (ηphoton) equals to the square root of the

photon-generated electron (µe) [28]:

ηphoton = √μe (4.4-1)

It is possible to compute the conversion gain/CVF from equation 4.2-3 and 4.4-1 -

CVF =
Vsignal∙A

ηphoton
2 (4.4-2)

30

Where, A is the voltage gain of the signal processing unit.

Photon shot noise is the most fundamental noise of any photonic system as it comes from the

basic laws of physics and not from the image sensor design. Its square root dependency on

illumination level is utilized to characterize the image sensor. Hence, the conversion gain

derived from this relation is very accurate.

4.4.2.2.Dark current shot noise

The dark current shot noise is a result of thermally random generation of electrons-hole pairs

in dark i.e. the dark current and it depends exponentially on temperature. As it also follows

Poisson statistics dark current shot noise (ηdc) is given as:

ηdc = √μdark (4.4-3)

Where, µdark is the number of electrons generated in dark.

4.4.2.3.Read Noise

The read noise is the inherent noise of an image sensor due to temporal variation in the pixel

value over period of time and it is associated with the signal processing electronics. It is the

result of various noise sources like- kTC noise, ADC noise and temporal row noise. It is

measured for a very short integration time (tint) to avoid DSNU and is measured in dark to keep

photon shot noise minimum. The read noise is measured on a temperature stable system. It is

calculated by computing variance for each pixel over the series of frames taken in the dark for

same integration time and then taking the average of all the pixel’s variance to get the noise

over an image.

4.4.2.4. Reset Noise

It is the thermal noise of the reset switch sampled over a capacitor and is also known as “kTC

noise”. It is the noise sampled on the floating diffusion capacitor Cfd due to charge

redistribution and uncertainty of the charge on the capacitor when the reset switch is turned

ON/OFF. A reset transistor and a capacitor can be modelled as a resistor in series with a switch

and a capacitor as shown in Figure 4.4-2 [34]. But in a modern CMOS image sensor using a

CDS technique, the reset noise is cancelled out. Mathematically, the reset noise is given as:

Vres = √
kT

Cfd
 (4.4-4)

Where,

Vres: Reset noise voltage.

k: Boltzmann constant.

T: Absolute temperature.

Cfd: Floating diffusion capacitance.

31

Figure 4.4-2- (a) nMOS transistor modelled as switch and a resistor in series with the floating

diffusion capacitor, (b) KTC noise sampled when switch is opened and closed.

4.4.2.5.1/f Noise

1/f noise also known as flicker noise is the noise power density which is inversely proportional

to the frequency. 1/f noise depends on the CMOS technology used and with the downscaling

of transistors, it is becoming the dominant source of read noise. The main sources of 1/f noise

in CMOS image sensor are the MOS transistors. It is a result of random fluctuations in charge

carrier density due to the random capture and emission of carriers by traps in the gate oxide

and also due to fluctuations in the mobility of the carriers. These two effects are correlated and

are considered together during noise the modelling [35]. There are different models to quantify

1/f noise of which the K.K Hung model [36] is most commonly used.

4.4.3.Spatial noise
Spatial noise is the variation of pixel response within a frame i.e. pixel to pixel variations which

are steady over time. These are statistical variations in “offset” and “gain” of the pixel over a

frame and are fixed at a constant illumination therefore referred as fixed pattern and hence

fixed pattern noise (FPN). Spatial noise can be evaluated by computing the coefficient of

variation across a frame. The good thing about spatial noise is that it can be calibrated.

4.4.3.1. Dark fixed pattern noise

Dark fixed pattern noise is the FPN noise in dark and is often considered to be as an offset

because the variations are fixed for a given pixel at a fixed integration time. FPN in the dark is

the result of a mismatch of pixel-level transistors and mismatch of column-level transistors of

the image sensor and also due to variations in dark currents of the different pixels of the image

sensor. Generally, FPN due to the mismatch in transistors is cancelled during correlated double

sampling (CDS) performed while reading out pixel signal. FPN in dark due to dark current

signal is often referred as dark current non-uniformity (DCNU) which represents the variations

in the dark current signal of pixels in a pixel array. Dark FPN is normally evaluated by so-

called dark signal non-uniformity (DSNU), which represents the distribution of the dark

voltage output of each individual pixel of the whole array. Since the extracted DSNU is

normalized with respect to the dark current, it is independent of the exposure time.

4.4.3.2.Photo response non-uniformity

Photo response non uniformity (PRNU) also called as “gain” noise is the result of variations in

photo-responsivity of a pixel in an array and it is proportional to the illumination. There are

several components of PRNU, primarily it is due to imperfection in the photodiodes during the

fabrication process. The imperfection in the fabrication process can result in a different value

of diode junction capacitance, which results in variations in depletion width and hence

(b) (a)

32

variations in pixel’s photo response. Also, mask misalignment results in the different size of

photodiodes which result in variation in active regions of the pixels in an array [25]. The other

variations that can result in PRNU are photodiode capacitance variation, photodiode collection

volume variations, variation in device gain, variation in conversion gain and floating diffusion

capacitance variations.

It is important to understand that while measuring PRNU, FPN in the dark is also included.

FPN in dark due to transistor mismatch is supposed to be cancelled during CDS and to eliminate

FPN due to dark current, either FPN in dark needs to be subtracted or the PRNU measurement

should be performed by keeping a minimum integration time to make the DCNU negligible.

4.5.Dark current

4.5.1.Definition
The dark current is the small leakage current that flows in a photosensitive device even when

no photons are incident and in CMOS image sensor it is due to random generation of electrons

and holes in PPD. The dark current is a result of many different semiconductor physical

phenomena that occur in the PPD, these phenomena will be discussed further in this section.

But the dark current is not just restricted to PPD, FD and TG also contribute to the total dark

current of the pixel. The dark current itself does not create a problem for image sensor as it can

be calibrated by performing “dark frame subtraction” from the signal frame but it is temporal

variability of the dark current that introduces noise into the system. In high-speed cameras, the

dark current is negligible because of the very short integration time and then read noise

dominates.

4.5.2.Mechanism
Dark current is the pixel response under no illumination. Its generation depends on the

fabrication technology and the design of the CMOS imager. Major factors influencing dark

current are silicon defect density, the electric field of the photo-sensing element, and the

operation temperature. There are several components of dark current which are the result of

different physical mechanisms. The following section will discuss all the mechanism briefly.

4.5.2.1.Generation center

Generation center is a physical location which is responsible for the random generation of

electrons and holes that result in dark current. These generation centers are the result of

impurities, dislocation faults, vacancies, mechanical stress, lattice mismatch, interface states

etc., which are the side effects (by-products) of the fabrication process. The physical size of a

generation center is in the order of 1-2 inter-atomic distances.

4.5.2.2.Thermal generation

Thermal generation and recombination is a common phenomenon in any opto-electrical device.

In the absence of photons (light), the thermal generation-recombination of carriers is a result

of impurities and defects in the crystal. In silicon trap assisted generation-recombination (GR)

is a dominant phenomenon compared to other generation-recombination mechanisms. Due to

impurities and defects in the crystal, some electrons have an energy above Fermi level which

results in an indirect transition of an electron in the conduction band and thus it will contribute

to the dark current. The electrons in transition between bands pass through a state created in

the middle of the band gap by an impurity in the lattice. The localized state can absorb

differences in momentum between the carriers, and so this process is the dominant generation

33

and recombination process in silicon and in other indirect bandgap materials [37]. Also, the

PPD is reverse-biased, therefore the minority carrier concentration is lower than the

equilibrium concentration hence generation process is dominant over recombination process to

re-establish the equilibrium. This complete process can be characterized by the Shockley–

Read–Hall (SRH) process; hence the rate of electron-hole pair generation inside the depletion

region is given as [38]:

 G = [
σpσnυthNt

σnexp(
Et−Ei

kT
)+σpexp(

Ei−Et
kT

)
] (4.5-1)

Where,

σn: electron capture cross section,

σp: hole capture cross section,

υth: thermal velocity of either electrons or holes (assuming they are equal),

Nt: density of the generation centers (silicon defects),

Et: defect energy level,

Ei: intrinsic energy level,

k: Boltzmann’s constant and

T: absolute temperature.

The dark current caused by thermal generation in the depletion region is:

 Jgen = ∫ q G dx
W

0
 ≈ qGW =

qniW

τg
 (4.5-2)

Where,

W: Depletion width,

q: electronic charge,

ni: intrinsic concentration, and

τg: generation life time.

As shown in Eq. (4.5-2), the dark thermal generation current is proportional to the intrinsic

concentration ni. The temperature dependence of ni is given by [3.3]:

 ni = √NcNV exp (−
Eg

2kT
) (4.5-3)

Where, Nc and Nv are the carrier densities and Eg is the energy bandgap. By combining both

Eq. (4.5-2) and Eq. (4.5-3), it can be concluded that the temperature dependency of thermal

generation current is proportional to the exponential value of a half silicon bandgap.

4.5.2.3.Surface generation

The phenomenon behind surface generation is same as of thermal generation, the only

difference is the location of the traps, defects or impurities. Surface generation is a result of

imperfection at the Si-SiO2 interface of the PPD, hence the lattice structure becomes non-

uniform at the interface which results in traps at the surface. There are different measures taken

to reduce surface generation, a p+ implant is one of the techniques i.e. PPD is not completely

depleted: a thin p+ layer is left at the interface, so if there is any surface generation the carriers

will be absorbed in the thin p+ layer itself [39].

4.5.2.4.Tunneling

It is a common phenomenon that occurs in heavily doped p-n junctions which result in a thin

depletion layer. During the tunneling process the valance band carriers “penetrate” through the

bandgap into the conduction band instead of overcoming the barrier, see Figure 4.5-1. This

34

phenomenon may occur in a PPD under the high-electric field, carriers can tunnel through the

p-substrate to n depletion region and contribute to the dark current of the pixel. As more doping

results in more impurities and thus more dark current. The most straightforward way to reduce

the dark current caused by tunneling is to reduce the electric field [37].

Figure 4.5-1- Energy band diagram of the tunnelling process of a heavily doped p-n junction

[40].

Avalanche multiplication/impact ionization is a rare phenomenon and is most unlikely to occur

in 4T pixel PPD as the bias applied to the pixel is not strong enough to initiate this phenomenon.

4.5.2.5.Diffusion current

The diffusion current is the current that is a result of the difference in concentration level in

two regions in a p-n junction diode, so whenever one region is at higher potential than the other,

then there is net movement of carriers from higher concentration to lower concentration and

this movement of charge carrier’s results in a current called diffusion current. Due to a heavy

doping concentration in the n-layer, the dark current due to diffusion of holes is negligible.

Hence the equation of the dark current due to the diffusion current of electrons can be given as

[38]:

 Jdiff =
qDnnp0

Ln
= q√

Dn

τn
∙

ni
2

NA
 (4.5-4)

Where,

Jdiff: Diffusion current due to electrons,

np0: electron concentration in boundary condition,

Dn: electron diffusion coefficient,

Ln: diffusion length,

τn: carrier lifetime,

ni: intrinsic concentration.

From the temperature dependency of the intrinsic concentration ni, the Eq. 4.5-4 shows the

temperature dependency of the diffusion current on the exponential value of one silicon

bandgap.

35

4.5.2.6.Dark current from fabrication process

The STI (Shallow Trench Isolation) is widely used in integrated circuits as a device isolation

technique. STI is used to separate adjacent semiconductor device components in most MOS

and bipolar technologies. STI overcomes the disadvantage of local oxidation of silicon

(LOCOS) isolation technique with no “bird beak” encroachment. The key steps of the STI

process involve etching a pattern of trenches in the silicon, depositing dielectric material (such

as silicon dioxide) to fill the trenches and removing excess dielectric material using CMP

(Chemical Mechanical Polishing) process. The key advantage of this technique is that it

prevents electric current leakage between the adjacent devices which has a direct effect on the

power dissipation in the integrated circuit.

Many CMOS image sensors use STI for preventing crosstalk between pixels due to diffusion

of carriers: photo carriers generated in a substrate. The side effect of this technology is that the

oxide layer of STI creates traps and these traps will result in undesired trapping and release of

carriers that will result in dark current and 1/f noise. To solve this issue, a common approach

is to extend the p+ pinning layer to cover the whole STI as shown in Figure 4.5-2. Thus, the

STI interface traps can be filled. Also, it has been discovered that the total dark count depends

very much on the distance between the side wall interface of the STI and the photodiode. To

decrease the dark current, it is possible to increase the distance between the photodiode and the

STI, but at the expense of lowering the pixel fill factor [40].

Figure 4.5-2- Cross section of a pinned 4T APS pixel with STI and interface defects [40].

4.6.Image Lag

4.6.1.Definition
Image lag is defined as a memory effect of the pixel due to the insufficient charge transfer to

the floating diffusion from the PPD. Thus, the remaining charge end up in the next frame. In a

4T pixel, the complete transfer of signal charge from the PPD to the floating diffusion node is

critical to the pixel performance in terms of noise and image lag. The potential profile under

the transfer gate must be properly tailored to establish a proper barrier height between the

photodiode and the floating diffusion node to achieve full charge transfer when the transfer

gate is at a high voltage. The relative position and the geometry of the n-type diffusion layer of

the PPD, combined with the shape and size of the transfer gate directly affect some key device

characteristics such as noise, dark current, and image lag [41]. It is a trade-off between a large

full well, low dark current and significant image lag for a 4T pixel designer.

4.6.2.Causes of Image Lag
1. Potential barrier between the PPD and the TG

36

The pinned photodiode can be modeled as a lumped RC network, hence there is a

certain time constant (delay) for the charge to deplete through the diode or across the

potential barrier. Now, if the pulse applied to transfer gate is smaller than the time

constant (delay) then it will result in a residual charge in the photodiode and therefore

the image lag in the sensor.

Or,

In a 4T pixel, this is due to the emptying time constant of charge that is limited by the

potential barrier. Charge transfer from the pinned photodiode can mathematically

correspond to the current through a MOSFET in sub-threshold or to the forward current

through a diode. Hence it requires a certain time constant to overcome the barrier and

this emptying time constant can then be directly translated into image lag.

2. Insufficient electric field

If the applied electric field to transfer the charges is not enough then there will be

residual charges in the pixel which will result in image lag.

3. Trapping effect in TG

It is a common phenomenon in MOSFET, where charge carriers are being trapped at

the transfer gate interface and these traps can capture free carriers and can release them

anytime which results in Image lag.

4. Large signal level

The large signal can also result in image lag as some electrons can fall back in the PPD

if the applied potential to the TG is not enough w.r.t large amount of charge [26].

The image lag can be computed by grabbing a certain black frames followed by illuminated

frames and vice versa by illuminating the sensor by a light pulse of the same duration as tint and

synchronized with begin/end of the tint. The image lag is then estimated as an average signal

level in the dark state expressed in percent of the signal level in the illuminated state.

 Lag [%] =
μlight− μdark

μlight
× 100 (4.6-1)

Where,

µdark: mean value of the first dark frame taken just after the light frame.

µlight: mean value of the last light frame.

37

 Chapter 5

Measurement Procedure Overview
It is important that the reasons for undertaking a measurement are clearly understood so that

the measurement procedure can be properly planned. Good planning is vital in order to produce

reliable data to time and to cost. The planning process should cover aspects such as the

objectives of the measurement, background information, selection of the method, the required

level of accuracy and confidence and finally reporting [42]. The following measurement

procedures are planned for accurate, robust and fast measurements.

The following section includes measurement procedures for all the characteristic parameters

of a CMOS image sensor. Measurements were performed on different samples and prototype

sensors; different characteristics parameters are computed using different standard methods.

The measurement procedures are friendlier with the Caeleste working environment, but can be

used to characterize any CMOS image sensor in general with suitable hardware and software

tools. The tests are performed with different sensor settings to get more accurate and precise

results like for some measurements high gain mode is used and for some measurements low

gain mode, some measurements are performed for the same integration time and constant light

source intensity and some with changing integration time and changing light source intensity.

Measurement procedures include all the basic information about the characteristic parameter,

image sensor specification and settings, measurement setup and environmental condition under

which the measurement procedure is/should be performed. The procedures also suggest

alternative methods to compute characteristic parameters and also to cross-check the

measurement results. Measurement procedures include graphs and figures for some standard

results that may or may not comply with actual results. The MTF measurement procedure is

based on ISO 12233 test standard. Along with creating the measurement procedures, the

software library and hardware equipment’s are also updated for fast and accurate

measurements.

38

5.1.Quantum Efficiency and Spectral Response

5.1.1.Objective
Quantum efficiency (QE) is one of the most important characteristics of any electro-optical

device including the CMOS image sensors. QE is the ratio of the average number of electrons

generated (µe) in the pixel contributing to the output signal to the average number of impinging

photons (µp) on the pixel during the exposure time. This document gives a brief introduction

on quantum efficiency and spectral response, explains necessary measurement procedures and

provides data analysis protocol.

5.1.2.Measurement Background

5.1.2.1.Method Description

In the field of image sensors, one typically considers the total quantum efficiency: QE that

referred to the total area occupied by an image sensor single pixel (not only the light sensitive

area). QE expressed in units of percent or simply a value from zero to one. Another important

characteristic of a photodiode or image sensor is called spectral response and it determines how

much photocurrent will be generated by the device under test (DUT) per impinging photon of

a given energy. Therefore, it is expressed in units of A/W. Both, QE and spectral response of a

photodiode depend on the wavelength of the impinging photons. By knowing QE one can

derive the SR and vice versa. Depending on the project two situations can appear:

1. The image sensor design has a special QE test structure intended for QE and SR

measurements only.

2. No specialized QE test structure is available within current image sensor project.

5.1.2.2.Specialized QE structure

A dedicated QE structure consists of a set of pixels (referred as QE or ‘real’ pixels) identical

to those of the original sensor’s pixel array in terms of photodiode, transfer gate and

metallization properties. The main advantage of the QE structure is that, it allows direct

measurement of photocurrent instead of voltage. Additionally, the QE structure has a set of

guard pixels that prevent charge leakage into the QE pixels from outside. The QE test structure

is either a part of the image sensor die (hence, accessed via sensor’s dedicated bonding

pads/pins) or designed as a separate die. Figure 5.1-1 shows a typical layout of a QE structure:

three pads corresponding to substrate (SUB), QE pixels (diode) and the guard pixels and the

pixel array consisting of real pixels surrounded by guard pixels. Figure 5.1-2 shows the

electrical connection of the QE structure. Both, guard and real pixels are biased with an external

power supply. An ampere meter is placed into the QE-pixel net for photocurrent measurements.

Figure 5.1-1-Layout of QE test structure (full pixel array is not shown).

39

Figure 5.1-2-QE structure connection diagram.

5.1.3.Measurement Setup

5.1.3.1.List of Equipment

From the explanation in the previous section, it is clear that one needs a monochromatic light

source, a calibrated light intensity radiometer and a high precision electrometer for

photocurrent measurements. The setup should be mounted on a rigid optical bench or

breadboard in a dark cabinet. Typical list of equipment employed for QE measurements:

1. DUT/QE structure.

2. Reference detector (Hamamatsu Si reference diode).

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

4. Electrometer (CI-0013 Keithley 6514 electrometer).

5. Monochromator (TMc300).

5.1.3.2.Block Diagram

The test setup for the QE measurements is shown in Figure 5.1-3. The setups assume the use

of a monochromator for obtaining QE at various wavelengths, whose principle of operation is

explained in detail in Figure 5.1-3. The light from a broadband light source enters the

monochromator via its input slit and is then collimated onto a diffraction grating. The latter

splits the continuous spectrum into separate wavelengths reflected at different angles. A

focusing mirror collimates this light onto the output reflector, which together with the exit slit

outputs the light of one particular wavelength. Light from the output of the monochromator is

then projected onto the device under test. Both, the monochromator and the electrometer are

computer-controlled. In case the measurement needs to be done only at one wavelength, a

nearly monochromatic light source can be used such as LED whose emission spectrum is

known. For this procedure, consider the use of a monochromator for obtaining QE and SR

spectra in this document.

Figure 5.1-3- QE measurement setup schematic.

TG TG

A

~2V DC supplyG
U

A
R

D
 p

ix
el

s

“r
ea

l”
 Q

E
p

ix
el

s

“guard”

“diode”

“substrate”

Picoampere meter

40

5.1.3.3.Software Tools

1. Iron Python-based Caeleste software environment.

5.1.4.Measurement Procedure

5.1.4.1.Algorithm

The principle behind the QE measurement is that first, measure the photocurrent of the

reference-calibrated detector as a function of wavelength to determine the intensity (standard

conversion table provided from photodiode manufacturer) of the light incident on the structure

i.e. irradiance E (directly tells about the number of impinging photons on the DUT). Then

measure the current of the DUT structure for the same illumination as a function of the

wavelength to calculate the spectral response (which tells us about the number of electrons

generated) and if the CVF is known then the output voltage of the DUT can be converted into

a number of electrons at the output of DUT. Now calculate QE as the ratio of the number of

electrons by the number of impinging photons.

5.1.4.2.Procedure

1. Use the Bentham Halogen light source with its dedicated stable current source and

allow it to reach thermal equilibrium for at least 20 minutes after switching it ON. (Do

not switch off the light source until you complete all the measurements.)

2. Select the appropriate slit width at the monochromator exit to get the desired bandwidth

of light from Figure 5.1-4. (Refer Table for slit width vs bandwidth from

monochromator user manual).

Figure 5.1-4 - Slit width and bandwidth configuration [43].

5.1.4.2.1.Measurement from known CVF

1. Place the reference detector under illumination and measure the current at the

wavelength of interest. Use the reference detector calibration data (in A/W) to calculate

41

the irradiance the E in [W/cm2] from the detector output current [A]. This will result

in the mean number of impinging photons (μp).

2. Record exactly the location of the reference detector (within a few mm in X, Y and Z)

and place the DUT to be measured at the same location.

3. Now illuminate the DUT at the same wavelength, capture the image for known

integration time (tint), subtract the ambient light or dark image and measure the mean

output signal [Volts] of the DUT. One can evaluate the mean number of electrons

generated (μe) by using mean output signal and CVF.

Note: It is advisable to take the same ROI as the size of the reference detector to get an accurate

result.

5.1.4.2.2.Measurement from a dedicated QE structure

1. Place the reference detector in the light beam and measure the intensity from the

monochromator at every wavelength of interest. Use the reference detector calibration

data (in A/W) to calculate the light intensity in [W/cm2] from the detector output

current [A] and subtract ambient light from the measurement.

2. Record exactly the location of the reference detector (within a few mm in X, Y and Z)

and place the QE structure to be measured at the same location.

3. Perform a wavelength scan with exactly the same parameters (bandwidth, wavelengths

etc.) to measure the spectral response and subtract the ambient light from the

measurement.

Note: Step size of the scan should be lower than the FWHM of the light.

5.1.4.3.Replacing the reference detector with DUT at same location

1. One method to replace the device and place it at the exact same location is to use a

Convex Lens and place it between the reference detector and the monochromator.

2. Adjust the position of the lens so that one should get a small spot of light (convex lens

converges light at the focal point) focused at the middle of detector reference detector

and now place the DUT and align it so that you get the same small beam of light on at

middle DUT.

5.1.4.4.Pay attention

1. The F-number of the light towards the QE structure and the reference detector should

be identical.

2. Both QE structure and reference detector should be perfectly homogenously

illuminated.

3. The signal level of the sensor output should be well above the dark current for the

accurate result.

5.1.4.5.Further recommendations

1. If no specific F-number is required the measurement is best done using a plain

monochromator output (at F/4 diverging) in a dark cabinet, without any additional

optics.

2. A direct or diffuse illumination will give different results for the QE structure; clearly

report the method of illumination. The Bentham reference diode can be used for both.

3. Make sure that your connection cables are not twisted or rounded as at times

communication freezes.

42

5.1.5.Accuracy of the method
The accuracy depends on the non-idealities and assumptions. Following factors may affect

accuracy of the result:

1. Unstable light source.

2. Misalignments during replacing reference photodetector with the QE structure. In the

Figure 5.1-5 you can see the deviation in measurement results when the setup was

assembled and dismantles 4 times. Maximum difference in QE is around 2.68%.

Figure 5.1-5 - QE setup accuracy diagram.

5.1.6.Alignments
Alignment is very important for this measurement. During measurement following points

should be kept in mind:

1. The light source should be parallel to the DUT and the distance between them should

be within light source uniformity and intensity range (Refer monochromator data

sheet).

2. The QE structure and the reference detector should be placed exactly at the same

position.

5.1.7.Data Processing

5.1.7.1.Calculating SR and QE

5.1.7.1.1.CVF method

The quantum efficiency (QE) is the ratio of the average number of electrons generated in the

pixel (µe), to the average number of impinging photons on that pixel (µp) and is wavelength (λ)

dependent:

QE(λ) =
μe

μp
 (5.1-1)

The mean number of photons µp incident over the pixel area A [cm2] during the integration

time tint [s] can be computed from the known irradiance E [W/cm2] with:

μp =
A∙tint∙E

hc λ⁄
 (5.1-2)

Where c and h are the speed of light and Planck’s constant respectively.

43

In addition, the mean number of electrons is given by:-

μe = Vout CVF⁄ (5.1-3)

The photo induced charge Qph is the number of electrons μe multiplied by the elementary

charge q.

Qph = μe. q (5.1-4)

The spectral response (SR) expressed in units A/W is the ratio between the average

photocurrent (Iph) and the irradiance per pixel area (E*A):

SR =
Iph

E∙A
=

Qph tint⁄

E∙A
=

q(Vout CVF⁄)

tint∙E∙A
 (5.1-5)

Where Iph = Qph tint⁄ is the pixel photocurrent expressed as a photoinduced charge collected

during the integration time tint.

Where,

λ: wavelength [nm]

q: electron charge = 1.602*10-19[C]

h: Planck’s constant = 6.626*10-34 [Js]

c: speed of light= 2.99792*1010 [cm/s]

5.1.7.1.2.QE structure measurement method

The spectral response is ratio of the current generated and the power of incident light on the

QE structure. Now determine SR by the following formula:

SR[A/W] =
Iph

E∙A
 (5.1-6)

The quantum efficiency can be determined from the spectral response by replacing the power

of the light at a particular wavelength with the photon flux for that wavelength. This give:

QE[%] =
SR∙hc

λ∙q
× 100 (5.1-7)

Where,

Iph: measured photocurrent through the "QE structure" [A]

A: Effective area of "QE structure" [cm2]

P: Intensity of light, which is incident on the sensor [W/cm2]

5.1.8.Graphs and Figures
Figure 5.1-6 shows a standard plot from one of the Caeleste’s image sensors. Both QE and SR

are plotted as a function of wavelength, where QE is expressed as a percentage (%), SR in

(A/W) and the wavelength in (nm).

44

Figure 5.1-6 - Plot of QE and SR as a function of wavelength.

45

5.2.Photo Response

5.2.1.Objective
The photo response of an image sensor is the measure of the sensor ability to convert the optical

incident power (number of photons hitting the sensor for a given integration time) into an

electrical signal (gain of the system multiplied by the number of electrons generated). Photo

response is a function of wavelength. The main result from this procedure is a photo response

curve and the charge to voltage factor (CVF). Further from the curve, one can determine other

parameters like saturation voltage, non-linearity and full well capacity.

5.2.2.Measurement Background

5.2.2.1.Method description

To determine the photo response two parameters are required, 1st the incident input optical

power, which can be calculated using reference calibrated photodetector for a particular

wavelength and 2nd the output electrical signal of the DUT, which is determined by measuring

the output signal over a fixed integration time for different illumination levels of the sensor i.e.

from saturation to dark. Hence at a given wavelength and for given input optical power one can

evaluate the photo response.

5.2.3.Measurement Setup

5.2.3.1.Block Diagram

Figure 5.2-1- Setup diagram for PR and CVF measurement.

The block diagram in Figure 5.2-1 illustrates the setup for the measurement. The Camera Link

and Frame Grabber are used to capture the images and the reference photodetector is used to

measure the light intensity from the light source. The setup should be mounted on a rigid optical

bench or breadboard in a dark cabinet. Typical list of equipment’s employed for this

measurement are:

5.2.3.2.List of Equipment

1. DUT.

2. Reference detector (CI-0046 Hamamatsu Si reference diode H1).

3. Mounting rails.

4. Camera link and frame grabber.

5. Power supply (CI-0033 TTi_QL355TP_Power_supply).

Power supply

Electrometer

Temperature

sensor

LE
D

ar
ra

y

Feedback

photodiode

He
at

Calibrated

radiom eter

Light source

DUT

46

6. Electrometer (CI-0013 Keithley 6514 electrometer).

7. Caeleste’s LED light source.

8. Connection cables.

5.2.3.3.Software Tools

1. Iron Python-based Caeleste’s software environment.

5.2.4.Measurement Procedure

5.2.4.1.Algorithm

To calculate the optical input power of a light source, measure the current of the reference-

calibrated detector to find the irradiance E (standard conversion table provided from

photodiode manufacturer). Simultaneously measure the output electrical signal of the DUT i.e.

the output of ADC for different illuminations levels (saturation to dark) to obtain the photo

response curve. Measuring the DUT signal means: grab a sequence of at least 10 images and

calculate the mean of all the images to obtain the final image.

5.2.4.2.Setup

1. Place the light source, DUT and reference detector at an appropriate position on the

optical bench.

2. Switch on the light source at maximum power and allow 10 minutes to get it thermally

stable.

3. Check that with the given placement, deep saturation of the DUT can be reached near

the maximum light source power such that you can still take a couple of measurements

after saturation to get the better result.

4. Record the position of the light source, DUT and the reference detector in X, Y and Z

to within a few mm. Make sure the parts can be removed from the optical bench and

positioned later in the same location.

5.2.4.3.Determine the correction factor for the reference detector

1. In case if you cannot replace the DUT and reference detector at the same location one

can use 2nd reference detector to cancel the error caused due to misalignment.

2. Remove the DUT and place a 2nd reference detector at the DUT position.

3. Measure the light intensity at both detector locations and determine the scaling factor.

Check that whether this factor is constant for different light intensities.

4. Remove the 2nd reference detector.

5.2.4.4.Procedure

1. Record the DUT identification and test conditions in the test report header template

and place the DUT at its position.

2. Control the LED source current to obtain different steps (smaller the better) in

illumination level from saturation to dark.

3. At each illumination step acquire a series of images (e.g. 10, 20) from the sensor and

take the mean of the images [Volts] and simultaneously measure the irradiance E

[W/cm2] of illumination using reference detector, apply the displacement correction

factor to the detector measurement value.

4. Also, capture an image in dark (µdark) for offset reference.

5. Plot the mean output signal (µ- µdark) [Volts or DN] versus the light intensity [W/cm2]

to obtain the photo response curve as shown in Figure 5.2-2.

47

Figure 5.2-2- Photo response curve.

5.2.4.5.Further recommendations

1. Light source / illumination field non-flatness, non-uniformity: For large DUTs, it is

advisable to use only a window of pixels to calculate the pixel average. This window

must have about the same size as the reference detector and should be located at the

X/Y position of the 2nd reference detector during the determination of the

displacement correction factor.

5.2.5.Accuracy of the method
The measurement procedure accuracy depends on how accurately you measure the incident

optical power and also the stability of the light source. Also, it is important to accurately process

the images that are captured to remove any offset and non-uniformities, but this procedure is

accurate to obtain the nonlinearity, Vsat and the full well capacity.

5.2.6.Data Processing
The characterization of the photo response curve gives us information about a number of useful

parameters like full well capacity, CVF, linearity, saturation. One can evaluate all these

parameters using the data collected by following the above-mentioned procedure.

5.2.6.1.Non Linearity

The non-linearity is the measure of the maximum deviation of the output signal from an ideal

(best line fit) response of the sensor. The non-linearity is defined within a certain range of

illumination intensity for e.g. 10% to 90% of the saturation level. In this case, the best fit line

will be the straight line joining all output voltages between at 10% and 90% of the saturation

value.

48

Figure 5.2-3- Non Linearity from Photo response curve.

INL[%] =
Emax

FS
× 100 (5.2-1)

Where,

INL = Integral nonlinearity,

Emax = maximum error from best-fit straight line [Volts or DN],

FS = full-scale value or maximum output of sensor [Volts or DN].

Note that Emax is the maximum deviation in any direction. The full-scale value is the value of

the highest measurement taken which is still within the linear performance range. Normally

this is set to be as close to the actual full-scale capability of the A/D converter as it is practical

during camera calibration.

5.2.6.2.Saturation (Vsat)

It is the point in the photo response curve after which the output of the image sensor does not

depend on illumination level anymore. The saturation point is shown in Figure 5.2-4.

5.2.6.3.Full well capacity

It is important how you define the full well capacity. Here full well capacity is referring to the

saturation level of the sensor. Hence it is given as the point of the intersection of the line joining

e 10% and 90% saturation level point and the best-fit line for Vsat on the photo response curve

as shown in Figure 5.2-4 below.

49

Figure 5.2-4- Photo response curve showing full well capacity.

5.2.6.4.Alternatively, from mean-variance method

The full well capacity is the point in the noise plot where the temporal noise curve as shown in

Figure 5.2-5 reaches its maximum. This is because the image sensor is in saturation region

hence the output signal does not depend on illumination level anymore and therefore the

average noise of the image sensor goes down.

Figure 5.2-5- Full well from Mean-Variance curve.

Note: Full well capacity is not always determined by the floating diffusion, here the full well

capacity is defined by considering that the saturation level of the ADC is greater than the

saturation level of the sensor.

5.2.6.5.CVF

The charge to voltage conversion factor tells you the voltage equivalent of the number of

electrons generated and vice versa. Depending on the data available there are two different

methods to determine CVF:

50

5.2.6.5.1.First method- (photo response curve if quantum efficiency value is known)

Convert the irradiance into number of electrons generated by following calculations:

Firstly, the mean number of photons µp impinging on the pixel area A [cm2] during the

integration time tint [s] can be computed from the known irradiance E [W/cm2] as:

μp =
AtintE

hc λ⁄
 (5.2-2)

Where, c and h are the speed of light and Planck’s constant respectively and λ is the wavelength

of incident light.

Now, the quantum efficiency (QE) is the ratio of the average number of electrons generated in

the pixel (µe) to the average number of photons impinging on that pixel (µp) and therefore one

can calculate number of electrons generated for known QE value:

η(λ) =
μe

μp
 (5.2-3)

Now you can plot Vout (mean output signal) versus µe (number of electrons) to get a CVF plot.

And the 1st derivative (slope) of the curve will give the CVF [Volts/e-].

Where,

λ: Wavelength [nm]

q: electron charge = 1.602*10-19[C]

h: Planck’s constant = 6.626*10-34 [Js]

c: speed of light= 2.99792*1010 [cm/s]

Figure 5.2-6- CVF from Photo response curve if the Quantum efficiency value is known.

5.2.6.5.2.Second method (Mean-Variance method or PTC curve method)

The mean-variance method employs the fact that the photon shot noise (PSN) level is

proportional to the square root of the signal level, expressed in electrons. The Figure 5.2-7

shows the mean variance curve with the offset correction. Thus, by measuring the signal and

its variance one can obtain the CVF. Take the following steps to evaluate CVF:

1. From the set of captured images, compute the signal variance (temporal noise) and the

mean signal for each pixel over the series of images at a given illumination level

51

(however, watch out for non-linearity). The result is the average over all pixels of signal

variance (σ2) [Volts2 or DN2] and mean signal (µ) [Volts or DN] for that series and µdark

serves as offset reference.

2. Plot (σ2) and (µ - µdark) and in the range where (σ2) has a square root behavior i.e. the

linear region, the ratio between (σ2) and mean (µ - µdark) is actually the CVF [Volts/e-].

Figure 5.2-7- CVF from PTC curve using mean variance method.

5.2.7.Accuracy of the method
Among the two method described; the photo response curve method seems more accurate as

mean-variance method is only accurate for the linear part of the image sensor’s response. Also,

the mean-variance method assumes that only photon shot noise contributes to the total noise

which is not the case in reality. So the photo response curve is preferred for the CVF

measurement.

52

5.3.Modulation Transfer Function

5.3.1.Objective
The Modulation Transfer Function (MTF) is a measure of the image sensor’s ability to resolve

a contrast at a particular spatial resolution. The MTF quantifies the overall imaging

performance of a system in terms of the resolution and the contrast. The following

measurement procedure is based on Slanted-Edge method and will result in the Edge Spread

Function (ESF), Line Spread Function (LSF) and the MTF of the sensor.

5.3.2.Measurement Background

5.3.2.1.Slanted-Edge method

The slanted-edge method based on ISO 12233 standard consists on imaging an edge onto the

detector as shown in Figure 5.3-1, slightly tilted with regard to the rows (or the columns).

Hence, a vertically oriented edge allows obtaining the horizontal Spatial Frequency Response

(SFR) of the detector. In that case, the response of each line gives a different ESF, due to

different phases of the signal [29].

5.3.2.2.Method description

In order to calculate the MTF of the system, first determine the ESF, which is the summation

of SFR of all the lines perpendicular to the slanted edge. The response of a single line will give

an under-sample ESF, so by combining response of multiple lines with a slightly different

position of the edge (hence the slanted edge) the sampling of the ESF becomes much better.

Now calculate the LSF which is the derivative of the ESF. Then by performing a Fast Fourier

Transform (FFT) of the LSF will result in the Optical Transfer Function (OTF). Finally, the

MTF of the sensor is the normalized modulus of the OTF. The Figure 5.3-2 shows the

numerical relationship between all these parameters.

Figure 5.3-1-Slanted edge with ROI.

Figure 5.3-2- Relationship between PSF, ESF, LSF and OTF [44] .

53

5.3.3.Measurement Setup

5.3.3.1.Block Diagram

Figure 5.3-3- Setup for the MTF measurement inside the dark chamber.

Build the setup as shown in Figure 5.3-3, mount the calibrated lens on a motor stage such that

the center of the lens is focused at the center of the slanted edge and use the motor stage to

change the distance to get the best-focused image. Place the object (slanted edge) between the

sensor and the light source. The setup should be mounted on a rigid optical bench or breadboard

in a dark cabinet. Typical list of equipment’s required for MTF measurement are:

1. DUT.

2. Power supply (CI-0033 TTi_QL355TP_Power_supply).

3. LED light source.

4. Slanted edge object (razor blade).

5. Flex TC (Thermal control unit).

6. Camera Lens (F = 2.8 and OBJ = 0.3m).

7. Camera link and frame grabber.

8. Thorlabs motor stage.

5.3.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

5.3.4.Measurement Procedure

5.3.4.1.Algorithm

First, correct the images for non-uniformities using a flat-field correction. Then find the

transition point (position of the edge) i.e. position of the pixels where the pixel value crosses

50% of the maximum intensity and then determine the response SFR for every transition. Now

shift the response for every line of the slanted edge image over each other to get the

oversampled transition curve i.e. the ESF as shown in Figure 5.3-4. Further, the LSF is

calculated by taking the derivative of the ESF. And finally, MTF is calculated as modulus of

Fast Fourier Transform of the LSF. If needed various mathematical operations can be

performed like- linear polyfit on the transition position values for the small pixel size,

interpolation on the oversampled ESF data and filtering for smoothing of the LSF curve.

Light Source

Slated

Edge

Lens

Sensor

Motor Stage

54

In
te

n
si

ty

Figure 5.3-4- ESF curve obtained by projecting data from the slanted edge image [29].

5.3.4.2.Procedure

1. Build the setup as described in the measurement setup and place the edge (Target) at a

distance (OBJ) of 30cm from the DUT to capture the images.

2. Make sure that the captured image does not saturate the pixels by setting an appropriate

light source intensity (50% saturation).

3. Set the correct lens setting (F = 2.8 and OBJ = 0.3m).

4. Capture the three images under the same camera setting and environment condition for

different distances to get the best-focused image:

a. Take a dark image as your reference.

b. Take a light image as your second reference.

c. Take an image of the slanted edge (target).

5. Correct the images for the dark non-uniformity and for the non-uniformities under light

of the pixel response using the flat-field correction.

5.3.4.3.Pay attention

1. Make sure that the captured images do not saturate.

2. The slanted edge should be within 1º-10º angle as the MTF value depends on the angle

of edge.

3. Make sure that you have the correct lens setting.

5.3.5.Accuracy of method
The thing that can go wrong with this measurement is the misalignment in placing the target

(slanted edge) and removing the edge while capturing reference images under light and in dark.

Also, the stability of light source is important.

5.3.6.Data Processing
It is the main part of the procedure. To calculate the MTF of the sensor perform the following

steps:

Note- Following calculations are for the vertical edge, for the horizontal edge interchange the

columns with the rows.

55

5.3.6.1.Correcting image

For the three images (dark, edge, light) taken at every position, perform the flat-field correction

as following:

1. Both the EDGE and LIGHT images are corrected for their offset and dark non-

uniformities by subtracting the DARK reference image, which leads to normalizing

the images with black = 0 and white = 1.

2. The obtained correction (LIGHT-DARK) will be used to create a gain map for each

pixel, called as correction factor (gain factor).

3. The obtained correct image will be (EDGE – DARK) / (LIGHT-DARK).

4. Now linearly normalize the correct image.

5.3.6.2.Calculate the ESF

The ESF is the summation of SFR of all the transitions. To determine SFR first, compute the

pixel position (Thresholdcol) for which the pixel value is greater than 0.5 for every row as shown

in Figure 5.3-5. And then determine the exact transition point (Colintercept) for all the lines (rows)

of the edge from the following formula -

Colintercept = Thresholdcol +
(col0−0.5)

(col1−col0)
 (5.3-1)

Where,

Colintercept: transition point,

Thresholdcol: column position where pixel value is > 0.5,

col0: pixel value at Thresholdcol for that line (row),

col1: pixel value at (Thresholdcol -1) for that line (row).

Figure 5.3-5- Single row from a pixel array indicating transition point which tells the location

of the edge in the slanted edge image.

Note: It is better to take linear poly-fit value for Colintercept if the pixel size is small.

Now record the pixel value at Colintercept (transition point) and for the 10 (can be any number)

pixels on either side of the Thresholdcol to generate the SFR for every row as shown in Figure

5.3-6. Then combine all the SFR and plot them with respect to pixel position to generate the

ESF curve. The data for the ESF is highly oversampled and erratic, so one should perform a

linear interpolation over the ESF data.

56

Figure 5.3-6- Spatial frequency response generated by recording transition pixel and

neighbouring pixel values from single row.

5.3.6.3.Calculate the LSF

The LSF is the derivative of the ESF. So one could employ Three Point Derivative Method to

determine the LSF-

LSF(x) =
d

dx
ESF(x) (5.3-2)

LSFi =
1

2
(

ESFi+1−ESFi

coli+1−coli
−

ESFi−ESFi−1

coli−coli−1
) (5.3-3)

Note: One can apply a smoothing filter (Savitzky–Golay filter) for the LSF data smoothing.

5.3.6.4.Calculate the MTF

The MTF is calculated by performing a FFT over the LSF and taking the normalized modulus

of the result.

 MTF = |FFT(LSF)| (5.3-4)

The Nyquist frequency is the fastest signal that can be reliably sampled, hence Nyquist

frequency = 2×pixel pitch.

Also, the Nyquist frequency can be determined by calculating the perfect MTF from the perfect

LSF. A perfect LSF is an ideal impulse of finite width and the Nyquist frequency is the

frequency at first zero. The MTF calculated from Eqn. 5.3-4 consist of the MTF of the lens as

well, so the final MTF of the sensor normalized from 0 to 1 is given as-

MTFsensor =
MTFmeasured

MTFlens
 (5.3-5)

5.3.7.Graphs and Figures
The following figures and graph depict the process to compute the MTF. The Figure 5.3-7

shows the selected target edge and corresponding corrected image. Next step is to compute

transition point and Figure 5.3-8 shows raw and polyfit transition point. The Figure 5.3-9 shows

the graph of normalized ESF, which is the response of all the transition points. Then Figure

5.3-10 shows the corresponding LSF graph and perfect LSF graph. Finally, Figure 5.3-11 show

the MTF of the corrected edge image along with the perfect MTF obtained from the perfect

LSF.

57

Figure 5.3-7- (a) Target edge with a ROI and (b) Flat-field corrected image for computing the

ESF.

Figure 5.3-8- Graph between interpolated column number and row number (a) Linear polyfit

data of the column values and (b) Raw data of the column values.

(a) (b)

(a) (b)

58

Figure 5.3-9- Edge spread function of the edge image, on y-axis normalized signal level and

on the x-axis the pixel number, (a) Using the raw data and (b) Interpolated data for the pixel

number.

Figure 5.3-10- Line spread function of the corrected edge image, (a) LSF from the actual data

and (b) LSF of a perfect edge.

(a) (b)

(a) (b)

59

Figure 5.3-11- MTF of the corrected edge image along with the perfect MTF obtained from a

perfect LSF.

60

5.3.8.Code Description

Class Modulation Transfer

Description

A class that measures and computes Modulation Transfer Function. This class computes the

best focus position for the Lens and then capture images on and around the focus positon and

then correct the images to compute the MTF of the sensor.

Function - position_array()

This function generates a list of all the position on which motor stage will move depending on

the parameters passed.

position_array(mid_pos, range_pos, step_pos)

Parameters-

mid_pos <float> - start position in mm,

range_pos <float> - range of motor stage in mm,

step_pos <float> - step size of motor stage in mm.

Returns-

p_array <list> - List of all the positons of motor stage.

Function - focus_area()

This function captures an image and ask user select ROI of area to be focused. Coordinates of

ROI are stored in vector which are later used to find focus.

Returns-

roi <vector> - coordinates of focus area.

Function - find_focus()

This function finds the best focus position for the Lens mounted on motor stage depending on

the parameters passed, to capture image for computing MTF.

find_focus(self,range_, step)

Parameters-

range_ <float> - range of motor stage in mm,

step <float> - step size of motor stage in mm.

Returns-

focus_position <float> - best focus position.

Function - capture_image()

This function captures images according to specified experiment_type (dark, light and edge) at

different positons and saves them in NAS directory corresponding to current project.

capture_image(self,range_, step)

Parameters-

range_ <float> - range of motor stage in mm,

step <float> - step size of motor stage in mm.

Function - correct_horizontal_image()

This function corrects the horizontal edge image by applying flat-field correction, take ROI of

the images and normalize, rotate and flip if needed.

Returns-

61

img_edge <vector> - vector of all the images corrected.

Function - correct_vertical_image()

This function corrects the vertical edge by applying flat-field correction, take ROI of the images

and normalize, rotate and flip if needed.

Returns-

img_edge <vector> - vector of all the images corrected.

Function - create_ESF()

Function creates ESF vector and generate ESF plot for all the images in img_edge, also

generate plot for column intercept i.e. the transition position.

Returns-

ESF <vector> - 3D vector for intensity and interpolated column values for all the

 images.

Function- create_ESF()

Function creates LSF vector and generate LSF plot for all the images in img_edge. Also

perform filtering for curve smoothing.

Returns-

LSF <vector> - 3D vector for intensity and pixel number for all the images,

LSF_filtered <vector> - 3D vector of filtered LSF values.

Function - create_MTF()

Function creates computes MTF of all the images in img_edge and generate MTF, MTF perfect

plot.

Returns-

value <list> - List of MTF values of all the images at Nyquist frequency from LSF,

value_filt <list> - List of MTF values of all the images at Nyquist frequency from filtered

 LSF,

mtf <list> - List of values FFT of LSF.

62

5.3.9.Example
#creating instance for class

mtf = ModulationTransfer():

#Computes ROI coordinates for finding best focus image and return ROI

mtf.focus_area();

#find position for best focused image starting at start_pos for range of 10mm and with step size

of 0.1mm and return focus_position

mtf.find_focus(5,0.1);

#capture image starting at focus_position for range of 10mm and with step size of 0.1mm

mtf.capture_image(10,0.1);

#correct horizontal images and return images in vector image_edge

mtf.correct_horizontal_image();

#correct vertical images and return images in vector image_edge

mtf.correct_vertical_image();

#compute ESF from corrected images in image_edge and return ESF vector

mtf.create_ESF();

#compute LSF from ESF vector and return LSF and LSF_filtered vector

mtf.create_LSF();

#compute MTF from LSF vector and return MTF value at Nyquist frequency

mtf.create_MTF();

63

DUT

5.4.Read Noise

5.4.1.Objective
This procedure is to perform a noise analysis of the sensor. The read noise is the temporal

variation in the pixel value over period of time. It is the result of various noise sources like-

kTC noise, ADC noise, temporal row noise and other noise sources.

5.4.2.Measurement Background

5.4.2.1.Method description

The read noise or the temporal noise in the pixel is the inherent noise of a sensor and is equal

to the variance of the pixel value over a series of frame taken in dark. It is measured for short

integration time (tint) to avoid DCNU and the DUT is not illuminated to keep photon shot noise

zero.

5.4.3.Measurement setup

5.4.3.1.Block Diagram

Figure 5.4-1-Setup for Noise measurement.

The block diagram shown in Figure 5.4-1 illustrates the setup for the measurement. The Camera

Link and Frame Grabber are used to capture the images in the dark. The setup should be

mounted on a rigid optical bench or breadboard in a dark cabinet. A typical list of equipment’s

employed for this measurement are:

1. DUT.

2. Camera link and frame grabber.

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

5.4.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

5.4.4.Measurement Procedure

5.4.4.1.Algorithm

The idea behind the measurement is to calculate the read noise by computing the variance for

each pixel over the series of images taken in dark for the same integration time tint[s] and taking

the average of all the pixel’s value to get the noise over a frame.

Power

Supply

64

5.4.4.2.Procedure

1. Built the setup as shown in Figure 5.5-1, place the DUT and connect the peripheral

equipment and turn ON the supply.

2. First, capture some dummy images (e.g. 20, 30) for the system to get stable and then

capture a certain number of images (e.g. 10, 20) for calculating the read noise.

5.4.4.3.Pay attention

1. Capture as many images (e.g. 10-20) for an accurate result and by taking their average

one can remove all the offset and the fixed pattern noise.

5.4.5.Data Processing
The read noise is the random variation in the measurement values over a period of time, hence

the noise is calculated in dark by evaluating the temporal signal variance over a series of frames

for an individual pixels and then by taking the average of all noise values over all the pixel’s

value, tells the noise over an image.

Variance (σ2) =
∑

∑ (Pij−Mj)2N
i=1

N
K
j=1

K
 (5.4-1)

Noiserms [Volts or DN] = √𝜎 (5.4-2)

Where,

Pij = jth pixel value from ith frame,

Mj = mean value of all the jth Pixels of N frames,

N = Total number of frames acquired at specific illumination,

K = Total number of pixels.

Note: One can divide the read noise expressed in Volts by the CVF to get the noise expressed

in electrons and also the abovementioned calculations can be performed on a row or a column

level to get the row noise and the column noise of the image sensor.

5.4.6.Accuracy of the method
This method is very accurate for determining the read noise. The two things that are important

for accurate result are:

1. The measurement should be performed at stable temperature condition, to minimize

any variation in the dark current of the pixel.

2. Also, the integration time to capture the images should be as short as possible so that

the influence of DSNU is minimized.

5.4.7.Graphs and Figures
The Figure 5.4-2 and Figure 5.4-3 show the percentage noise level w.r.t. the full-scale value of

the image sensor for measurement performed for rows and columns respectively.

65

Figure 5.4-2- a) Noise of the image sensor per row.

Figure 5.4-3- a) Noise of the image sensor per column.

66

5.5.Dark signal and Dark current non-uniformity

5.5.1.Objective
This procedure is to evaluate the dark signal i.e. the dark current that flows through the sensor

even when no photons are incident and the Dark Current Non-Uniformity (DCNU) which is

the spatial non-uniformity associated with the dark signal.

5.5.2.Measurement Background

5.5.2.1.Method description

The dark signal is the result of the dark current of the photodiode and is dependent on the

temperature and the integration time. The DCNU are statistical variation on the

generation/recombination level in each pixel i.e. the dark current. Hence by measuring the

sensor output with respect to the time under zero illumination, the dark current and the DCNU

can be evaluated.

5.5.3.Measurement setup

5.5.3.1.Block Diagram

Figure 5.5-1- Setup for DS and DCNU measurement.

The block diagram in Figure 5.5-1 illustrates the setup for the measurement. The Camera Link

and Frame Grabber are used to capture the images in the dark. The setup should be mounted

on a rigid optical bench or breadboard in a dark cabinet. Typical list of equipment’s employed

for this measurement are:

1. DUT.

2. Camera link and frame grabber.

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

5.5.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

5.5.4.Measurement Procedure

5.5.4.1.Algorithm

The idea is to capture two images one with short integration time tint1[s] and one with long

integration tint2[s] and take their difference to compute the dark response and then computing

the standard deviation (σ)rms of the dark response to determine the DCNU.

DUT

Power supply

67

5.5.4.2.Procedure

1. Built the setup as shown in Figure 5.5-1, place the DUT, connect the peripheral

equipment’s and turn ON the supply.

2. Capture Image 1 with very short integration time tint1.

3. Capture Image 2 with a long integration time tint2, at least long enough to see a

significant dark current.

4. Capture a dummy Image 3 for even a longer integration time then tint2 just to check that

Image 1 and Image 2 are in the linear region.

5.5.5.Data Processing
The dark signal (DS) or dark count rate [e-/sec] is the mean response of (Image 1- Image 2)/

(tint1 - tint2). The DCNU [Vrms] is the standard deviation of this response / (tint1 - tint2).

5.5.6.Accuracy of the method
The dark signal and DCNU depends on the temperature of the sensor, so the measurement

should be performed on a temperature controlled system.

5.5.7.Graphs and Figures
The Figure 5.5-2 below shows the temperature dependency of the dark current. As expected

the dark current increases more rapidly for higher temperatures.

Figure 5.5-2-Signal level of the image sensor as a function of integration time at different

temperatures.

The Figure 5.5-3 shows the comparison of dark current between the image sensor samples with

different depletion voltage (Vdep) at 22°C. From the graph the dark current for the sample of

Vdep = 1.4V is 0.073% FS/s and of Vdep = 1V is 0.034% FS/s, where FS is the full scale value.

S
ig

n
al

 (
m

V
)

Integration time (s)

68

Figure 5.5-3- Dark current comparisons between samples with different depletion voltage

(Vdep).

20 25 30 35 40 45 50 55

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 V
dep

 = 1.4V

 V
dep

 = 1.0V

D
a

rk
 c

u
rr

e
n

t
(%

 F
S

/s
)

Sensor temperature (°C)

69

5.6.FPN and PRNU

5.6.1.Objective
This procedure is to perform a non-uniformity analysis of the image sensor. The statistical

static variation of the “offset” (measure without light) or Fixed Pattern Noise (FPN) and “gain”

(measure with light) or Photo Response Non Uniformity (PRNU).

5.6.2.Measurement Background

5.6.2.1.Method description

The fixed pattern noise is the type of spatial non-uniformities within an image, these non-

uniformities are the result of the pixel to pixel variations. The two basic non-uniformity are

“offset” FPN, which is also part of DSNU (Dark Signal Non Uniformity) which does not

depend on the temperature and the integration time and the “gain” PRNU (Photo Response

Non Uniformity) is the non-uniformity under illumination. Hence, by observing the pixel

variation over a frame, FPN and PRNU can be evaluated in dark and under illumination

respectively.

5.6.3.Measurement setup

5.6.3.1.Block Diagram

Figure 5.6-1- Setup for FPN and PRNU measurement.

The block diagram in Figure 5.6-1 illustrates the setup for the measurement can be recognized.

The Camera Link and Frame Grabber are used to capture the images. The setup should be

mounted on a rigid optical bench or breadboard in a dark cabinet. Typical list of equipment’s

employed for this measurements are:

1. DUT.

2. Camera link and frame grabber.

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

4. Caeleste’s LED light source.

5.6.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

Temperature

sensor

LE
D

ar
ra

y

Feedback

photodiode

He
at

Calibrated

radiom eter

DUT Light source

Power supply

70

5.6.4.Measurement procedure

5.6.4.1.Algorithm

To calculate the FPN and the PRNU, one needs to capture a certain number of images for three

illumination settings dark, light and saturation. FPN is the variation in pixel dark signal over a

frame and is determined by calculating STDEV of the mean image obtained from a set of

frames taken in the dark with minimal integration time. PRNU as the name suggest is the non-

uniformity in spatial variation of pixel value for specific illumination level, it can be determined

by calculating the coefficient of variation (It is the ratio of the standard deviation to the mean

value of the signal) of the image. Then take the mean of a number of images in order to remove

the temporal noise. Images are taken for a short tint to keep DCNU negligible.

5.6.4.2.Procedure

1. Place the light source and DUT at an appropriate position on the optical bench such

that with the given placement deep saturation of the DUT can be reached at the

maximum light source power.

2. Capture the number of images (e.g. 10, 20) in the dark.

3. Now power ON the light source and allow 10 minutes to get it thermally stable.

4. Now capture the number of images (e.g. 10, 20) for light (50% of saturation level) and

for the saturation.

5. Calculate the mean of all the images captured for dark, light and saturation respectively

to obtain the resultant images for all the three conditions.

Note- Capture images with a short tint to keep DCNU negligible.

5.6.5.Data processing
The FPN is the static variation of the offset in the dark signal from pixel to pixel.

FPN [Vrms] = STDEV (DARK) (5.6-1)

FPN [%] =
FPN [Vrms]

Saturation−DARK
× 100 (5.6-2)

The PRNU as the name suggest is the non-uniformity or spatial variation of the pixel value for

specific illumination (nominally at 50% of saturation level). It can be evaluated by calculating

the coefficient of variation of an image.

 PRNU =
STDEV (LIGHT − DARK)

Mean (LIGHT − DARK)
 (5.6-3)

Where,

DARK: resultant image by taking mean of all the images taken in dark.

LIGHT: resultant image by taking mean of all the images taken in light.

Saturation: resultant image by taking mean of all the images taken in saturation.

STDEV: Standard deviation.

71

5.7.Image Lag

5.7.1.Objective
The image lag is the memory effect in the image sensor due to the residual charge in the pinned

photodiode. The measurement result is expressed in [%] of the residual charge in the next frame

due to previous frame.

5.7.2.Measurement Background

5.7.2.1.Method Description

The purpose of this test is to estimate the lag of the image sensor. The pinned photodiode can

be modeled as a lumped RC network, hence there is a certain time constant (delay) for the

charge to deplete through the diode across a possible potential barrier. And if the width of the

pulse applied to transfer gate is smaller than the time constant (delay) then it will result in

residual charge at the photodiode, therefore, the lag in the sensor.

5.7.3.Measurement Setup

5.7.3.1.Block Diagram

Figure 5.7-1- Setup for Image lag measurement.

The block diagram in Figure 5.7-1 illustrates the setup for the measurement. The Camera Link

and Frame Grabber are used to capture the images and the light source is connected directly to

the DUT for precise triggering. The setup should be mounted on a rigid optical bench or

breadboard in a dark cabinet. Typical list of equipment’s employed for this measurements are:

1. DUT.

2. Mounting rails.

3. Power supply (CI-0033 TTi_QL355TP_Power_supply).

4. Caeleste LED light source.

5. Connection cables.

6. Cameral link and frame grabber.

5.7.3.2.Software Tools

1. Iron Python-based Caeleste software environment.

Temperature

sensor

LE
D

ar
ra

y

Feedback

photodiode

He
at

Calibrated

radiom eter

Power

supply

Light source

DUT

Trigger light

source using DUT

72

5.7.4.Measurement Procedure

5.7.4.1.Algorithm

The idea behind the measurement is to grab a certain amount of (e.g. 10) black frames followed

by illuminated frames and vice versa by illuminating the sensor by a light pulse of the same

duration as tint and synchronized with beginning/end of the tint. The frame-to-frame crosstalk

(image lag) is then estimated as an average signal level in the dark state expressed in percent

of the signal level in the illuminated state.

5.7.4.2.Procedure

1. Built the setup as shown in Figure 5.7-1, place the light source and DUT and connect

the peripheral equipment and turn ON the supply.

2. Adjust the illumination level (via current, distance, extra attenuators) so that the signal

level is (default, and if not, report this) at about 50% of saturation level when the light

is ON.

3. Generate the sequence using either a waveform generator or SeqC and grab 10 frames

in dark, followed by 10 illuminated frames and vice versa.

4. For accurate triggering of the light pulse, one should use a trigger pulse from the test

board itself.

5.7.4.3.Accuracy of the method

There is hardly anything that can go wrong with this simple procedure, but still there can be

some sources of error: -

1. Generated sequence is not perfectly aligned with begin/end of the tint.

2. Light source instability can cause delay in switching ON/OFF of light pulse.

5.7.5.Data Processing
Image lag is calculated by computing the decaying response from illumination to dark or vice

versa.

Lag [%] =
μlight− μdark

μlight
× 100 (5.7-1)

Where,

µdark: mean value of the first dark frame taken just after the light frame.

µlight: mean value of the last light frame.

5.7.6.Graphs and Figures
The Figure 5.7-2 shows the sample timing sequence for the signals to capture frames for image

lag measurement. And the Figure 5.7-3 shows the result for the image lag measured for the

image sensor by taking 50 frames with 5 consecutive light and dark frames.

Figure 5.7-2- Timing diagram for Image Lag measurement.

Synchronized
Last Light

frame

First Dark

frame

73

Figure 5.7-3- Image lag for 50 frames with 5 consecutive light and dark frames.

74

 Chapter 6

6.1.Summary and Conclusions
This work presents the complete set of standard procedures for characterizing CMOS image

sensors. The main objective of this work is to improve the measurement procedures, so after

rigorous measurements and testing on different image sensor samples, standard procedures are

created. Also, the software library to communicate with the test board and the image sensor are

updated and the new hardware tools were incorporated for accurate and precise measurements.

Here are some conclusions drawn on the basis of the measurements performed for characteristic

parameters of the CMOS image sensors.

6.1.1. Conclusions
1. First and foremost, it is important to have a stable and accurate light source, all the

characteristic measurement include a light source except for the dark signal

measurement. Therefore, it is important that light source emits light with constant

intensity and uniformity at desired wavelength over the DUT.

2. The characterization of Caeleste’s LED light source shows that the light source takes

a very long time to get it stable and also the uniformity is not good enough at short

distance. Hence, Caeleste designed a new LED light source with optical feedback,

Proportional Integral Derivative (PID) controller and some modifications in physical

design to incorporate a cooling fan to improve the stability and uniformity. The initial

result of the improved light source showed significant improvements in the stability of

the light source.

3. Quantum efficiency is an important characteristic and for measuring the quantum

efficiency Caeleste uses a dedicated test structure called QE structure. These QE

structures are identical to those in the original sensor’s pixel array in terms of

photodiode, transfer gate and metallization properties. So this helps in performing

accurate measurements as it eliminates large test boards and the influence of any extra

circuit. For example, QE test structures consist of a guard pixel which prevents any

charge leakage in the pixel from outside. The other method to compute the QE is from

the conversion gain or charge to voltage factor value as described in section 5.1.7.1.1.

This method is less accurate as compared to QE test structure method, as it depends on

the accuracy of conversion gain value itself.

4. The other problem with the QE measurement is its setup accuracy. As it is important

to place the QE test structure exactly at the same location as the reference photodiode

so as to receive the same intensity of light for both the devices. But from the

measurement results shown in Figure 5.1-5, the current setup results in inaccuracy of

2.68% in the quantum efficiency value, which is quite a lot. To solve this problem new

hardware tools were ordered for precise alignment of devices under test to reduce the

inaccuracy within 0.1%.

5. Next characteristic measurement is the photo response measurement of the image

sensor which provides information on the linearity, full well capacity and the

conversion gain value. The accuracy of this method entirely depends on the light source

stability and how accurately the light intensity is measured using a reference

photodiode because measurements are performed by changing the light intensity in a

controlled way and computing the image sensor’s response.

6. From the two methods to compute the conversion gain or CVF mentioned in section

5.2.6.5.1 and section 5.2.6.5.2, the photo response curve method is more accurate, as

75

the mean-variance method is only accurate in linear part of the image sensor response.

So the photo response curve is preferred for the conversion gain or CVF measurement

at Caeleste. The mean-variance method gives more accurate results for a linear image

sensor.

7. The important thing to consider while computing the conversion gain from the mean-

variance method is that the higher the number of frames taken to calculate the variance

of the output signal the better is the accuracy of the result. As the accuracy of

conversion gain depends on the number of samples taken.

8. Next characteristic measurement is the modulation transfer function, which is also the

measure of the crosstalk. There are different methods to compute the MTF of which

the slanted edge method is more accurate and a fast method.

9. This thesis work draws some conclusion about data processing involved during the

MTF measurements as it involves lots of mathematical computation. The first and

foremost is to get the oversampled data for the edge spread function. The

measurements clearly show that more sampling points, increases the accuracy of

generated ESF.

10. The other interesting thing about data processing while computing the edge location in

the image: for a large pixel size it better to take raw sampled data and for a small pixel

size it is better to apply linear polyfit on sampled data. This is because for small pixel

size there are chances that sampled signal is a result of noise but not the actual data.

This phenomenon can be seen in Figure 5.3-8.

11. Similarly, for the edge spread function data, there is a need for interpolation. The

oversampled data obtained for the edge spread function is very erratic and inconsistent,

so before computing the line spread function, the oversampled data needs to be

interpolated first.

12. A generalized conclusion can be drawn for the noise measurements; it is important to

know which type of noise is being measured. While measuring read noise, which is the

inherent noise of the image sensor under no illumination, it should be characterize in

complete darkness and should be measured on a temperature stable system. Similarly,

while measuring the PRNU, the integration time for grabbing a frame should be as

small as possible to eliminate any influence of DCNU.

13. The other important thing while measuring the signal level is that for accurate

measurements the signal level should be significantly large with respect to the noise

level.

14. Image lag is not much significant in CMOS image sensors, but with continuous

increase in high speed and large full charge capacity requirements image lag can be a

problem in the future.

6.2.References

[1] G. P. Weckler, "Operation of p-n junction photodetectors in a photon flux integrating mode," IEEE

Journal of Solid-State Circuits, vol. 2, pp. 65-73, 1967.

[2] G. Weckler and R. Dyck, "Integrated arrays of silicon photodetectors for image sensing," IEEE Trans.

Electron Devices, Vols. ED-15, pp. 196-201, 1968.

76

[3] P. Noble, "Self-scanned silicon image detector arrays," IEEE Trans. Electron Devices, Vols. ED-15,

pp. 202-209, 1968.

[4] D. Renshaw, P. B. Denyer, G. Wang and M. Lu, "ASIC image sensors," IEEE International

Symposium on Circuits and Systems, vol. 4, pp. 3038-3041, 1990.

[5] R. Nixon, "128x128 CMOS Photodiode-Type Active Pixel Sensor with On-Chip Timing, Control and

Signal Chain Electronics," Proceeding of SPIE, vol. 2415, pp. 117-123, 1995.

[6] A. Krymski, D. V. Blerkom, A. Andersson, N. Block, B. Mansoorian and E. R. Fossum, "“A high

speed, 500 frames/s, 1024 × 1024 CMOS active pixel sensor," Symp. VLSI Circuits, p. 137–138,

1999.

[7] E. R. Fossum and D. B. Hondongwa, "A Review of the Pinned Photodiode for CCD and CMOS Image

Sensors," IEEE Journal of the Electron Devices Society, vol. 2, no. 3, pp. 33-43, 2014.

[8] W. F. Kosonocky and J. E. Carnes, "Basic concepts of charge-coupled devices," RCA Rev., vol. 36,

p. 566–593, 1975.

[9] T. Yamada, H. Okano and N. Suzuki, "The evaluation of buriedchannel layer in BCCD’s," IEEE

Trans. Electron Devices, vol. 25, p. 544–546, 1978.

[10] Y. Xu, "Fundamental Characteristics of a Pinned Photodiode CMOS Pixel," TU Delft, 2015.

[11] A. Gamal El and H. Eltoukhy, "CMOS Image sensor," IEEE Circuits and Devices Magzine, pp. 10-

11, May/June 2005.

[12] S. Wuu, H. Chien, D. Yaung, C. Tseng, C. Wang, C. Chang and H. Y.K., "A high performance active

pixel sensor with 0.18-μm CMOS color imager technology," IEEE IEDM Tech. Dig., p. 555–558,

2001.

[13] T. Inoue, S. Takeuchi and S. Kawahito, "A CMOS Active Pixel Image Sensor with In-pixel CDS for

High-Speed Cameras," Proceedings of SPIE - The International Society for Optical Engineering

(Proceedings of SPIE), Vols. 2 5301A-32, pp. 1-8, 2004.

[14] R. M. Guidash, T. -H. Lee, P. P. K. Lee, D. H. Sackett, C. I. Drowley, M. S. Swenson, L. Arbaugh,

R. Hollstein, F. Shapiro and S. Domer, "A 0.6 /spl mu/m CMOS pinned photodiode color imager

technology," Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, pp. 927 -

929, 1997.

[15] K. Yonemoto, H. Sumi, R. Suzuki and T. Ueno, "A CMOS image sensor with a FPN-reduction

technology and a hole accumulated diode," Dig. Tech. Papers, ISSCC, pp. 102-103, 2000.

[16] I. Inoue, H. Nozaki, H. Yamashita, T. Yamaguchi, H. Ishiwata, H. Ihara, R. Miyagawa, H. Miura, N.

Nakamura, E. Y. and M. Y., "New LV-BPD(Low Voltage Buried Photo-Diode) for CMOS Imager,"

IEDM, Technical Digest, pp. 883-886, 1999.

[17] S. K. Mendis, "CMOS active pixel image sensors for highly integrated imaging systems," IEEE

Journal of Solid-State Circuits, vol. 32, pp. 187-197, 1997.

77

[18] S. Kawahito, S. Suh, T. Shirei, S. Itoh and S. Aoyama, "Noise Reduction Effects of Column-Parallel

Correlated Multiple Sampling and Source-Follower Driving Current Switching for CMOS Image

Sensors," International Image Sensor Workshop, 2009.

[19] X. Ge, "The design of a global shutter cmos image sensor in 110nm technology," TU Delft, 2012.

[20] J. Nakamura, in Image Sensors and Signal Processing for Digital Still Cameras, CRC Press, 2005, pp.

79-91.

[21] A. Darmont, "Spectral Response of Silicon Image Sensors," Aphesa (www.aphesa.com), 2009.

[22] "Sensitivity of CCD cameras–some key factors to consider," [Online]. Available:

http://www.andor.com/learning-academy/sensitivity-of-ccd-cameras-key-factors-to-consider.

[23] M. Green and M. Keevers, "Optical properties of intrinsic silicon at 300 K.," Progress in

Photovoltaics: Research and Apllication, vol. 3, pp. 189-192, 1995.

[24] "Photop Technologies, Inc.," 2012. [Online]. Available:

http://www.photoptech.com/main/products_gx/Etalon.php.

[25] S. Kar, "MOSFET: Basics, Characteristics, and Characterization," in High Permittivity Gate

Dielectric Materials, Springer Verlag Heidelberg, 2013, pp. 47-152.

[26] S. Shafie, S. Kawahito, I. A. Halin and W. Z. W. Hasan, "Non-Linearity in Wide Dynamic Range

CMOS Image Sensors Utilizing a Partial Charge Transfer Technique," Sensors (14248220), vol. 9,

no. 12, pp. 9452-9467, 2009.

[27] D. Gardner, "Characterizing digital cameras with the photon transfer curve," Summit imaging

(undated document supplied by Jake Beverage).

[28] J. Janesick, "Scientific CCDs," in Optical Engineering, Bellingham, Wash.: SPIE - The International

Society for Optical Engineering, 1987, pp. 692-714.

[29] P. Magnan and M. Estribeau, "Fast MTF measurement of CMOS imagers using ISO 12233 slanted

edge methodology," SPIE Proceedings, vol. 5251, 2004.

[30] E. Buhr, S. Guenther-Kohfahl and U. Neitzel, "Simple method for modulation transfer function

determination of digital imaging detectors from edge images," in Proc. SPIE 5030, Medical Imaging

2003: Physics of Medical Imaging, 2003.

[31] O. Corporation, "How to Measure MTF and other Properties of Lenses," 1999. [Online]. Available:

http://www.optikos.com/wp-content/uploads/2013/11/How-to-Measure-MTF.pdf.

[32] D. Vany and S. Arthur, Master Optical Techniques (Wiley Series in Pure and Applied Optics), Wiley,

1981.

[33] H. Tian, "Noise Analysis in CMOS image sensor," Stanford University, 2000.

[34] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston: McGraw Hill, 2001.

78

[35] A. Scholten and D. Klaassen, "New 1/f noise model in MOS Model 9, level 903," Compact Modeling

report, Nat.Lab. NL-UR 816/98, Philips Electronics, 1998.

[36] K. K. Hung, P. K. Ko, H. C. and Y. C. Cheng, "A unified model for the flicker noise in metal-oxide-

semiconductor field-effect transistors," IEEE Transactions on Electron Devices, vol. 37, no. 3, pp.

654-665, 1990.

[37] N. Loukianova al. et, "Leakage Current Modeling of Test Structures for Characterization of Dark

Current in CMOS Image Sensors," IEEE Transactions on Electron Devices, vol. 50, pp. 77-83, Jan.

2003.

[38] S. Sze, "Semiconductor Devices. Physics and Technology," New York, John Wiley & Sons, 2001,

pp. 295-296.

[39] D. A. Neamen, in Semiconductor Physics and Devices Basic Principles, The McGraw-Hill

Companies, 2012, pp. 225-227.

[40] X. Wang, "Noise in Sub-Micron CMOS Image Sensors," TU Delft, 2008, p. 59.

[41] E. R. Fossum and D. B. Hondongwa, "A Review of the Pinned Photodiode for CCD and CMOS

Image Sensors," IEEE Journal of the Electron Devices Society, vol. 2, no. 3, pp. 33-43, 2014.

[42] M. Sargent, "National Physics Laboratory," 2011. [Online]. Available:

http://www.kayelaby.npl.co.uk/introduction_to_quality_assurance_of_measurements/8_3/8_3.html.

[43] Bentham, "TMc300 Single Monochromator," [Online]. Available:

http://www.bentham.co.uk/tmc300.htm.

[44] D. R. A. Schowengerdt, "Image Science and Engineering," University of Arizona, 2000.

79

 Chapter 7

Appendix

7.1.Python Code for Filtering
__author__ = 'utsav'

from TSSF import *

''' Filtering module '''

def savgol_filter(nl, nr, m, data):

 """savgol_filter(no. of points in left, no. of points in right, order, data)

 nl <int> = 'no. of point in left'

 nr <int> = 'no. of point in right'

 m <int> = '2 or 4' #order

 The order of the polynomial used to fit the samples.

 `m` must be less than `nl + nr + 1'.

 data <vector> = data you want to filter

 returns filter data in form of a vector

 np = window_length

 The length of the filter window (i.e. the number of coefficients).

 `window_length` must be an odd positive integer.

 ld(derivative) = 0 for smoothing optional

 The order of the derivative to compute. This must be a

 nonnegative integer. The default is 0, which means to filter

 the data without differentiating.

 check if all the given inputs are valid

 ld = 0 , np = nr + nl + 1 , m < nr + nl

 first modify the vector data by adding zero in start and end just to match size then

 generates filter data by performing convolution between data and filter coefficients

 """

 filter_data = Vector()

 #creating filter coefficients

 coeff = coefficients(nl , nr, m);

 i = 0

 j = 0

 filter_data = Vector(data.TotalSize)

 average = 0

 convolution = []

 modify_data = Vector(data.TotalSize + (coeff.TotalSize-1))

 while (i < data.TotalSize):

 #add zero in starting

 for j in range(0,(coeff.TotalSize-1)/2):

 modify_data[j] = 0

 #actual data

 for j in range((coeff.TotalSize-1)/2,(modify_data.TotalSize- (coeff.TotalSize-

1)/2)):

 modify_data[j] = data[i]

 i = i + 1

 #add zero at the end

80

 for j in range((modify_data.TotalSize-(coeff.TotalSize-

 1)/2),modify_data.TotalSize):

 modify_data[j] = 0

 #performing convolution

 for i in range((modify_data.TotalSize - (coeff.TotalSize-1))):

 average = 0

 for j in range(coeff.TotalSize):

 average = average + coeff[j]*modify_data[i+j]

 convolution.append(average)

 for i in range(len(convolution)):

 filter_data[i] = convolution[i]

 return filter_data

def coefficients(nl , nr, m):

 """ coefficients (no. of point in left, no. of point in right, order)

 nl = 'no. of point in left'

 nr = 'no. of point in right'

 m = '2 or 4' #order: int

 The order of the polynomial used to fit the samples.

 `m` must be less than `window_length`.

 returns coefficients in form of a vector

 np = window_length : int

 The length of the filter window (i.e. the number of

 coefficients).

 `window_length` must be an odd positive integer.

 ld(derivative) = 0 for smoothing optional

 The order of the derivative to compute. This must be a

 nonnegative integer. The default is 0, which means to filter the data without

 differentiating.

 check if all the given inputs are valid

 ld = 0 , np = nr + nl + 1 , m < nr + nl

 """

 np = nr + nl + 1

 a = Vector(m+1 , m+1)

 d = 1

 #The order of the derivative to compute

 ld = 0

 indx = Vector(m+1)

 b = Vector(m+1)

 n = m+1

 #filter coefficients

 coeff = Vector(np)

 #this loop performs least square method

 for ipj in range(m*2+1):

 if (ipj != 0):

 sum = 0

 else:
 sum = 1

 for k in range(1, nr+1, 1):

 sum = sum + pow(k,ipj)

 for k in range(1, nl+1, 1):

81

 sum = sum + pow(-k, ipj)

 mm = min(ipj , (2*m -ipj))

 for imj in range(-mm, mm+1, 2):

 a[(ipj+imj)/2, (ipj-imj)/2] = sum

 #linear equation solution, LU decomposition

 ludcmp(a, m+1, indx, d);

 for j in range(m):

 b[j] = 0.0

 b[ld] = 1.0

 #linear equation solution, back substitution

 lubksb(a, m+1, indx, b);

 for kk in range(np):

 coeff[kk] = 0.0

 #generates filter coefficients

 for k in range(-nl, nr+1, 1):

 sum = b[0]

 fac = 1.0

 for mm in range(m):

 fac *= k

 sum = sum + (b[mm+1]*fac)

 coeff[k+nr] = sum

 return coeff

def ludcmp(a, n, indx, d):

 """linear equation solution, LU decomposition"""

 vv = Vector(1, n)

 Tiny = 1.0e-20

 for i in range(n):

 big = 0.0

 for j in range(n):

 temp = abs(a[i, j])

 if (temp > big):

 big = temp

 if (big == 0.0):

 print 'error'

 vv[i] = 1.0/big

 for j in range(n):

 for i in range(j):

 sum = a[i, j]

 for k in range(i-1):

 sum = sum - a[i, k]*a[k, j]

 a[i, j] = sum

 big = 0.0

 for i in range(j, n, 1):

 sum = a[i, j]

 for k in range(j):

 sum = sum - a[i, k]*a[k, j]

 a[i,j] = sum

 dum = vv[i]*abs(sum)

 if (dum >= big):

 big = dum

 imax = i

82

 if (j!= imax):

 for k in range(n):

 dum = a[imax, k]

 a[imax, k] = a[j, k]

 a[j, k] = dum

 d = -(d)

 vv[imax] = vv[j]

 indx[j] = imax

 if (a[j, j] == 0.0):

 a[j, j] = Tiny

 if (j != n):

 dum = 1.0/a[j, j]

 for i in range(j+1, n, 1):

 a[i,j] *= dum

 return a

def lubksb(a, n, indx, b):

 """linear equation solution, backsubstitution"""

 ii=0

 for i in range(1, n+1, 1):

 ip = indx[i-1]

 sum = b[int(ip)]

 b[int(ip)] = b[i-1]

 if (ii != 0):

 for j in range(ii-1, i-1, 1):

 sum = sum - a[i-1, j]*b[j]

 else:
 if (sum != 0):

 ii = i

 b[i-1] = sum

 for i in range(n-1, -1, -1):

 sum = b[i]

 for j in range(i+1, n, 1):

 sum -= a[i,j]*b[j]

 b[i] = sum/a[i, i]

 return b

83

7.2.Python Code for MTF measurement
"Author- Utsav"

slanted edge

import os

import sys

import System

import inspect;

import TSSF;

from Toolbox.Utilities import DirectorySwap

from Toolbox.Utilities import filtering

from time import sleep;

from time import time;

from TSSF import UIUtil

import datetime

from TSSF.UIUtil import Plot, PlotRefresh, Ask # import ironplot as ip

from TSSF import Vector

from TSSF import ImageLab

import glob

import clr, System

import shutil

import random;

from Toolbox import Equipment;

import Toolbox;

from Caeleste.Instruments.Thorlabs import TDC001;

clr.AddReference("System.Windows.Forms");

clr.AddReference("Caeleste.Instruments.Thorlabs");

def position_array(mid_pos, range_pos, step_pos):

 p_array = [mid_pos - range_pos];

 while p_array[-1] <= (mid_pos + range_pos):

 p_array.append(p_array[-1] + step_pos);

 return p_array

class ModulationTransfer():
 """

 Routines needed to perform a modulation transfer measurements

 """

 def __init__(self, intensity=1e-6, tolerance=0.25):

 #Procedure data

 self.img_edge = '''';

 self.col_st = 0;

 self.col_end = 0;

 self.row_st = 0;

 self.row_end = 0;

 self._diff = '''' ;

 self.focus_position = 0;

 self.start_pos = 2.5; #initial position of motor stage

 self.roi = Vector(4);

 self.numpoints = 1000 ;

84

 # here we find the product data...

 soft_dir = os.path.join(os.environ['PROJECTDIR'], 'python')

 sys.path.append(soft_dir)

 try:
 from ChipProperties import product;

 self.chip = product();

 self.chip.load_testboard();

 self.project_dir = self.chip.sensorname;

 print "Sensor class initialized. Chip mode is %s" % self.chip.mode;

 except:
 self.chip = '';

 self.project_dir = 'unknown';

 print "Could not load the chip properties. Exiting"

 return;
 self.test_dir = "Modulation Transfer Function";

 self.NAS_dir = os.path.join("\\\\192.168.2.40", "Public", "BulkData");

 self.output_dir = os.path.join(self.NAS_dir, self.project_dir, self.test_dir);

 #Folder for current experiment

 self.image_dir = "";

 # stage initialization

 try:
 self.stagex = TDC001.Connect('83847325');

 print "ThorLabs stage is initialized successfully";

 except:
 print "ThorLabs stage is not initialized!";

 # saving desired light intensity and tolerance settings

 self.lint = intensity;

 self.tol = tolerance;

 # Initializing the equipment

 try:
 self.glsc = Equipment.GLSC();

 print "GLSC initialized successfully. Calling its calibration functions";

 self.glsc.InitInstrument();

 self.glsc.Calibrate();

 except:
 print "Could not initialize the GLSC";

 # ready

 print "MTF method ready";

 def focus_area(self):

 """

 place the lens at appropriate position using motor stage so that image is more

 or less focused and position is defined by self.start_pos during class initialization

 """

 self.stagex.MoveAbsolute(self.start_pos);

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image();

 handle = "Focus Select"

 ImageLab.Plot(self.chip.image[:,:,1], handle);

85

 select = Ask("Please select ROI and type ok")

 if select == 'ok':

 area = ImageLab.GetSession(handle)["ROI1"].Area;

 self.roi[0] = area.Left;

 self.roi[1] = self.roi[0] + area.Width;

 self.roi[2] = area.Top;

 self.roi[3] = self.roi[2] + area.Height;

 else:
 print 'Please select ROI'

 return self.roi

 def find_focus(self, range_, step):

 """

 Use the thorlabs stages to define the best focal distance.

 Place image with slanted edge to define the focal distance

 select a roi. With median calculate the max stddev

 Input:

 range_ <float> - scanning range in mm

 step <float> - scanning step in mm

 Return: self.focus_position:

 """

 # grab image

 # get median image

 # select ROI

 # start focus

 # raw check finds max stddev

 self._diff = 0;

 self.focus_position = 0;

 # create position array

 position = position_array(self.start_pos, range_, step);

 # raw measurement

 for pos in position:

 self.stagex.MoveAbsolute(pos);

 print "stage position %4.3f [mm]" % pos;

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image();

 dummy1 = self.chip.image[:,:,0];

 dummy2 = self.chip.image[:,:,1];

 cds = dummy2 - dummy1;

 difference =

 (cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])].MedianFilter(5) -

 cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])]).stddev();

 if difference > self._diff:

 self.focus_position = pos

 self._diff = difference

 # fine tuning

 position = position_array(self.focus_position, 0.1, 0.05);

 for pos in position:

 self.stagex.MoveAbsolute(pos);

 print "stage position %4.3f [mm]" % pos;

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image();

86

 dummy1 = self.chip.image[:, :, 0];

 dummy2 = self.chip.image[:, :, 1];

 cds = dummy2 - dummy1;

 difference =

 (cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])].MedianFilter(5) -

 cds[int(self.roi[0]):int(self.roi[1]),int(self.roi[2]):int(self.roi[3])]).stddev();

 if difference > self._diff:

 self.focus_position = pos;

 self._diff = difference;

 self.stagex.MoveAbsolute(self.focus_position);

 return self.focus_position;

 # save position data

 def capture_images(self, range_, step):

 """

 Scans the distance with a thor The MTF method class.

 You have to make sure this will not go beyond

 Input:

 self.focus_position <float> - current position in mm

 range_ <float> - scanning range in mm

 step <float> - scanning step in mm

 """

 # initializing the test board

 if self.chip.test_board==None:

 self.chip.load_testboard();

 self.chip.capture_image();

 else:
 self.chip.capture_image();

 if self.chip.test_board==None:

 print "AcquireImages(): Could not initialize the test system!";

 return;

 # Configuring folders for saving the data

 devpartnum = Ask("Enter the device part number please");

 image_type = Ask("Enter the image type (edge, dark or light)");

 experiment_type = Ask("Enter the edge direction (horizontal or vertical)");

 # setting the light off if the image type is 'dark'

 if image_type=='dark':

 self.glsc.light_off();

 devtemp = Ask("Enter the device temperature");

 # folder for current experiment

 self.image_dir = os.path.join(self.output_dir, "PartNum_%s" % devpartnum,

 experiment_type, image_type);

 DirectorySwap(path_to_directory=os.path.join(self.output_dir, "PartNum_%s" %

 devpartnum, experiment_type), directoryName=image_type);

 os.mkdir(os. path.join(self.image_dir, 'CDSed'));

 pos = [];

 pos = position_array(self.focus_position, range_, step);

 numsteps = len(pos);

 print "scan range from %.2f to %.2f mm with step of %.2f" % (pos[0], pos[-1], step);

87

 # allocating the memory;

 reset = Vector(self.chip.width, self.chip.height, self.chip.test_board.no_frames);

 signal = Vector(self.chip.width, self.chip.height, self.chip.test_board.no_frames);

 imgcdsed = Vector(self.chip.width, self.chip.height, self.chip.test_board.no_frames);

 # Running the loop to move motor stage and capture image

 for i in range(numsteps):

 print "Setting new stage position at %.2fmm" % pos[i];

 self.stagex.MoveAbsolute(pos[i]);

 if not(image_type=='dark'):

 # setting the intensity

 self.glsc.set_intensity(False, self.lint, self.tol);

 self.chip.capture_image(); # acquiring the images

 print "Capturing images...";

 # averaging to get rid of temporal noise

 for k in range(self.chip.test_board.no_frames):

 reset[:, :, k] = self.chip.image[:, :, k*2];

 signal[:, :, k] = self.chip.image[:, :, k*2+1];

 imgcdsed[:, :, k] = signal-reset;

 # saving the data

 tmp = reset.mean(2);

 file_name = 'PartNum_%s_%s_%s_reset_%.2fmm.png' % (devpartnum,

experiment_type, image_type, pos[i]);

 tmp.Save(os.path.join(self.image_dir, file_name));

 tmp = signal.mean(2);

 file_name = 'PartNum_%s_%s_%s_signal_%.2fmm.png' % (devpartnum,

experiment_type, image_type, pos[i]);

 tmp.Save(os.path.join(self.image_dir, file_name));

 tmp = imgcdsed.mean(2);

 file_name = 'PartNum_%s_%s_%s_%.2fmm.png' % (devpartnum, experiment_type,

image_type, pos[i]);

 tmp.Save(os.path.join(self.image_dir, 'CDSed', file_name));

 print "Scanning is finished, light source set off";

 self.glsc.light_off();

 print "Setting initial stage position (at %.1fmm)" % self.focus_position;

 self.stagex.MoveAbsolute(self.focus_position);

 # Preparing the log file

 ts = time();

 date_today = datetime.datetime.fromtimestamp(ts).strftime('%Y/%m/%d %H:%M ')

 header = "%s project %s measurement report\n" % (self.chip.sensorname, 'Modulation

Transfer Function');

 header += "Date %s\n" % date_today

 header += "Integration time setting %fs\n" % (float(self.chip.integration_time/1e7));

 header += "Sensor part reference (entered by user): %s\n" % devpartnum;

 header += "Sensor temperature (entered by user) is %sC degrees\n" % devtemp;

 header += "Sensor operating mode: %s\n" % self.chip.mode;

 header += "Sensor gain (capacitor) setting: %i\n" %

 self.chip.seqc_parameters['gain_value'];

88

 #vcmsrc = Ask("Type common-mode voltage source please");

 vcmsrc = 'provided by testboard ADC';

 header += "Common mode voltage source: %s\n" % vcmsrc;

 header += "Number of frames per illumination point %i\n" %

 self.chip.test_board.no_frames;

 header += "Light source intensity setting = %eW/cm2, tolerance = %.2f%%\n" %

 (self.lint, self.tol);

 # adding the data to header

 header += "Distance range from %.2fmm to %.2fmm with step of %.2fmm\n" %

 (pos[0], pos[-1], step);

 header += "Number of steps in this experiment is %i\n" % numsteps;

 header += "Image type (edge, dark, light) is %s\n" % image_type;

 header += "Edge direction (if specified) %s\n" % experiment_type;

 ts = time();

 st = datetime.datetime.fromtimestamp(ts).strftime('%Y%m%d_%H%M_');

 # make sure a timestamp is included in filename

 filename = "MTF_PartNum=%s__%s.txt" % (devpartnum, st);

 f = open(os.path.join(self.image_dir, filename), 'w')

 f.writelines(header);

 f.close();

 def correct_horizontal_image(self):

 """

 take ROI of the images and normalize, rotate and flip if needed

 """

 devpartnum = Ask("Enter the device part number please");

 image_type = 'edge';

 experiment_type = 'horizontal';

 # folder for current experiment

 self.image_dir = os.path.join(self.output_dir, "PartNum_%s" % devpartnum,

 experiment_type);

 path1 = os.path.join(self.image_dir, image_type, 'CDSed');

 os.chdir(path1);

 # set ROI

 # load edge image

 # load all the images for different position

 images = glob.glob1(os.getcwd(), "PartNum_%s_horizontal_edge*" % devpartnum);

 dummy_image = Vector.Load(self.images[0]);

 handle = "ROI Select"

 ImageLab.Plot(dummy_image, handle);

 cont = Ask("Please select ROI of at least 21 rows and type ok");

 if cont == 'ok':

 #keep in mind to change ROI number

 area = ImageLab.GetSession(handle)["ROI1"].Area ;

 self.col_st = area.Left;

 self.col_end = self.col_st + area.Width;

 self.row_st = area.Top;

 self.row_end = self.row_st + area.Height;

 dummy = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 #transition = "check if transition from black to white yes or no?"

89

 if dummy[0,0] > dummy[0,(self.row_end - self.row_st)-1] :

 transition = 'no';

 else:
 transition = 'yes';

 # clear previous data

 self.img_edge = '' '' ;

 for image in images:

 suf_x = image.split('_');

 res = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 edge = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 dark = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 light = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 edge_correct = (edge - dark)/(light-dark);

 edge_image = (edge_correct - edge_correct.min())/(edge_correct.max()-

 edge_correct.min());

 if transition == 'no':

 if self.img_edge:

 edge_image = edge_image.Rotate90CW();

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 edge_image = edge_image.Rotate90CW();

 self.img_edge = edge_image;

 if transition == 'yes':

 if self.img_edge:

 edge_image = edge_image.Rotate90CW();

 edge_image = edge_image.FlipV();

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 edge_image = edge_image.Rotate90CW();

 edge_image = edge_image.FlipV();

 self.img_edge = edge_image;

 else:
 print 'ROI not selected'

 return self.img_edge

 def correct_vertical_image(self):

 """

 take ROI of the images and normalize, rotate and flip if needed

90

 """

 devpartnum = Ask("Enter the device part number please");

 image_type = 'edge';

 experiment_type = 'vertical'

 # folder for current experiment

 self.image_dir = os.path.join(self.output_dir, "PartNum_%s" % devpartnum,

 experiment_type);

 path1 = os.path.join(self.image_dir, image_type ,'CDSed');

 os.chdir(path1);

 # set ROI

 # load edge image

 # load all the images for different position

 self.images = glob.glob1(os.getcwd(), "PartNum_%s_vertical_edge*" % devpartnum) ;

 dummy_image = Vector.Load(self.images[0]);

 handle = "ROI Select"

 ImageLab.Plot(dummy_image, handle);

 cont = Ask("Please select ROI of atleast 21 column and type ok");

 if cont == 'ok':

 #keep in mind to change ROI number

 area = ImageLab.GetSession(handle)["ROI2"].Area;

 self.col_st = area.Left;

 self.col_end = self.col_st + area.Width;

 self.row_st = area.Top;

 self.row_end = self.row_st + area.Height;

 dummy = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 #transition = "Is transition from black to white yes or no?"

 if dummy[0,0] < dummy[(self.col_end - self.col_st)-1,0] :

 transition = 'yes';

 else:
 transition = 'no';

 # clear previous data

 self.img_edge = '' '';

 for image in self.images:

 suf_x = image.split('_');

 res = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'edge',

 "PartNum_%s_%s_edge_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 edge = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'dark',

 "PartNum_%s_%s_dark_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 dark = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

 res = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_reset_%s" % (devpartnum, experiment_type, suf_x[4])));

 sig = Vector.Load(os.path.join(self.image_dir, 'light',

 "PartNum_%s_%s_light_signal_%s" % (devpartnum, experiment_type, suf_x[4])));

 dummy_image = sig – res;

 light = dummy_image[self.col_st:self.col_end, self.row_st:self.row_end];

91

 edge_image = (edge - dark)/(light-dark);

 edge_image = (edge_image - edge_image.min())/(edge_image.max()-

 edge_image.min());

 if transition == 'yes':

 if self.img_edge:

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 self.img_edge = edge_image;

 if transition == 'no':

 if self.img_edge:

 edge_image = edge_image.FlipV();

 self.img_edge = Vector(self.img_edge.Append(edge_image));

 else:
 edge_image = edge_image.FlipV();

 self.img_edge = edge_image;

 else:
 print 'ROI not selected'

 return self.img_edge;

 def create_ESF(self):

 """

 Calculate the ESF of the image

 return ESF vector:

 """

 # choose what kind of intercepted column values you want

 data = Ask("polyfit(for small pixel) or raw(for large pixel)");

 if data == 'polyfit':

 self.numpoints = 1000;

 self.ESF = Vector(2, self.numpoints, len(self.images));

 for n in range(len(self.images)):

 image = self.img_edge[:, :, n];

 #determining transition and threshold value

 self.col_interp = Vector(image.Height);

 self.polyval = Vector(image.Height);

 y_list = Vector(image.Height);

 x_list = Vector(image.Height);

 for row in range(0, image.Height):

 col = 0

 while image[col, row] < 0.5: #check for transition

 col = col + 1

 threshold_col = col

 col_0=image[threshold_col, row];

 col_1=image[threshold_col-1, row];

 #transition position

 self.col_interp[row]=((threshold_col) +((col_0-0.5)/(col_1-col_0)));

 x_list[row] = row;

 y_list[row] = self.col_interp[row];

 #Polyfit transition position according to row number

 #perform 1st order polyfit

 poly = y_list.PolyFit(x_list, order = 1);

 for i in range(0,x_list.TotalSize):

 self.polyval[i] = poly[1]*x_list[i] + poly[0];

92

 UIUtil.Plot(x_list,self.polyval,str(n),'polyfit');

 plothandle = UIUtil.Plot('polyfit');

 plothandle.XAxis.Title.Text = 'row number';

 plothandle.YAxis.Title.Text = 'interpolated column number';

 #2nd way by taking polyval

 #21 pixels for each row

 col_integer = Vector(21*image.Height);

 col_exact = [];

 col_sort = Vector(21*image.Height);

 intensity_sort = Vector(21*image.Height);

 row = 0;

 j = 0;

 k = 0;

 for row in range(image.Height):

 for j in range(-10,11,1):

 col_integer[k] = self.polyval.Floor()[row] + j;

 exact = col_integer[k] - self.polyval[row];

 col_exact.append(exact);

 k = k + 1;

 col_exact.sort();

 j = 0;

 k = 0;

 row = 0;

 intensity = [];

 for row in range(image.Height):

 for j in range(0, 21):

 intensity.append(image[int(col_integer[k]), row]);

 k = k + 1;

 row = row + 1;

 intensity.sort();

 for i in range(21*image.Height):

 col_sort[i] = col_exact[i];

 intensity_sort[i] = intensity[i];

 UIUtil.Plot(col_sort,intensity_sort, str(n), 'ESF');

 #perform interpolation

 i = 0;

 j = 0;

 k = 0;

 col_start = math.ceil(col_sort.min()) + 1;

 col_end = math.floor(col_sort.max());

 step = ((col_end-col_start)/(float(self.numpoints-1)));

 self.col_interpol = Vector.FromRange(col_start, step, self.numpoints);

 intensity_interpol = Vector(self.col_interpol.TotalSize);

 polyval2 = [];

 for i in range(self.col_interpol.TotalSize):

 k = 0;

 polyval2 = [];

 dummy_x = Vector(2);

 dummy_y = Vector(2);

 for k in range(col_sort.TotalSize-1):

 if ((self.col_interpol[i] >= col_sort[k]) and (self.col_interpol[i] <=

 col_sort[k+1])):

93

 for j in range(2):

 dummy_y[j] = intensity_sort[k+j];

 dummy_x[j] = col_sort[k+j];

 poly2 = dummy_y.PolyFit(dummy_x, order = 1);

 polyval2.append(poly2[1]*self.col_interpol[i] + poly2[0]);

 intensity_interpol[i] = polyval2[0];

 for i in range(self.col_interpol.TotalSize):

 self.ESF[0, i, n] = self.col_interpol[i];

 self.ESF[1, i, n] = intensity_interpol[i];

 UIUtil.Plot(self.col_interpol,intensity_interpol, str(n), 'ESF_interpol');

 else:
 self.numpoints = 1000;

 self.ESF = Vector(2,self.numpoints,len(self.images));

 for n in range(len(self.images)):

 image = self.img_edge[:, :, n];

 #determining transition and threshold value

 self.col_interp = Vector(image.Height);

 self.polyval = Vector(image.Height);

 y_list = Vector(image.Height);

 x_list = Vector(image.Height);

 for row in range(0, image.Height):

 col = 0;

 #check for transition

 while image[col, row] < 0.5:

 col = col + 1;

 threshold_col = col;

 col_0=image[threshold_col,row];

 col_1=image[threshold_col-1,row];

 #transition position

 self.col_interp[row]=((threshold_col)+((col_0-0.5)/(col_1-col_0))) ;

 x_list[row] = row;

 y_list[row] = self.col_interp[row];

 #Polyfit transition position according to row number

 #perform 1st order polyfit

 poly = y_list.PolyFit(x_list, order = 1) ;

 for i in range(0, x_list.TotalSize):

 self.polyval[i] = poly[1]*x_list[i] + poly[0];

 UIUtil.Plot(x_list,self.col_interp,str(n),'raw');

 plothandle = UIUtil.Plot('raw');

 plothandle.XAxis.Title.Text = 'row number';

 plothandle.YAxis.Title.Text = 'interpolated column number';

 #2nd way by taking polyval

 col_integer = Vector(21*image.Height); #21 pixels for each row

 col_exact = [];

 col_sort = Vector(21*image.Height);

 intensity_sort = Vector(21*image.Height);

 row = 0;

 j = 0;

 k = 0;

 for row in range(image.Height):

 for j in range(-10, 11, 1):

94

 col_integer[k] = self.col_interp.Floor()[row] + j;

 exact = col_integer[k] - self.col_interp[row];

 col_exact.append(exact);

 k = k + 1;

 col_exact.sort();

 j = 0;

 k = 0;

 row = 0;

 intensity = [];

 for row in range(image.Height):

 for j in range(0,21):

 intensity.append(image[int(col_integer[k]),row]);

 k = k + 1;

 row = row + 1;

 intensity.sort();

 for i in range(21*image.Height):

 col_sort[i] = col_exact[i];

 intensity_sort[i] = intensity[i];

 UIUtil.Plot(col_sort,intensity_sort, str(n), 'ESF');

 #perform interpolation

 i = 0;

 j = 0;

 k = 0;

 col_start = math.ceil(col_sort.min()) + 1;

 col_end = math.floor(col_sort.max());

 step = ((col_end-col_start)/(float(self.numpoints-1)));

 self.col_interpol = Vector.FromRange(col_start, step, self.numpoints);

 intensity_interpol = Vector(self.col_interpol.TotalSize);

 polyval2 = [];

 for i in range(self.col_interpol.TotalSize):

 k = 0;

 polyval2 = [];

 dummy_x = Vector(2);

 dummy_y = Vector(2);

 for k in range(col_sort.TotalSize-1):

 if ((self.col_interpol[i] >= col_sort[k]) and (self.col_interpol[i] <=

 col_sort[k+1])):

 for j in range(2):

 dummy_y[j] = intensity_sort[k+j];

 dummy_x[j] = col_sort[k+j];

 poly2 = dummy_y.PolyFit(dummy_x, order = 1);

 polyval2.append(poly2[1]*self.col_interpol[i] + poly2[0]);

 intensity_interpol[i] = polyval2[0];

 for i in range(self.col_interpol.TotalSize):

 self.ESF[0, i, n] = self.col_interpol[i];

 self.ESF[1, i, n] = intensity_interpol[i];

 UIUtil.Plot(self.col_interpol,intensity_interpol, str(n), 'ESF_interpol');

 plothandle = UIUtil.Plot('ESF');

 plothandle.XAxis.Title.Text = 'pixel number';

 plothandle.YAxis.Title.Text = 'intensity';

 plothandle = UIUtil.Plot('ESF_interpol');

95

 plothandle.XAxis.Title.Text = 'pixel number';

 plothandle.YAxis.Title.Text = 'ESF_interpolated';

 return self.ESF;

 def create_LSF(self):

 """

 Calculate the LSF of the image from the ESF

 return LSF vector:

 """

 self.LSF_filtered = Vector(2, self.numpoints, len(self.images));

 self.LSF = Vector(2, self.numpoints, len(self.images));

 for n in range(len(self.images)):

 for i in range(1,self.col_interpol.TotalSize-1):

 self.LSF[1, i, n] = 0.5*(((self.ESF[1, i+1, n] - self.ESF[1,i,n])/(self.ESF[0,i+1,n] -

 self.ESF[0, i, n])) + ((self.ESF[1,i,n] - self.ESF[1,i-1,n])/(self.ESF[0,i,n] -

 self.ESF[0, i-1, n])));

 UIUtil.Plot(self.col_interpol,self.LSF[1, :, n], str(n), 'LSF');

 self.LSF_filtered[1, :, n] = filtering.savgol_filter(25, 25, 2, self.LSF[1, :, n]);

 #perform filtering on LSF data using filter coefficient from savgol_filter

 UIUtil.Plot(self.col_interpol,self.LSF_filtered[1, :, n], str(n), 'LSF_filt');

 return self.LSF;

 return self.LSF_filtered;

 def create_MTF(self):

 """

 Calculate the MTF of the image from the LSF

 """

 LSF_perfect = Vector(self.col_interpol.TotalSize);

 for i in range(self.col_interpol.TotalSize):

 if ((self.col_interpol[i] > -0.5) and (self.col_interpol[i] < 0.5)):

 LSF_perfect[i] = 1;

 UIUtil.Plot(self.col_interpol, LSF_perfect, '1', 'LSF_perfect');

 mtf_perfect = LSF_perfect.DFT().norm(0);

 mtf_perfect = mtf_perfect/mtf_perfect.max();

 UIUtil.Plot(mtf_perfect, 'MTF_perfect', 'MTF');

 UIUtil.Plot(mtf_perfect, 'MTF_perfect', 'MTF_filt');

 self.value = [];

 self.value_filt = [];

 for n in range(len(self.images)):

 mtf = self.LSF[1, :, n].DFT().norm(0);

 mtf = mtf/mtf.max();

 self.value.append(mtf[9]); #9 is Nyquist frequency obtained from perfect MTF

 UIUtil.Plot(mtf, str(n), 'MTF');

 for n in range(len(self.images)):

 mtf_filt = self.LSF_filtered[1, :, n].DFT().norm(0);

 mtf_filt = mtf_filt/mtf_filt.max();

 self.value_filt.append(mtf_filt[9]) #9 is Nyquist frequency obtained from perfect MTF

 UIUtil.Plot(mtf_filt, str(n), 'MTF_filt');

 return self.value;

 return mtf;

96

7.3.Camera Link and Frame Grabber
The camera link is a standard serial communication protocol designed for computer vision

applications based on National Semiconductors interface channel link (C-link). It is used for

transferring high-speed data.

A frame grabber is an electronic device that captures (i.e., "grabs") individual, digital still

frames from an analog video signal or a digital video stream. It is usually employed as a

component of a computer vision system, in which video frames are captured in digital form

and then displayed, stored or transmitted. At Caeleste, the frame grabber is a PCI Express

(Peripheral Component Interconnect Express) card with camera link interface, but other

interfaces also exist.

7.4.Three Point Derivative Method
The derivative of a function is defined as-

 f ′(x) = lim
h→0

f(x+h)−f(x)

h
 (7.4-1)

While h is small enough, we can use a centred difference formula to approximate the derivative:

f ′(xi) ≈
f(xi+h)−f(xi−h)

2h
 (7.4-2)

In practice, Origin (software) treats discrete data by the transform centred difference formula,

and calculates the derivatives at point Pi by taking the average of the slopes between the point

and its two closest neighbours.

Figure 7.4-1- Three-point derivative method.

The derivative function applied to discrete data points can therefore be written as-

f ′(xi) =
1

2
(

yi+1−yi

xi+1−xi
−

yi−yi−1

xi−xi−1
) (7.4-3)

7.5.SeqC
It is an in-house software tool at Caeleste. The SeqC (sequence compiler) is a software tool

that compiles a formal textual description of a set of digital waveform sequences in a binary

executable. This executable can be used to run on test system hardware or used to generate

waveform plots or simulation files.

97

The main idea behind the tool is to provide a very simple unified way to generate a formal

description of a waveform sequence. The Figure 7.5-1 shows the relation between different

systems and how SeqC compiler generates binary code from textual description.

Figure 7.5-1-SeqC compiler generates binary code from textual description of sequences.

7.5.1. SeqC builder
Seqc builder is a graphical frontend for the SeqC compiler, simulator and waveform viewer.

The Figure 7.5-2 below shows a snapshot of the SeqC builder.

Figure 7.5-2- Frontend of a SeqC builder.

The SeqC builder tool has a built-in waveform viewer which is shown in the Figure 7.5-3:

98

Figure 7.5-3- Waveform viewer of SeqC.

7.6.List of Acronym
ADC Analog-to-Digital Conversion

APS Active Pixel Sensor

BSI Back Side Illuminated

CCD Charge-Coupled Device

CDS Correlated Double Sampling

CG Conversion Gain

CVF Charge to Voltage Factor

CMOS Complementary Metal-Oxide-Semiconductor

DCNU Dark Current Non-Uniformity

DR Dynamic Range

DSNU Dark Signal Non-Uniformity

FD Floating Diffusion

FPN Fixed Pattern Noise

FSI Front Side Illuminated

FWC Full Well Capacity

HDR High Dynamic Range

MTF Modulation Transfer Function

NL Non-Linearity

PID Proportional Integral Derivative

99

PPD Pinned Photodiode

PPS Passive Pixel Sensor

PRNU Photo Response Non-Uniformity

PSD Power Spectral Density

PWL Piecewise Linear

QE Quantum Efficiency

SNR Signal to Noise Ratio

SPI Serial Peripheral Interface

STI Shallow Trench Isolation

S/H Sample and Hold

	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	1. Chapter 1
	Introduction
	Thesis Organization

	2. Chapter 2
	Overview of a CMOS Image Sensor
	2.1. Background of CMOS image sensor
	2.2. Pinned Photodiode
	2.3. The 4T Active Pixel Sensor Architecture
	2.3.1. Electronic shutter modes

	3. Chapter 3
	LED Light Source
	3.1. Stability
	3.2. Spectral Response
	3.3. Spatial uniformity
	3.4. Conclusions

	4. Chapter 4
	Characteristic Parameter of CMOS Image Sensor
	4.1. Quantum Efficiency and Spectral Response
	4.1.1. Definition
	4.1.2. Measured value versus Theoretical value
	4.1.3. Fringing effect or Etaloning effect

	4.2. Photo Response Curve
	4.2.1. Definition
	4.2.2. Non-Linearity
	4.2.3. Full well capacity (FWC)
	4.2.4. Saturation (Vsat)
	4.2.5. Charge to voltage factor (CVF)

	4.3. Modulation Transfer Function
	4.3.1. Definition
	4.3.2. Sources of cross talk
	4.3.3. Slanted Edge method
	4.3.4. Correct Image and Lens Setting

	4.4. Noise and Non-uniformity
	4.4.1. Definition
	4.4.2. Temporal Noise
	4.4.2.1. Photon shot noise
	4.4.2.2. Dark current shot noise
	4.4.2.3. Read Noise
	4.4.2.4. Reset Noise
	4.4.2.5. 1/f Noise

	4.4.3. Spatial noise
	4.4.3.1. Dark fixed pattern noise
	4.4.3.2. Photo response non-uniformity

	4.5. Dark current
	4.5.1. Definition
	4.5.2. Mechanism
	4.5.2.1. Generation center
	4.5.2.2. Thermal generation
	4.5.2.3. Surface generation
	4.5.2.4. Tunneling
	4.5.2.5. Diffusion current
	4.5.2.6. Dark current from fabrication process

	4.6. Image Lag
	4.6.1. Definition
	4.6.2. Causes of Image Lag

	5. Chapter 5
	Measurement Procedure Overview
	5.1. Quantum Efficiency and Spectral Response
	5.1.1. Objective
	5.1.2. Measurement Background
	5.1.2.1. Method Description
	5.1.2.2. Specialized QE structure

	5.1.3. Measurement Setup
	5.1.3.1. List of Equipment
	5.1.3.2. Block Diagram
	5.1.3.3. Software Tools

	5.1.4. Measurement Procedure
	5.1.4.1. Algorithm
	5.1.4.2. Procedure
	5.1.4.2.1. Measurement from known CVF
	5.1.4.2.2. Measurement from a dedicated QE structure

	5.1.4.3. Replacing the reference detector with DUT at same location
	5.1.4.4. Pay attention
	5.1.4.5. Further recommendations

	5.1.5. Accuracy of the method
	5.1.6. Alignments
	5.1.7. Data Processing
	5.1.7.1. Calculating SR and QE
	5.1.7.1.1. CVF method
	5.1.7.1.2. QE structure measurement method

	5.1.8. Graphs and Figures

	5.2. Photo Response
	5.2.1. Objective
	5.2.2. Measurement Background
	5.2.2.1. Method description

	5.2.3. Measurement Setup
	5.2.3.1. Block Diagram
	5.2.3.2. List of Equipment
	5.2.3.3. Software Tools

	5.2.4. Measurement Procedure
	5.2.4.1. Algorithm
	5.2.4.2. Setup
	5.2.4.3. Determine the correction factor for the reference detector
	5.2.4.4. Procedure
	5.2.4.5. Further recommendations

	5.2.5. Accuracy of the method
	5.2.6. Data Processing
	5.2.6.1. Non Linearity
	5.2.6.2. Saturation (Vsat)
	5.2.6.3. Full well capacity
	5.2.6.4. Alternatively, from mean-variance method
	5.2.6.5. CVF
	5.2.6.5.1. First method- (photo response curve if quantum efficiency value is known)
	5.2.6.5.2. Second method (Mean-Variance method or PTC curve method)

	5.2.7. Accuracy of the method

	5.3. Modulation Transfer Function
	5.3.1. Objective
	5.3.2. Measurement Background
	5.3.2.1. Slanted-Edge method
	5.3.2.2. Method description

	5.3.3. Measurement Setup
	5.3.3.1. Block Diagram
	5.3.3.2. Software Tools

	5.3.4. Measurement Procedure
	5.3.4.1. Algorithm
	5.3.4.2. Procedure
	5.3.4.3. Pay attention

	5.3.5. Accuracy of method
	5.3.6. Data Processing
	5.3.6.1. Correcting image
	5.3.6.2. Calculate the ESF
	5.3.6.3. Calculate the LSF
	5.3.6.4. Calculate the MTF

	5.3.7. Graphs and Figures
	5.3.8. Code Description
	5.3.9. Example

	5.4. Read Noise
	5.4.1. Objective
	5.4.2. Measurement Background
	5.4.2.1. Method description

	5.4.3. Measurement setup
	5.4.3.1. Block Diagram
	5.4.3.2. Software Tools

	5.4.4. Measurement Procedure
	5.4.4.1. Algorithm
	5.4.4.2. Procedure
	5.4.4.3. Pay attention

	5.4.5. Data Processing
	5.4.6. Accuracy of the method
	5.4.7. Graphs and Figures

	5.5. Dark signal and Dark current non-uniformity
	5.5.1. Objective
	5.5.2. Measurement Background
	5.5.2.1. Method description

	5.5.3. Measurement setup
	5.5.3.1. Block Diagram
	5.5.3.2. Software Tools

	5.5.4. Measurement Procedure
	5.5.4.1. Algorithm
	5.5.4.2. Procedure

	5.5.5. Data Processing
	5.5.6. Accuracy of the method
	5.5.7. Graphs and Figures

	5.6. FPN and PRNU
	5.6.1. Objective
	5.6.2. Measurement Background
	5.6.2.1. Method description

	5.6.3. Measurement setup
	5.6.3.1. Block Diagram
	5.6.3.2. Software Tools

	5.6.4. Measurement procedure
	5.6.4.1. Algorithm
	5.6.4.2. Procedure

	5.6.5. Data processing

	5.7. Image Lag
	5.7.1. Objective
	5.7.2. Measurement Background
	5.7.2.1. Method Description

	5.7.3. Measurement Setup
	5.7.3.1. Block Diagram
	5.7.3.2. Software Tools

	5.7.4. Measurement Procedure
	5.7.4.1. Algorithm
	5.7.4.2. Procedure
	5.7.4.3. Accuracy of the method

	5.7.5. Data Processing
	5.7.6. Graphs and Figures

	6. Chapter 6
	6.1. Summary and Conclusions
	6.1.1. Conclusions

	6.2. References

	7. Chapter 7
	Appendix
	7.1. Python Code for Filtering
	7.2. Python Code for MTF measurement
	7.3. Camera Link and Frame Grabber
	7.4. Three Point Derivative Method
	7.5. SeqC
	7.5.1. SeqC builder

	7.6. List of Acronym

