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Chapter 1
Introduction

1.1 Hydrocarbon recovery

Fossil fuels are bonds of carbon and hydrogen called hydrocarbons that can be found in
three major forms: solid (coal), liquid (oil) and gaseous (natural gas). Hydrocarbons
have been formed from organic material such as plants, trees and living organisms,
which were buried deep in the subsurface for millions of years and exposed to high
pressure and temperature.

A mixture of hydrocarbons, called petroleum, can be trapped in hydrocarbon reser-
voirs, i.e, porous rock formations surrounded by some sort of a geological flow barrier
preventing hydrocarbons from escaping to the surface. Hydrocarbon reservoir rock,
as rocks in general, are composed from a solid material (rock matrix) and a void
space. A ratio of the volume of void space to the total volume of a reservoir rock is
called porosity. The higher the porosity the more petroleum the reservoir rock can
contain. Permeability is a measure characterizing the ability of a rock to transmit flu-
ids. It is related to the connectivity of rock pore spaces which depends on rock grain
sorting and rock grain geometry. The higher the reservoir permeability the easier the
reservoir fluid flow through the formation. Therefore, porosity and permeability are
important parameters characterizing hydrocarbon reservoirs.
The increasing energy demand and decreasing fossil fuels reserves stimulate more
efficient production of hydrocarbon reservoirs. It is predicted (IEO 2011) that the
World’s energy consumption within the coming 20− 30 years may increase by 50% or
more. In this context, efficient production of hydrocarbon reservoirs becomes more
relevant than ever. Depending on the type and life-time of the reservoir various re-
covery techniques are used. In general, production of oil fields can be divided into
three phases: primary recovery, secondary recovery and tertiary recovery (Fig. 1.1).
The primary reservoir recovery starts at the beginning of the reservoir life and is
driven by initially high reservoir pressure and expansion of reservoir fluids. Typically,
only about 10% of the oil originally in place can be recovered in this way. The main
purpose of a secondary recovery is to maintain the reservoir pressure and displace
hydrocarbons towards producing wells. Additional drive-energy is supplied into the

1



2 1 Introduction

reservoir mostly by injecting water and/or gas (e.g., CO2). Both, the primary and
the secondary recovery can on average produce only a third of the oil in place and
the recovery can also be as low as 5% and as high as 80%, depending on the reservoir
characteristics (Speight 2009). Tertiary recovery, also called enhanced oil recovery
(EOR), aims to increase the production further by improving mobility of reservoir
fluids so they can flow easily into the wellbore. Various techniques are being applied,
such as gas or chemicals injection and thermal methods based on e.g., steam flooding.
The application of EOR techniques can increase oil recovery up to 30-60% or more
(Speight 2009).

Artificial lift

(pump, gas lift, etc.)

Thermal

Primary recovery

Secondary recovery

Tertiary recovery

Waterflood
Pressure maintenance

(water, gas injection)

Gas Chemical Microbial

Natural flow

Figure 1.1: Methods for oil recovery, after Speight (2009).

For gas fields the recovery factors are usually higher than those of oil fields and can
reach 50-90% (Ahmed 2006). This is because gas is significantly less dense than oil
and can flow easier through the reservoir formation. Therefore, production of gas
fields is mostly based on a natural-drive mechanism, i.e., pressure depletion or water-
drive. In case of pressure depletion, the flow of gas towards the wellbore is driven by
volumetric gas expansion and in the case of water-drive, it is additionally enhanced
by pressure support provided by an aquifer, i.e., a water reservoir.
Regardless of the reservoir type and the recovery mechanism applied, reservoir pro-
duction management can be very challenging. Decisions need to be made about e.g.,
the number and placement of wells or fluid injection and production rates. These
decisions are usually associated with significant uncertainties related to the reser-
voir characteristics and its future performance. Therefore, to facilitate reservoir
management and to better understand the reservoir characteristics and dynamics,
numerical reservoir models are constructed. They are based on all available informa-
tion including geological knowledge, hard data such as core samples, and geophysical
data. The model uses physical flow equations (for reservoir flow modeling see, e.g.,
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Peaceman 1977) discretized in space and time to simulate hydrocarbon flow in the
reservoir. It may contain many uncertain parameters such as structure delineation,
petrophysical properties such as porosity, permeability, and others. The number of
unknowns may easily reach several thousands or millions. The uncertain parameters
are usually adjusted by measuring the output from the real reservoir, e.g., production
rates and well pressures, and by comparing the real observations with the synthetic
data predicted from the numerical model. If the real observations do not match the
model predictions, the uncertain parameters are adjusted accordingly. This process
is called history matching. It is believed that the model fitting the observed data
should have better prediction capabilities of the field performance. Consequently, the
field management strategy can be optimized to fit given criteria. This concept, called
closed-loop reservoir management, is described in more detail in the next subsection.

1.2 Closed-loop reservoir management

Closed-loop reservoir management (called also ”real-time reservoir management”,
”smart reservoir management” or ”closed-loop optimization”) uses a combination of
model-based optimization and data assimilation (computer-assisted history match-
ing). Its objective is continuous or real-time reservoir management to optimize
field operations and to improve its long-term production (Jansen et al. 2008, Jansen
et al. 2009). The key elements of the closed-loop concept are shown in Fig. 1.2.

Data assimilation

algorithms

Noise OutputInput NoiseSystem 

(reservoir, wells

& facilities)

Optimization

algorithms
Sensors 

System models

Predicted output Measured output

Controllable

input

Geology, seismics,

well logs, well tests,

fluid properties, etc.

Figure 1.2: Key elements of the closed-loop reservoir management, after Jansen et al. (2009).
The research content included in this thesis is within the green dashed line.
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In the top of the diagram the real physical system is shown. It includes a hydrocar-
bon reservoir, wells and other field facilities. Typically, as we already mentioned, the
system is represented with synthetic models, shown at the center. They are based
on the available field data such as well logs, well tests, fluid properties, geological
knowledge and assumptions. The system models may include static (geological) or
dynamic (reservoir flow) numerical models with many uncertain parameters. Many
model realizations can be used to express the uncertainty of the unknown parameters.
The response of the physical system, i.e., the hydrocarbon reservoir, is measured with
sensors, shown at the right. The sensors provide various data including reservoir pro-
duction data and other surveillance data. Typically, the system performance cannot
be measured perfectly and the measured output contains some sort of the noise. The
noisy output is used to update the models (red loop). The system model parameters
are adjusted so that the predicted data match the observations within some specified
bounds, typically related to the uncertainty of the measurements. For that purpose
various data assimilation methods are applied. The updated models are subsequently
used in the optimization loop, which provides a control input to the physical system.
Using numerical optimization algorithms and updated system models, an optimal
field production strategy can be searched. Various optimality criteria can be defined,
and usually the net present value (NPV) is maximized. The control parameters can
be injection rates, well-valve settings and general field management decisions such
as the placement of new wells. The inputs to the system are also uncertain because
of device measurement errors, e.g., of water/gas injection rates or because of poorly
known reservoir boundary conditions such as aquifer support characteristics.
The research results presented in this thesis fit into the data assimilation loop (embed-
ded by the dashed green line in Fig. 1.2) and the major focus is on the added value
of gravimetric observations for system models updates. We also consider various
sources of gravimetric noise and available gravity measurements systems applicable
for hydrocarbon reservoir monitoring.

1.3 Data Assimilation

Data assimilation (computer-assisted history matching) is a methodology used to es-
timate the unknown variables and/or parameters of a physical system by merging
available observations into a dynamic model of that system. The model of a sys-
tem contains a mathematical description of physical processes with a set of uncertain
parameters. In the context of hydrocarbon reservoirs, the system model includes a
numerical model of reservoir flow with parameters such as, e.g., reservoir saturation,
pressure, porosity, permeability, structure, initial conditions (e.g., fluid contacts). Be-
cause the unknown parameters need to be estimated for every grid cell of the reservoir
model, which can be very complex, the number of unknowns can be very large and
can easily reach 106-108. For such large-scale data assimilation problems two classes
of methods, namely variational methods and ensemble Kalman filtering, have been
demonstrated to be suitable and powerful (Heemink et al. 2010).
Within variational data assimilation methods uncertain parameters of a model are
estimated by the minimization of a cost function. The cost function includes the data
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misfit term, i.e., the difference between observed and predicted observations and often
also an additional regularization term to stabilize the solution. For large-scale prob-
lems the optimization is usually performed using iterative gradient-based methods
and quasi-Newton schemes are often applied (Oliver et al. 2008, Heemink et al. 2010).
Kalman filtering methods provide a sequential updating of the system state based on
the predictor-corrector structure (see, e.g., Heemink et al. 2010). For a particular
time step when measurements become available, a prediction of the state of the sys-
tem is made based on all previous information. The mismatch between observed and
predicted data is used to update (correct) the modeled system state and to produce a
forecasted state for the next assimilation time. Furthermore, the error statistics of es-
timation/prediction errors can be determined and propagated forward. The Kalman
filter is the optimal sequential assimilation method for linear system dynamics and
Gaussian assumptions about the system and measurement noise (Evensen 2007). The
optimality refers to the minimization of errors in the updated state estimate. For non-
linear dynamics, various modifications of the filter such as the ensemble Kalman filter
(EnKF) were developed resulting in approximate solutions. The EnKF is a sequential
Monte Carlo method, which approximates the state covariance matrix using a finite
set of randomly generated system states. The EnKF method has been widely applied
for reservoir engineering applications (Aanonsen et al. 2009, Oliver & Chen 2011).
This method will further be used in the thesis and introduced in more detail in Chap-
ter 4.

1.4 Reservoir monitoring

The closed-loop reservoir management process and reservoir management in general,
would not be possible without reservoir monitoring. Reservoir monitoring provides
information about changes taking place in the reservoir which are triggered by reser-
voir management decisions and actions and/or are induced by natural processes such
as, e.g., a water influx from the aquifer. For reservoir monitoring, various observations
are acquired and they typically include production data and time-lapse (4D) seismic
measurements. The time-lapse data are obtained by computing the difference between
measurements gathered over two surveys: a monitoring survey performed while the
reservoir is produced and a baseline survey, ideally acquired before the reservoir pro-
duction starts. In this research we consider the use of time-lapse gravimetry for
reservoir monitoring.

1.4.1 Production data

Production data are collected at well locations and typically include measurements
of pressure, oil, gas and water rates. Production measurements can be acquired
very frequently, e.g., pressures daily, phase rates monthly, and therefore provide large
amount of data for the field (Oliver et al. 2008). However, due to a limited number
of wells, the well data cannot provide sufficient information about the state of the
whole reservoir. Therefore, areal observations are needed, which are usually provided
by time-lapse seismics.
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1.4.2 Time-lapse seismic monitoring

Seismic data are measurements of elastic waves, i.e., waves of energy, that have trav-
eled through the Earth’s subsurface. In reservoir engineering the waves are usually
generated with explosions and vibrators or with air guns in case of offshore mea-
surement campaigns. They are recorded with receivers, such as geophones (or hy-
drophones offshore), which convert mechanical motion into an electrical signal. Once
the waves are generated they propagate through the subsurface and reflect at bound-
aries where a change in elastic properties occurs. Some reflected waves travel back
to the surface and are recorded by receivers. The wave travel time depends, among
others, on the depth of the reflector and on the wave velocity, the later one being
related to the elastic properties of the medium through which the wave is traveling.
Therefore, the analysis of seismic waves may provide, for instance, information about
rock types as well as about the geometry of interfaces separating different layers, thus
resulting in a structural image of the subsurface. Seismic data are sensitive not only
to the static rock properties such as rock matrix density, but also to dynamic variables
such as pressure or fluid saturation, which change with time when the reservoir is pro-
duced. Therefore, time-lapse seismics may provide useful information about the areal
time-evolution of reservoir fluids and pore pressure. Nevertheless, acquiring seismic
data for reservoir monitoring is usually expensive, may be difficult and sometimes
prohibitive, e.g., in urban or industrial areas with high levels of environmental noise
(AhmadZamri et al. 2009). Time-lapse (4D) gravimetry, which is a direct measure
of the subsurface mass redistribution, has the potential to provide independent and
valuable information for hydrocarbon reservoir monitoring.

1.4.3 Time-lapse gravimetric monitoring

The objective of time-lapse (4D) gravimetry is to determine spatio-temporal changes
of the Earth’s gravity field by performing repeated measurements of gravity and
spatial gravity gradients. On a local scale, variations in the gravity field can be caused
by subsurface mass redistribution resulting from a hydrocarbon reservoir production
(see Fig. 1.3 for an illustration). Therefore, 4D gravimetric observations have the
potential to provide useful information about fluid flow in the reservoir.
However, gravimetric reservoir monitoring requires very high (at the µGal level1)
measurement precision, which was difficult to achieve until recently. Therefore, de-
spite the fact that the gravity exploration method has been known for centuries
(LaFehr 1980, Torge 1989, Nabighian et al. 2005), time-lapse gravimetry has been used
for geophysical applications only for about five decades (see e.g., Biegert et al. 2008).
Nowadays, thanks to developments in gravimetric instrumentation and data acqui-
sition procedures, high precision time-lapse gravity measurements have become a
mature monitoring technique both for land and offshore applications. We present a
brief overview of applications of 4D gravity in geophysics, and in particular in reser-
voir engineering, in Chapter 2.
The observed temporal gravity variation is an integrated effect of all mass redistri-

11µGal=10−8m/s2
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Figure 1.3: Schematic illustration of 4D gravimetric reservoir monitoring. Gas takeout
causes the reservoir pressure drop and, consequently, water influx from the aquifer (b).
Denser water replaces gas and creates positive subsurface mass variation with respect to the
initial conditions (a). The subsurface mass change is a source of temporal gravity variation
(∆g) that can be observed at the surface (c) and from which the aquifer water influx can be
inferred.

bution around the observation point. Therefore, it contains not only the signal of
interest, in our case originating from a hydrocarbon reservoir, but also additional
signals induced by various environmental processes. The most common examples are
solid Earth tides and ocean tides, polar motion, and air pressure changes. They can
add tens and hundreds of µGal to the measured signal. Correcting for their influences
can be done with the application of various models and/or the acquisition of addi-
tional observations. Another source of noise are local hydrological variations such as
temporal changes of the water table (Harnisch & Harnisch 2006, Amalvict et al. 2004).
Their direct gravitational effect can reach 10-20 µGal and more (Creutzfeldt et al.
2008, Torge 1989) and may significantly affect the feasibility of gravimetric reservoir
monitoring (see Fig. 1.4 for illustration). For that reason, the hydrological influences
on gravity need to be estimated and properly corrected for. In practice, due to the
lack of measurements, a detailed hydrological model is rarely available. Consequently,
hydrological gravity corrections can be based on only a few local observations of the
water table and soil moisture variations. This may not be sufficient to appropriately
remove all the disturbances leaving an unknown hydrological noise in gravity obser-
vations. Therefore, influence of hydrological noise in particular, and of other noise
sources, on gravimetric reservoir monitoring needs to be investigated.
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Despite the increasing number of applications of time-lapse gravimetry for the moni-
toring of hydrocarbon reservoirs, there is little published material on the added value
of gravimetric observations within a broader context of modern reservoir engineering,
such as in closed-loop reservoir management. The potential contribution of gravity
data for an improved reservoir characterization, production forecast accuracy and hy-
drocarbon reserves estimation, is still to be addressed in more detail.

Figure 1.4: Schematic illustration of 4D gravimetric reservoir monitoring affected by hy-
drological and instrumental noise. Gas takeout causes the reservoir pressure drop and,
consequently, water influx from the aquifer (b). Denser water replaces gas and creates posi-
tive subsurface mass variation with respect to the initial conditions shown in Fig. 1.3a) and
positive temporal gravity (∆g) variation (in black). Decrease in water table is a source of
negative gravity change. The sum of two signals, i.e., originating from the reservoir and from
the water table, is shown in blue. The observed data (in red) are additionally contaminated
with a random measurement (e.g., instrumental) noise.
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1.5 Research Objectives

The main objective of this research is to

investigate the added value of gravity observations for hydrocarbon reser-
voir monitoring and characterization.

For this purpose we:

• Investigate which reservoir processes and reservoir types are the most suitable
for gravimetric monitoring, develop a forward modeling approach and couple it
with the forward reservoir simulation.

• Analyze and model various noise sources and noise properties in temporal grav-
ity observations. In particular, investigate the influence of spatio-temporal hy-
drological variations.

• Perform data assimilation experiments to investigate the contribution of gravity
data for reservoir monitoring. In particular, investigate the added value of
gravity for the estimation of spatio-temporal mass variations in the reservoir
and of the total amount of water influx from the aquifer.

• Perform data assimilation experiments to investigate the contribution of gravity
data for improved reservoir characterization, considering the estimation of static
reservoir parameters, such as, porosity, permeability, reservoir structure and
aquifer characteristics.

• Perform data assimilation experiments to investigate the added value of a joint
assimilation of gravity and reservoir production data for reservoir monitoring
and characterization.

1.6 Thesis Outline

The thesis is organized as follows:

• In Chapter 2, the applicability of time-lapse gravimetry for hydrocarbon reser-
voir monitoring is discussed. Measurement systems available for reservoir mon-
itoring are briefly introduced and a literature overview of field case gravity
applications is presented. The forward gravity modeling approach used in the
thesis is described and it is explained how the gravimetric signal relates to the
reservoir mass redistribution.

• In Chapter 3 we discuss major noise sources affecting monitoring of hydro-
carbon reservoirs with time-lapse gravimetry. Special attention is devoted to
the analysis of hydrological influences on gravimetric observations, in particular
originating from groundwater variations. A potential contribution of ground-
water to the uncertainty budget is evaluated with forward simulations of hy-
pothetical variations of water table changes. The chapter is concluded with a
summary of the total uncertainty budget in gravity measurements. The content
of this chapter is partly based on (Glegola et al. 2009).
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• In Chapter 4 we introduce the inversion/estimation methods used throughout
the thesis: the focusing inversion and two ensemble-based data assimilation
techniques, namely the ensemble Kalman filter and the ensemble smoother.
A common framework between the focusing inversion and data assimilation is
briefly discussed and some illustrative application examples are presented.

• Chapter 5 summarizes the findings of the feasibility study on gravimetric moni-
toring of the Thermally-Assisted Gas-Oil Gravity Drainage (TA-GOGD) process
at the carbonate field in the North of Oman. The study includes a quantifica-
tion of the expected temporal gravity changes resulting from the reservoir mass
redistribution induced by the TA-GOGD process. Furthermore, the estimates
of noise in gravity data related to the specific hydrological conditions in the field
are considered and it is investigated under which conditions the hydrological in-
fluences can be minimized. Finally, we perform the focusing inversion of gravi-
metric observations and analyze the achievable accuracy of heat-front position
estimates under the specific hydrological conditions. Major findings included in
this chapter have been submitted for a publication (Glegola et al. n.d.).

• In Chapter 6 we investigate the added value of gravimetric observations for
monitoring water-influx into a gas field. For this purpose we use data assim-
ilation with the ensemble Kalman filter (EnKF). We begin with a sensitivity
study by making various assumptions about the level of gravity measurement
noise and the distance from the gravity observation network to the reservoir
formation. Next we investigate the effect of a combined assimilation of gravity
and production data. The content of this chapter is to a large extent based on
the results published in (Glegola et al. 2012a).

• Chapter 7 extends the work included in Chapter 6 from a 2D to a more real-
istic 3D reservoir model. As in Chapter 6 we investigate the added value of
gravimetric observations for gas field monitoring. However, this time not only
the permeability field is considered uncertain but also the aquifer support char-
acteristics and other parameters, such as porosity and reservoir structure. We
assimilate both gravity and production data using the ensemble smoother (ES)
and investigate their added value for the field monitoring and characterization.
The content of this chapter is to a large extent based on (Glegola et al. 2012b).

• In Chapter 8 an example of application of the bias-aware data assimilation
methodology is presented. Synthetic experiments based on the the 2D gas reser-
voir model, used in the data assimilation in Chapter 6, are included. Similarly
as in Chapter 6, we assimilate gravity data to estimate the reservoir perme-
ability and the reservoir mass redistribution. This time, however, we consider
not only random noise in the observations but also systematic errors (biases) in
both the observations and the forward model.

• Chapter 9 contains conclusions and recommendations for future research.



Chapter 2
Time-lapse gravimetry for hydrocarbon reservoir

monitoring

In this chapter the applicability of time-lapse gravimetry for hydrocarbon
reservoir monitoring is discussed. Furthermore, a literature overview on
the topic is included and some basics of gravimetry are introduced. Subse-
quently, the state-of-the-art measurement systems applicable for reservoir
monitoring are briefly discussed. We also present the forward gravity mod-
eling approach used in the thesis and explain how the gravimetric signal
relates to the reservoir mass redistribution. Finally, we include a simpli-
fied sensitivity analysis to analyze the applicability of various gravimetric
measurement concepts in reservoir monitoring.

11



12 2 Time-lapse gravimetry for hydrocarbon reservoir monitoring

2.1 Introduction

The task of time-lapse (4D) gravimetry is to measure spatio-temporal changes of
the Earth’s gravity field by performing repeated measurements of gravity and its
gradients. Local changes in the gravity field can result from subsurface mass redis-
tribution induced by hydrocarbon reservoir production. Therefore, 4D gravimetric
observations have a potential to provide useful information about mass transport in
the reservoir. However, variations in the gravity field caused by reservoir produc-
tion are incredibly small compared to the total Earth’s gravity field (Fig. 2.1). For
that reason, the monitoring of hydrocarbon reservoirs requires a very high, µGal-
level (1µGal=10−8m/s2), measurement sensitivity and precision, which was difficult
to achieve until recently. Therefore, despite the fact that the gravity exploration
method has been known for centuries, (for a comprehensive historical overview see,
LaFehr 1980, Torge 1989, Nabighian et al. 2005) with roots originating in Galilei’s
time (1564-1642)1 and foundations provided by Newton (1642-1727), the time-lapse
gravimetry has been used for geophysical applications only for about five decades (for
an overview see, Biegert et al. 2008).

Figure 2.1: Schematic illustration of measurement challenges related to gravimetric monitor-
ing of hydrocarbon reservoir. Gravity field variations caused by reservoir mass redistribution
are typically on a µGal-level which is about 10−9 of the average acceleration due to gravity
at the Earth’s surface. Thus, measuring subtle gravity changes in reservoir monitoring is like
determining the weight of a fly sitting on a whale. Picture after Larry Beyer, 1984, USGS

In one of the early applications dating back to 1961 time-lapse gravimetric observa-
tions were used to monitor subsurface water/steam mass redistribution at Wairakei
geothermal field on the North Island of New Zeeland (Allis & Hunt 1986). Exam-
ples of other applications include monitoring of volcanic activities where the temporal
gravity signal was related to the subsurface mass redistribution and/or surface defor-
mation (Yokoyama 1989, Rymer 1994, Battaglia et al. 2008).

1the memory of Galileo is honored with the primary unit of acceleration, 1Gal=cm/s2
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Nowadays, high precision time-lapse gravimetry has become a mature reservoir mon-
itoring technique both for land and for offshore applications. With advancements in
data acquisition and data processing procedures a µGal-level measurement precision
can be achieved. Recent synthetic and field studies have shown that 4D gravity can
be used for monitoring of reservoir mass redistribution induced by a water-gas dis-
placement. For instance, Hare et al. (1999) investigated the feasibility of gravimetric
monitoring of Gas-Water Contact (GWC) at Prudhoe Bay reservoir in Alaska. For a
2500 m deep reservoir they predicted a maximum gravity variation of about 250 µGal
and demonstrated that the water front propagation could effectively be mapped with
surface gravity observations. Biegert & Witte (2001) investigated the feasibility of
gravimetric monitoring of a GWC rise in the Mars reservoir, Gulf of Mexico. For
a 1700 m deep gas reservoir and several tens of meters of GWC rise they predicted
temporal gravity variation of about 100 µGal, which is far above the typical mea-
surement uncertainty. Stenvold et al. (2008) provided a comprehensive insight into
typical subsurface density changes for water-drive gas fields and associated time-lapse
surface gravity variations. They concluded that with the current technology the re-
peated surface gravity measurements can be used for water influx monitoring even for
moderate-size gas reservoirs (∼ 23 Gm3 gas in place) at fairly large depths (∼ 2000 m).
Encouraging results of many synthetic studies stimulated field applications of time-
lapse gravimetry. For instance, van Gelderen et al. (1999) showed the results of
gravimetric monitoring of the large Groningen gas field in the Netherlands. The ini-
tial purpose of monitoring there was possible replacement of costly leveling surveys
for land subsidence caused by compaction of the gas reservoir. Thanks to long-term
gravimetric observations, spanning a period of 18 years (1974-1996), the gravity effect
of mass extraction of produced gas could also be detected. The observed trends of
gravity decline were in accordance with the reservoir production data. Van Popta
et al. (1990) presented results of a successful application of borehole gravimetry to
monitor gas saturation in Gas-Oil Gravity Drainage (GOGD) process in the Natih
field in Oman. Alixant & Mann (1995) reported a successful use of repeated borehole
gravity surveys to estimate in-situ residual oil saturation in Gabon’s Rabi field. In
more recent publications Ferguson et al. (2007) and Ferguson et al. (2008) described
the 4D gravity methodology used for monitoring the GWC movement in the arc-
tic environment at the Prudhoe Bay reservoir in Alaska. It is the first applications
where absolute gravimetry was used for field-wide (approximately 300 stations) reser-
voir monitoring. Despite challenging environmental conditions (weather, snow mass
spatio-temporal redistribution) they achieved precision better than 10 µGal in 4D
gravity signal. In parallel papers Hare et al. (2008) and Brady et al. (2008) discussed
the 4D gravity monitoring results at Prudhoe Bay and showed that the redistri-
bution of the injected water mass could effectively be monitored with gravimetry.
AhmadZamri et al. (2009) described an application of 4D gravimetry for monitor-
ing of waste gas injected into an aquifer. They showed that despite operating in an
active construction area, which excluded the use of seismic monitoring, gravity pro-
vided useful information on the propagation of the gas front. Zumberge et al. (2008)
described the high-precision seabed time-lapse gravity methodology developed for off-
shore applications. Thanks to improvements in data acquisition and data processing
procedures (including simultaneous measuring with multiple sensors, repeated instru-
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ment calibrations and minimization of vibrational and thermal perturbations to the
sensors), 3 µGal precision in time-lapse gravity observations can be achieved, which,
as will be shown later, is an order of magnitude smaller than the typical signals of
interest. Seabed gravimetry has been recently applied to survey a number of offshore
fields. For instance, Nooner et al. (2007), Alnes et al. (2008) and Alnes et al. (2011)
showed results of seafloor gravimetric monitoring of gas production and CO2 storage
at the Sleipner field in the North Sea. The 4D gravimetric observations were used
there to constrain the in-situ CO2 density and to estimate the mass change distribu-
tion caused by gas production and water influx into the reservoir. Eiken et al. (2008)
discussed results of the gravimetric monitoring of water influx into the giant Troll
gas field in the North Sea. Siddique (2011) described the application of time-lapse
gravimetry for monitoring Midgard gas field, offshore Norway. There, the positive
time-lapse gravity variations indicated the water influx, which was not inferred from
other data. Thanks to information provided by gravity the gas in place volumes were
updated and the water breakthrough in one of the wells was predicted properly.
There are also examples of oil fields monitoring with gravimetry. In a recent pub-
lication, Alawiyah et al. (2011) presented results of the gravimetric monitoring of a
very shallow (∼ 700 m deep) oil field in Sumatra, Indonesia. Gravimetric observa-
tions were used to monitor field-wide density changes caused by oil production and
by water injection. Thanks to the information provided by gravimetric observations,
a recommendation for the placement of new production and injection wells could be
made.
Not only gravity but also spatial gravity gradients can be measured. Droujinine et al.
(2007) examined the feasibility of hydrocarbon reservoir monitoring using time-lapse
gravity gradiometry. They considered simplified-geometry synthetic models but also
more realistic examples inspired by some real fields, e.g., the Teal South oil reservoir
in Gulf of Mexico or Athabasca tar sands in Canada. They concluded that time-lapse
gravity gradiometry can contribute to the monitoring of Gas-Oil Contact (GOC) and
temperature front expansion during steam injection in heavy oil reservoirs at shal-
low (∼ 200 m) to moderate (∼ 1000 m) depths. However, monitoring reservoirs at
moderate to large depths can be very challenging. This is because of the very rapid
(approximately proportional to cubic distance) gravity gradient signal attenuation
with distance from an observation point to the target. We will demonstrate this ef-
fect in Section 2.5.3.

2.2 Time-lapse gravimetry

The Earth’s gravity field is a vector field generated by the Earth’s gravitation and
centrifugal force resulting from the Earth’s rotation, i.e., (Torge 1989)

g = b+ z, (2.1)

where g denotes the gravity acceleration, b is the gravitational acceleration and z is
the centrifugal acceleration. The gravity field can be expressed as the gradient of the
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gravity potential W , which is a scalar quantity

g = ∇W = (Wx,Wy,Wz)
T , (2.2)

where
W = U + Z, (2.3)

U denotes the gravitational potential, Z is the centrifugal potential and subscripts
x, y, z stand for the spatial derivatives in the respective directions. Because the
centrifugal potential of the Earth can be determined to a high accuracy, changes in
the gravitational potential U , are of interest in practical applications of time-lapse
gravimetry.
Typically, the magnitude of the gravity acceleration vector, often denoted with g, is
measured. On the Earth’s surface g equals to about 9.8 m/s

2
.

Taking the gradient of g yields the gravity gradient tensor (called also the Eötvös
tensor)

∇g = ∇(∇W ) =




Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz


 , (2.4)

with Eötvös units abbreviated by E, where 1E = 10−9/s2 = 0.1µGal/m. Measuring
and analyzing the gravity gradient tensor components is the task of gravity gradiom-
etry.
Time-lapse gravity or gravity gradiometry surveys measure the variations in gravity
or its spatial gradients by taking the difference in measurements acquired at different
time epochs.

2.3 Measurement systems and instrumentation

2.3.1 Gravity measurements

Measurements of gravity can be performed in an absolute and a relative sense. Ab-
solute gravimeters measure the actual value of g at a given location. In the past, the
pendulum method was used, which was based on observation of the oscillation time
of the pendulum of a known length (Torge 1989). The application of the pendulum
method has been abandoned after 1960s, when much more accurate free-fall method
was developed. Nowadays, the value of g is estimated from the repeated falling mass
experiment where the free-fall acceleration of a proof mass, dropped in a vacuum
chamber, is measured. Many drops are preformed, typically hundreds to thousands,
and the value of g is determined by averaging. With this method an accuracy of
about 1µGal can be achieved but it requires extremely accurate measurements of time
(nanoseconds) and length (nanometers) obtained with atomic clock and laser inter-
ference, respectively. An example of state-of-the-art absolute gravimeter is the FG-5
(Fig. 2.2a). Also well-known is the field-portable instrument, A-10 (Fig. 2.2b) used
e.g., to monitor water mass injection at Prudhoe Bay in Alaska (Ferguson et al. 2008).

Relative gravimeters can be used to sense the difference in gravity between two mea-
surement points or between two epochs for a given measurement point. Though, in
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(a) FG-5 (b) A-10

Figure 2.2: Two examples of absolute gravimeters, source http://www.microglacoste.com

many geophysical applications the relative gravity differences are sufficient, the ab-
solute gravity value can also be established by referencing the relative measurements
to a point with a known absolute gravity. The most common relative gravimeter
design is based on a mass-spring system, which senses variations of gravity field. For
instance, an increase in gravity at a given point, causes the spring to elongate. A
force feedback system restores the mass to its reference position, and the restoring
force, which is proportional to the force of gravity, is measured (Fig. 2.3).
Since the first introduction of this type of instruments in the 1930s many of them have
been developed (for a comprehensive gravimeters overview see, e.g., Chapin 1998).
The most known are the LaCoste-Romberg gravimeters equipped with a metal spring
(Fig. 2.3). Nowadays, also Scintrex’s instruments (CG-5), based on the quartz spring
(Fig.2.3), are frequently used. With CG-5 instrument accuracy better than 1 µGal
and precision better than 2 − 3 µGal (see, e.g., Christiansen et al. 2011) can be
achieved. The state-of-the-art seabed gravity measurement system is based on the
simultaneous (to statistically improve the measurement precision by averaging) use
of three CG-5 sensors operated in temperature-, pressure- and vibration-protected
housing (Zumberge et al. 2008).

Relative gravimeters suffer from instrument drift caused by a stretching of the spring
with time. Therefore dedicated data acquisition and data processing procedures to
ensure good quality measurements are required. Despite this, relative gravimetry of-
fers the fastest, most portable, and therefore most widely used gravity measurement
method in land surveys.
Not only surface but also borehole gravimeters were developed (Fig. 2.4). The only
field-deployed system for reservoir monitoring (see e.g., Van Popta et al. 1990, Alixant
& Mann 1995) is the Micro-g LaCoste borehole relative gravimeter (BHGM), based
on the LaCoste & Romberg design (Fig. 2.4a). Recently, another borehole gravime-
ter, called Gravilog (Fig. 2.4b), has been developed. It is based on the quartz spring
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Figure 2.3: Examples of the relative gravimeter design concepts. In the top row the LaCoste-
Romberg design and the instrument are shown and in the bottom row the Scintrex CG-5
concept and the instrument are shown.

system as used in the CG-5 relative gravimeter. Thanks to its small dimensions and
the fact that it can operate in deviated wells, Gravilog may soon become more widely
used in the petroleum industry.
The borehole gravimeter measures gravity at discrete points along the borehole. Mea-
suring gravity in a borehole implies not only an instrument miniaturization challenge
but also harsh operating environment. The sensor is exposed to high pressure and
temperature variations. For that reason, borehole gravity observations are typically
more noisy than surface ones. The nominal precision of the BHGM meter is about
7 µGal1 and examples of field-reported uncertainty estimates are 8 µGal (MacQueen
& Mann 2007) and 17 µGal (Alixant & Mann 1995). Because the gravity field is not
shielded by any type of material, borehole gravimetry is not affected by the borehole
rugosity and damage, cementation and casing, which may influence measurements
carried out with other logging techniques. For that reason, borehole gravimetry is a
very attractive density logging tool.

1Microg-LaCoste, http://www.microglacoste.com/
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(a)
LaCoste&Romberg
gravimeter

(b) Gravilog gravimeter

Figure 2.4: Borehole relative gravimeters: (a) based on LaCoste&Romberg concept
(www.microglacoste.com); (b) based on the quartz spring concept (www.scintrexltd.com).

2.3.2 Gravity gradient measurements

Gravity gradiometers have been used for geophysical exploration since the 19th cen-
tury, starting from the first torsion balance instrument developed by Baron Roland
von Eötvös. As a matter of fact, the gravity gradiometry measurements with the
Eötvös torsion balance were the first geophysical data leading to oil and gas discovery
(Nabighian et al. 2005).
Nowadays, various gradiometer systems are available (for an overview see, DiFrancesco
2007). A land-based gravity gradiometer system intended for time-lapse reservoir
monitoring has been developed by Lockheed Martin (DiFrancesco 2007). It uses 8 ac-
celerometers mounted on a disc rotating around a vertical axis. This system is capable
of measuring Wxy and Wxx−Wyy gradient tensor components (personal communica-
tion, D.J. DiFrancesco, Lockheed Martin) with demonstrated repeatability of about
0.2 E (DiFrancesco 2002).
Another gradiometer system potentially applicable in reservoir monitoring is being
developed by Gravitec Instruments Ltd. It uses a novel concept based on a single
sensing element (a ribbon) responding to gravity gradient forcing. This system is
capable of measuring Wxy, Wxz and Wyz and can be used in airborne, ground, or
borehole measurements. The Gravitec sensor is in the final stage of its development
(personal communication, F. Neill, Gravitec).
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2.3.3 Summary

Recent feasibility studies and field cases have shown that modern gravimeters are
capable of measuring subtle gravity variations caused by hydrocarbon reservoir pro-
duction. They can achieve accuracy better than 1µGal and precision better than
2 − 3 µGal. Various measurement systems are available for measuring gravity both
in the absolute and in the relative sense. Relative gravimetry is the most commonly
used field measurement technique because it is faster and more portable than absolute
gravimetry. Relative gravimeters have also been adapted for offshore applications, in-
cluding surveys performed at the seabed, and for borehole gravity data acquisition.
Land gravity gradiometers have been developed with potential application in reservoir
monitoring. They are capable of measuring gravity gradients with 0.2 E precision.
Gradiometers applicable also in a borehole environment are being developed and they
may become available soon.

2.4 Forward gravity modeling

To compute the gravity field variations generated by 3D reservoir mass redistribution
we approximate the reservoir body with a number of rectangular prisms. The ad-
vantage of this approach relies on the availability of exact analytical solutions for the
gravitational potential and its derivatives for the prism. Furthermore, this approach
offers a great geometrical flexibility allowing complex-shape mass redistributions to
be approximated. The analytical solutions for the gravitational potential of a prism
presented in this section can be found in Nagy et al. (2000).
First, let us assume that the prism is defined by the coordinates x1, x2, y1, y2, z1, z2
in a right-handed coordinate system. To simplify the notation, the observation point
P is defined as the origin of the coordinate system, i.e., P = (xP , yP , zP ) = (0, 0, 0).
Practically, this is equivalent to a simple 3D shift applied to the coordinates defining
the prism

x∗1 = x1 − xP (2.5)

x∗2 = x2 − xP
y∗1 = y1 − yP
y∗2 = y2 − yP
z∗1 = z1 − zP
z∗2 = z2 − zP

where xP , yP , zP are the coordinates of the observation point P .
Further, it is assumed that the density ρ of the prism is constant. Then, the grav-
itational potential at point P obtained by triple integration over the prism can be
written as

U(P ) = Gρu(P ), (2.6)
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where

u(P ) =

∫ x2

x1

∫ y2

y1

∫ z2

z1

dxdydz

r
, (2.7)

and G = 6.673× 10−11 m3kg−1s−2 is the gravitational constant. Equation (2.7) has
the analytical solution given by (Nagy et al. 2000)

u(P ) = f(x2, y2, z2)− f(x2, y2, z1) (2.8)

+ f(x1, y2, z1)− f(x1, y2, z2)
+ f(x2, y1, z1)− f(x2, y1, z2)
+ f(x1, y1, z2)− f(x1, y1, z1),

where

f(x, y, z) = xy ln(z + r) + yz ln(x+ r) + zx ln(y + r) (2.9)

−x
2

2
tan−1 yz

xr
− y2

2
tan−1 xz

yr
− z2

2
tan−1 xy

zr

and r =
√
x2 + y2 + z2.

From (2.9) it follows that the analytical solution of (2.7) is undefined at every point
of R3, e.g., it is undefined at the points where the denominator in expression (2.9)
becomes zero. Nagy et al. (2000) showed that at those points where any of the terms
of Eq. (2.9) is not defined, the specific term has to be set equal to zero in practical
computations. In this way the applicability of Eq. (2.9) can be extended to the whole
3D space. The same applies to the first order derivatives of u, e.g.

uz(P ) = fz(x2, y2, z2)− fz(x2, y2, z1) (2.10)

+ fz(x1, y2, z1)− fz(x1, y2, z2)
+ fz(x2, y1, z1)− fz(x2, y1, z2)
+ fz(x1, y1, z2)− fz(x1, y1, z1),

where
fz(x, y, z) = x ln(y + r) + y ln(x+ r)− z tan−1 xy

zr
. (2.11)

The second derivatives of the gravitational potential of the prism do not exist at the
points of density discontinuity, i.e., at the corners and boundary surfaces of the prism.
However they do exist at every point of the interior and the exterior of the prism. For
those points the following expressions can be used which can be written in the same
form as (2.10), where

fxz(P ) = ln(y + r), (2.12)

fyz(P ) = ln(x+ r), (2.13)

fxy(P ) = ln(z + r), (2.14)
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fxx(P ) = − tan−1 yz

xr
, (2.15)

fyy(P ) = − tan−1 xz

yr
, (2.16)

fzz(P ) = − tan−1 xy

zr
. (2.17)

Because the function u and its partial derivatives higher than order one are continuous
where they exist, the order of differentiation can be interchanged. This means that
e.g.: uxy = uyx.

Using the above we can write the gravitational attraction of prism i

gi(P ) = Uz(P ) = Gρiuiz(P ), (2.18)

where ρ denotes the prism density, and uz(P ) is determined from (2.10). The total
gravitational attraction of the reservoir body is the superposition of the gravitational
attractions of individual prisms

g(P ) =
M∑

i=1

gi(P ), (2.19)

where M denotes the number of prisms. In an analogous way Uxz, . . . , Uzz can be
determined.

2.5 Gravity signal sensitivity to reservoir mass re-

distribution

To better understand how the reservoir mass redistribution affects the gravity field,
let us observe first (see Eq. 2.18) that the gravitational attraction of a grid cell (here
prism) scales proportionally with the grid cell density. The bulk density of a grid cell
i can be expressed as

ρib = φiρif + (1− φi)ρim, (2.20)

where φ denotes the porosity, ρf is the fluid density and ρm denotes the rock matrix
density. For a three-phase system, the fluid density is determined from

ρif = ρioS
i
o + ρigS

i
g + ρiwS

i
w, (2.21)

where S denotes saturation and subscripts o, g, and w stand for oil, gas and water,
respectively. The time-lapse gravity variation is determined from

∆gik(P ) = gik(P )− gi0(P ), (2.22)
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where k is the time index. Assuming a fixed reservoir geometry and a fixed position
of the observation point, (2.22) can be expressed as

∆gik(P ) = G∆ρib,ku
i
z(P ), (2.23)

where ∆ρib,k = ρib,k − ρib,0 is the bulk density change.
From (2.23) it follows that the time-lapse gravity variations scale proportionally with
bulk density changes. Therefore, the larger the porosity, the difference in phase den-
sities and change in the saturation, the larger the gravity variation. For that reason,
reservoir processes involving fluids with high density contrast (e.g., gas versus water)
are especially promising for gravimetric monitoring.
Certainly many combinations of phase densities, porosity and change in the satura-
tion can result in the same bulk density change. To simplify the study further, we
consider three intervals for density change, namely those which are likely to occur in
case of oil/water replacement (Oil-Water-Contact, OWC): 10− 80 kg/m

3
, gas/water

replacement (Gas-Water-Contact, GWC): 80−150 kg/m
3
and oil/steam replacement

(Steam-Oil-Contact, SOC): 150− 200 kg/m
3
.

2.5.1 Surface gravity measurements

We perform a simplified study to investigate the sensitivity of surface gravity obser-
vations to reservoir mass redistribution. Let us consider the gravitational attraction
at a point on the symmetry axis of a vertical cylinder (see, e.g., Telford et al. 1990)

∆g = 2πG∆ρ
(
h+

√
(z2 + r2)−

√
(z + h)2 + r2

)
, (2.24)

where z is the cylinder depth, r is the cylinder radius and h is the cylinder height
(Fig. 2.5).

(a)

Figure 2.5: Schematic illustration of a vertical cylinder model used in the sensitivity analysis
of gravimetric observations.

The expression (2.24) can be approximated using a formula for the gravitational
attraction of a thin horizontal slice (i.e., a circle) through the cylinder, multiplied by
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the cylinder height (Stenvold et al. 2008)

∆g = 2πG∆ρ


1− 1√

1 +
r2

z2


h. (2.25)

The relative error introduced by using (2.25) instead of the exact formula (2.24) is
less than 1% if h/z < 0.2 and if r/z > 0.2.
The approximation (2.25) is very useful because the ratio of the cylinder radius r
to the cylinder depth z can be used while computing gravity attraction rather the
separate values of these parameters. In this case with the single parameter value for
the ratio one can cover a whole range of possible scenarios for the values of r and z.
Rearranging terms in (2.25) the cylinder height h can be expressed as

h =
∆g

2πG∆ρ

(
1− 1

√

1+ r2

z2

) . (2.26)

Then for a given ratio of r and z and a given density contrast ∆ρ formula (2.26) can
be applied to determine the cylinder height h that produces a given gravity variation
∆g. This is very useful to evaluate the sensitivity of gravimetric measurements to
reservoir mass redistribution. We demonstrate this with the following example.
Fig. 2.6a shows the cylinder heights h (in meters) corresponding to the temporal
gravity variation of 3 µGal and Fig. 2.6b to the variation of 10 µGal for a range of
dimensionless ratios of the cylinder diameter to the cylinder depth and a range of
temporal density variations. To interpret these results we assume that the gravity
signal is detectable if it is larger than 2σ, where σ denotes the uncertainty (noise
standard deviation) of time-lapse gravity measurement. Under Gaussian assumptions
for the measurement noise ±2σ defines about 95% confidence interval. Further, we
consider two cases for the measurement uncertainty: first with σ = 5 µGal and
the other with σ = 1.5 µGal. Note, that in practice σ is related not only to the
instrument precision but also to other noise sources. They will be analyzed in more
detail in Chapter 3 of the thesis. At this stage we can say that the first scenario
with σ = 5 µGal refers to the often achievable measurement uncertainty in gravity
field campaigns. The other, is highly optimistic and used here to demonstrate the
potential sensitivity of gravimetric technique.
For ∆g = 10 µGal, which under the above assumptions is equivalent to σ = 5 µGal,
and for the diameter/depth ratio of 1, which corresponds to a small-size or very deep
reservoirs, gravimetric monitoring of most reservoir processes can be very challenging.
For instance, only a very large OWC rise, in the order of 30 − 220 m and more,
could be detected. Similarly, several tens of meters of GWC rise are required to
produce a detectable signal. Only for a very high density contrast, in the order of
150− 200 kg/m

3
, the delectability threshold is improved to about 10− 15 m. Under

more favorable conditions, say, e.g., for the diameter/depth ratio of 3, the delectability
is about 3 − 7 m for GWC and about 2 − 3 m for OSC. Still practical monitoring
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of OWC may be challenging in this case. If σ is reduced to 1.5 µGal the sensitivity
of gravimetric observations increases proportionally (see formula 2.26). In this case,
a fluid contact movement in the order of 1− 2 m for moderate size/depth reservoirs
(diameter/depth ratio of 3) and for density contrast larger than 100 kg/m

3
(GWC or

OSC) is detectable. For low density contrasts resulting from oil/water substitution
(20 − 80 kg/m

3
range) several meters of contact rise are needed to give detectable

gravity variation. A brief summary of these results is given in Tab. 2.1 and Tab. 2.2.

Table 2.1: The cylinder heights that produce 10 µGal signal for a range of cylinder diame-
ter/depth ratios and a range of density contrasts.

diam./depth = 1 diam./depth = 3

∆ρ = 10− 80 kg/m
3
(oil/water) 30− 220 m 7− 50 m

∆ρ = 80− 150 kg/m
3
(gas/water) 15− 30 m 3− 7 m

∆ρ = 150− 200 kg/m
3
(oil/steam) 10− 15 m 2− 3 m

Table 2.2: Same as Tab. 2.1 but for 3 µGal.

diam./depth= 1 diam./depth = 3

∆ρ = 10− 80 kg/m
3
(oil/water) 8− 65 m 2− 16 m

∆ρ = 80− 150 kg/m
3
(gas/water) 4− 8 m 1− 2 m

∆ρ = 150− 200 kg/m
3
(oil/steam) 3− 4 m ∼ 1 m

2.5.2 Borehole gravity measurements

A similar analysis can be performed for borehole gravity measurements. For instance,
the sensitivity of the signal recorded in the borehole to the approaching injection front
can be investigated (Fig. 2.7).
In this case however, expressions (2.24-2.25) for the gravitational attraction of the
vertical cylinder cannot be used directly because they are valid only for an observation
point aligned with the cylinder axis. For an arbitrary observation point, solutions are
also available (see, e.g., Kwok 1991) but at this time we prefer to use our forward
modeling approach based on the prisms. We approximate a cylinder body with a
number of fine, rectangular prism (Fig. 2.8) and apply the analytical solutions, shown
in Section 2.4. With this approach we demonstrate also great flexibility of the forward
modeling method that will be applied in the thesis.
Fig. 2.9 shows the maximum value of the borehole gravity signal as a function of
distance from the injection front to the gravimeter and temporal density variations.
Four cases (a-d) are considered for the height h of the front, namely 10, 20, 30, 40 m.
To interpret the results we assume that uncertainty of borehole gravity measurements
(σ) is 7 µGal. Following the reasoning used in the previous analysis, the signal is
considered detectable if it is larger (in the absolute sense) than 2σ, i.e., 14 µGal. For
a thin injection front, h = 10 m, the borehole gravity signal is detectable only for very
high density contrasts of about 130− 200 kg/m

3
and at very close distances (several
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meters) between the front and the gravimeter (Fig. 2.9). For h = 20− 30 m the front
becomes detectable at larger distances, up to 100 m and more. However, this holds
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Figure 2.6: The cylinder heights h (in meters) resulting in temporal gravity variation of
3 µGal (Fig. 2.6a) and 10 µGal (Fig. 2.6b) for a range of combinations of dimensionless ratio
of the cylinder diameter to the cylinder depth and a range of temporal density variations.
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(a)

−20 −10 0 10 20
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(b)

Figure 2.7: Schematic illustration of the setup for the sensitivity analysis of borehole gravity
measurements. The figure on the right shows that shape of a typical borehole gravity profile
corresponding to the positive mass variation in the borehole vicinity. Because a symmetric
mass redistribution was assumed (represented by the vertical cylinder) the gravity signal is
axially symmetric.

Figure 2.8: Schematic illustration of a vertical cylinder approximated with a number of fine
rectangular prisms.

only for sharp density contracts of about 40−200 kg/m
3
. For minor density changes,

e.g., oil/water replacement, the front is detectable only within 10 − 60 m from the
borehole. For σ = 2 µGal, which is equivalent to a delectability threshold of 4 µGal,
the injection front could be detected from several tens of meters for most of the cases
and also for the low density-contrast processes when the front thickness is 10− 20 m
and more. The summary of these results is shown in Tab. 2.3 and Tab. 2.4.

Table 2.3: Maximum distances, from the injection front to the gravimeter placed in the
borehole, for which the maximum of borehole gravity signal is equal to 14 µGal.

h = 10 m h = 20 m h = 30 m h = 40 m

∆ρ = 10− 80 kg/m
3

- < 30 m < 50 m < 65 m

∆ρ = 80− 150 kg/m
3

< 20 m 30− 60 m 50− 85 m 65− 100 m

∆ρ = 150− 200 kg/m
3

20− 30 m 60− 75 m 85− 100 m 100− 110 m
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Figure 2.9: The maximum of the borehole temporal gravity variation (µGal) as a function of
a distance from the gravimeter to the approaching injection front (r in Fig. 2.7) and density
change induced by the front. A cylinder-shape of the injection front is assumed (Fig. 2.7)
and the cylinder radius is 200 − r (inter-well distance minus distance from the front to the
gravimeter).

Table 2.4: Same as Tab. 2.3 but for 4 µGal.

h = 10 m h = 20 m h = 30 m h = 40 m

∆ρ = 10− 80 kg/m
3

< 45 m 20− 90 m 40− 110 m 60− 125 m

∆ρ = 80− 150 kg/m
3

45− 70 m 90− 115 m 110− 135 m 125− 145 m

∆ρ = 150− 200 kg/m
3

70− 80 m 115− 125 m 135− 145 m 145− 155 m
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2.5.3 Gravity gradient measurements

Since gravity gradients reflect the spatial rate of change of gravity they can provide
detailed spatial information about distribution of the parameter of interest (density
anomaly, mass change, etc.). We will illustrate this with simple examples where we
will simulate the ∂g

∂z signal. Let us introduce (see, e.g., Zhdanov 2009) the formula
for the vertical component of the gravitational attraction of a point mass (Fig. 2.10)

g(P ) =
Gmz

r3
, (2.27)

and its z − derivative
∂g

∂z
(P ) =

Gm

r3

(
3
z2

r2
− 1

)
, (2.28)

where P = (0, 0, 0), r =
√
x2 + y2 + z2, G is the gravitational constant, and m

denotes the mass. By applying a 3D shift (2.5) to the point mass coordinates,
Eqs. (2.27)-(2.28) can be used for an arbitrary observation point P = (xP , yP , zP ).

Figure 2.10: Schematic illustration of the point mass; z−denotes the point mass depth, r−
is the distance between the point mass and gravity observation location.

Fig. 2.11 shows the normalized gravitational attraction (g) and its z-derivative (∂g∂z )
for different separation distances s between the two point masses. The separation dis-
tance s is varied from s = 0.5z to s = 2z, where z denotes the point mass depth. For
the smallest separation distance s = 0.5z, it is not possible to distinguish the location
of the two point masses neither from the total g nor from the total ∂g

∂z signal. For

s ≥ z the total ∂g
∂z signal shows two maxima, and hence indicates that there is more

than one signal source whereas the total g signal shows two maxima for s ≥ 1.5z.
From Fig. 2.11 it is clear that measurements of the gravity gradient can provide more
detailed spatial information as compared to measurements of the vertical component
of gravity. It does not say however, that the spatial resolution of gravimetry is as
good/or as bad as the distance to the target. Similar conclusions cannot be drawn for
gravity gradiometry either. The spatial resolution is not a function of the signal only
but it also depends on the measurement noise and the inversion procedure applied to
estimate the distribution of the unknown parameter. We will demonstrate in Chapter
4 of the thesis that by performing regularized inversion of gravity observations the
spatial resolution can, in some instances be, enhanced.
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Figure 2.11: Normalized point mass gravity (g, µGal) and gravity gradient ( ∂g
∂z

, Eötvös unit,
1E=10−9/s2) signal for different separation distances between two point masses. The signal
of individual point masses is shown with the dashed line and the total signal with the solid
line.
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Another important difference between measurements of gravity and gravity gra-
dients is the signal dependence on distance to the signal source. For instance, for
the point masses, the peak of the signal is attainted when the observation point is
aligned with the position of the point mass, i.e., when r = z (Fig. 2.10). From
Eqs. (2.27)-(2.28) it follows that the signals’ maxima are

Gm

z2
, (2.29)

for g and
2Gm

z3
, (2.30)

for its z−derivative ∂g
∂z . Thus, we can see that the g signal decays at a rate proportional

to the inverse of the distance squared whereas ∂g
∂z signal decays proportionally to the

inverse of a cubic distance. The difference in rate of the signal decay is illustrated in
Fig. 2.12. The percentage of the maximum of reference g and ∂g

∂z signal is shown for
range of point mass depths. The maximum of the reference signal is computed for the
distance to the point mass equal to 1000 m. Increasing the point mass depth from
1000 m to 1500 m reduces the g signal to about 45% of the reference value and the
∂g
∂z signal to about 30%. Further, increasing the depth to 2000 m reduces the signal

to about 25% and 12% of the reference value, for g and ∂g
∂z , respectively.
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Figure 2.12: The difference in rate of the signal decay for the point mass. The maximum of
the reference signal is computed for the distance to the point mass equal to 1000 m.

We perform a forward modeling exercise to show some of the above differences in
the context of hydrocarbon reservoir monitoring. A simplified gas reservoir model
is considered which is affected by water influx entering the reservoir via the western
reservoir boundary. The amount of water influx is predicted by running forward
reservoir simulator for 3500 days. More details of the gas reservoir characteristic are
provided in Chapter 6 of the thesis, where they are more relevant. Fig. 2.13 shows the
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temporal gravity (g) and gravity gradient (∂g∂z ) variations caused by the water influx.
Since denser water replaces gas, positive signal variations are predicted. For shallow
depths the ∂g

∂z variation provides more details, compared to g variation, about the
water-front geometry. However, if we assume σ = 5 µGal for the standard deviation
of the gravity noise and 0.2 E for the gradiometry noise and, as before, consider the
signal detectable if it is larger than 2σ, we can see that the gravity gradient signal is
detectable only for very shallow targets, 500 m in our case. Contrary to that, the g
variation is detectable down to 2500 m, which is comparable to the lateral reservoir
extent (3000 m × 3000 m). This illustrates clearly, that gradiometry can provide
enhanced spatial information about reservoir mass redistribution, but only for very
shallow targets, whereas gravimetry can be useful also for deeper reservoirs.
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Figure 2.13: Temporal gravity (g, µGal) and gravity gradient ( ∂g
∂z

, E) variation resulting
from water influx into a gas reservoir for different reservoir depths z. The black rectangle
shows the boundaries of the reservoir. The black dashed curve shows the position of the
water front.
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2.5.4 Summary

Temporal gravity variations scale proportionally with density changes. Therefore,
monitoring with time-lapse gravimetry reservoir processes involving fluids with large
density contrast, such as, e.g., gas and water, is especially promising. Monitoring
small and/or deep reservoirs, i.e., with a size/depth ratio of 1, is very challenging.
With the currently achievable measurement uncertainty of about 5 µGal only tens
and hundreds of meters of OWC rise have a chance to be reliably detected. For larger
density contrasts, 100 kg/m

3
and more (gas/water, oil/steam), 10−30 m of a contact

rise can result in a detectable signal. For more favorable reservoir geometries con-
figurations, e.g., for size/depth ratio of 3, 2 − 7 m of contacts rise can be seen from
gravimetric observations. If the measurement uncertainty was reduced to 1.5 µGal
then potentially even several meters (2− 16 m) of OWC rise could be deduced from
gravity. A sensitivity of 1 − 2 m and better for large density contrasts could be
achieved in this case.
Borehole gravity measurements can provide reservoir monitoring information, about,
e.g., a propagating injection front, but only on a local scale. With currently achiev-
able 7 µGal uncertainty, thin injection fronts (< 10 m) can only be detected in
very close borehole vicinity (< 20 − 30 m) and only for large fluid-density contrasts
(> 100 kg/m

3
). Thicker injection fronts (30 − 40 m) can already be detected from

about 100 m distance from the borehole. If 2 µGal measurement uncertainty was
possible then also thinner fronts could be monitored at distances larger than several
tens of meters.
With the current technology the time-lapse gravity gradiometry can give spatial infor-
mation about reservoir mass redistribution, but only for very shallow (< 1km depth)
targets. It is because the gravity gradient signal vanishes very rapidly with distance.
Measurement precision better than 0.05− 0.1 E is required to monitor deeper reser-
voirs (> 1km).

2.6 Summary

In this chapter applicability of time-lapse (4D) gravimetry for hydrocarbon reservoir
monitoring was discussed. State-of-the-art gravimeters and gravity gradiometers are
available which are capable of measuring subtle variations in the Earth’s gravity field
caused by reservoir mass redistribution. Recent feasibility studies and field cases
show that time-lapse gravimetry is already a mature monitoring technique. It can
especially add the value when used to monitor reservoirs containing fluids with high
density contrast, such as gas and water or steam and oil. Also reservoir geometric
configuration (size/depth) is relevant. Small and deep reservoirs are difficult to moni-
tor compared to shallow and large fields. This is due to the gravity signal attenuation
with distance to the target which not only affects the signal amplitude but also deteri-
orates the spatial resolution. Borehole gravity measurements can provide monitoring
information on a local scale. For instance they can indicate the approaching injection
front from several tens of meters from the borehole, depending on the front thickness
and the fluid density contrasts. Time-lapse gravity gradiometry has a potential to be
useful for the monitoring of very shallow targets (< 1 km).





Chapter 3
Time-lapse gravimetry noise sources

In this chapter we discuss major noise sources affecting the monitoring of
hydrocarbon reservoirs with time-lapse gravimetry. Special attention is
devoted to the analysis of hydrological influences on gravimetric observa-
tions, in particular originating from groundwater table variations. A po-
tential contribution of groundwater to the uncertainty budget is evaluated
with forward simulations of hypothetical variations of water table changes.
The hydrological simulations are coupled with the forward gravity model-
ing of gravity signal. We show that the influence of groundwater variations
on observed gravity can be very large and can easily reach several tens of
µGals. Therefore, there is a need to acquire groundwater observations
to correct observed gravity. Further, we analyze various scenarios for the
density of a hypothetical measurements grid of the groundwater table and
for the groundwater correlation scales. We demonstrate that using even
a single groundwater measurement, the hydrological noise can be reduced
2-3 times, depending on the correlations scales of groundwater.
At the end of the chapter we provide estimates for the total uncertainty
budget in gravity measurements.

35
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3.1 Introduction

Measurement noise can be defined as that part of the signal that is not of interest but
is recorded along with the signal. Therefore, the definition of noise sources depends on
the target of monitoring: what is considered as signal in one application is treated as
noise in another one, and vice versa. Because gravity field variations reflect the overall
mass changes, many noise/signal sources can be defined. In this section we limit our-
selves to noise sources relevant for hydrocarbon reservoir monitoring. Most of these
sources however, are also common for other applications of time-lapse gravimetry. A
good example here is the gravimeter itself. For instance, in relative gravimetry a ma-
jor source of instrumental noise originates from instrument drift, caused by stretching
of the gravimeter spring with time. Gravimeter drift can reach several hundreds of
µGal/day and a proper survey design (e.g., repeated visits to the same stations) and
data processing (fitting a drift model) are needed to estimate the drift and remove it
from observations (see, e.g., Ferguson et al. 2007, Zumberge et al. 2008, Christiansen
et al. 2011, Kang et al. 2011).
Dynamic processes in the Earth’s system induce temporal gravity field variations.
The most common examples are solid Earth tides and ocean tides, polar motion,
seismic waves and air pressure changes. They can add a few to hundreds of µGal
and correcting for their influences requires the application of various models and/or
the acquisition of additional observations. Background local mass changes caused by
hydrological processes such as soil moisture and groundwater temporal variations, are
potentially one of the strongest noise sources of this type. It is because hydrologi-
cal variations can result in direct gravitational effect in the order of 10-20 µGal or
more (Torge 1989, Creutzfeldt et al. 2008), whereas field-wide (tens or hundreds of
km2) in-situ observations/models to correct for these influences are seldom available.
This stresses the importance of investigating the potential contribution of hydrologi-
cal gravity noise to the overall gravity error budget.
A schematic illustration of various sources that can affect gravimetric reservoir mon-
itoring is shown in Fig. 3.1.
We start the chapter with a literature review of some of the major noise sources af-
fecting time-lapse gravimetry. Next, based on a numerical study we investigate the
potential influence of hydrological processes. We estimate the magnitude of gravity
errors resulting from water table and soil moisture temporal variations, taking into
account hydrological observations and imperfect hydrological gravity corrections. For
that purpose a stochastic forward modeling approach is applied. Via simulations of
spatially correlated random fields representative for water table and soil moisture
temporal variations, a wide range of hydrological scenarios is considered. The sensi-
tivity of the results on a density of hydrological measurements network is analyzed.
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Figure 3.1: Schematic illustration of gravimetric monitoring of gas reservoir in the presence
of gravity noise. Water influx causes positive mass redistribution in the subsurface (water
replaces gas in the pore space) and, consequently, positive gravity variations at the surface.
The observed gravity variations are contaminated by various noise sources. The hydrological
noise originates from spatio-temporal variation of groundwater. The data acquisition and
the data processing noise includes, e.g., instrument noise, residual signal uncertainty after
gravimetric corrections for tidal effects, atmospheric effects, height corrections etc. All values
are in µGal.
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3.2 Time-lapse gravimetry noise sources

3.2.1 Earth and ocean tides

The gravitational attraction of the Moon and the Sun (generally referred to as tidal
effects) causes periodic variations of the Earth’s gravity field (for more details see,
e.g., Torge 1989, Kantha & Clayson 2000). For the rigid Earth the direct gravitational
effect of tides can reach up to 240 µGal. However, since the Earth is not a rigid body
it experiences elastic deformations, known as Earth body tides (solid Earth tides).
They result in Earth’s surface sub-meter movements and mass displacements, and
hence, cause additional gravity field variations. Gravitational forcing of the Moon
and the Sun causes not only the solid Earth tides but also the ocean tides which are
periodic variations of seawater level. The ocean tides affect the gravity field of the
Earth through a direct gravitational attraction caused by water mass redistribution
and also through the water mass loading effect acting on the Earth surface. The
signal can reach 10− 20 µGal and is the strongest near coastal regions (Torge 1989).
In continental areas it usually accounts only for a few tens of µGal.
Various Earth and ocean tide models are available which have been improved and val-
idated over the last decades with help of, e.g., high-accuracy gravimetry and satellite
altimetry data (Baker & Bos 2003, Lyard et al. 2006, Bosch et al. 2009). The simplest
approach to model Earth tides accounts only for the direct gravitational attraction of
the Moon and the Sun. Since the masses and also the positions of the Moon and the
Sun are known, the rigid Earth tides can be modeled accurately with residual uncer-
taities smaller than 0.1 µGal (Torge 1989). More advanced Earth tide modeling apart
from the gravitational attraction takes into account the elastic deformation response
of the solid Earth. At another, higher level, both the solid Earth tides and ocean
tides are modeled. Literature-reported (Niebauer et al. 1995, Van Camp 2003, Bos
& Baker 2005) residual uncertainty estimates are 0.2 − 0.5 µGal for the solid Earth
tide signal corrections and about 0.2 µGal for the ocean tide corrections. However,
larger uncertainties in ocean tide modeling can be expected onshore in coastal areas
and offshore. This is because of a close distance of measurement location to the tidal
signal-generating source and because of a limited ability of large-scale ocean tide mod-
els (often 0.5°× 0.5° grid resolution) to account accurately for local effects. Sasagawa
et al. (2008) used a time series of 446 days of seabed gravimetric and water pressure
measurements (in the North Sea) to verify the accuracy of both Earth and ocean
tidal models. They found a standard deviation of the difference between observed
(and filtered) tidal gravity and the model prediction to be in the order of 1.3 µGal
during a period of quiet sea conditions. Certainly, a part of this difference could be
explained by a centimeter-level discrepancies between seawater heights predicted by
the tidal model and the water heights derived from the in-situ pressure measurements.
Therefore, in offshore gravimetry simultaneous recording of the actual ocean tide data
in the vicinity of the measurement location is recommended (Zumberge et al. 2008).
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3.2.2 Corrections for height changes

Because gravity varies with the distance to the Earth’s center of mass, gravimetric
measurements are sensitive to height changes. The time-lapse height variations can
have many causes such as, e.g., tectonic activity, surface subsidence caused by reser-
voir compaction (Zumberge et al. 2008), surface uplift resulting from, e.g., volcano
pressurization (Battaglia et al. 2008) or snow/ice accumulations (Ferguson et al. 2008).
The free air gravity gradient is equal to about 3.086 µGal/cm (Torge 1989) and the
underwater gravity gradient is about 3.086−4πγρw = 3.086−0.862 = 2.224µGal/cm,
where 4πγρw is 2 times (one for below position of the observation point, one for above
position of the observation point, see Fig. 3.2) the Bouguer plate gravitational attrac-
tion of 1 cm thick seawater column with 1028 kg/m3 density and γ is the gravitational
constant. A sub-centimeter change in height at a gravity station may introduce grav-
ity noise in the same order of magnitude as the instrument sensitivity. Therefore, a
stable station position and/or accurate position monitoring are crucial for time-lapse
gravimetric surveys.

Figure 3.2: Schematic illustration of underwater gravity gradient computation. The obser-
vation point is moved 1 cm from point A to point B. The underwater gradient to correct
for the height change is computed as: 3.086 (the free air gravity gradient) - 2 × 0.431 (2×
the Bouguer plate gravitational attraction of 1 cm thick seawater column with 1028 kg/m3

density) = 2.224 µGal/cm.

To maintain a station stability some sort of solid platforms can be used, e.g., concrete
benchmarks (Zumberge et al. 2008). Repeated height-changes monitoring can be per-
formed with, e.g., GPS measurements in land surveys and with pressure measurements
offshore. Ferguson et al. (2008) reported centimeter precision with a GPS application
in case of gravimetric monitoring of gas/water contact movement in the arctic environ-
ment at Prudhoe Bay. The corresponding uncertainty in height corrections was about
3−4 µGal. Zumberge et al. (2008) reported 3-5 mm precision of monitoring of bench-
mark depth changes caused by seabed subsidence in some offshore (North Sea) 4D
gravity applications. Because seabed subsidence does not involve water mass changes
below the instrument (Fig. 3.3), 3.086 − 2πγρw = 3.086 − 0.431 = 2.655µGal/cm
underwater gradient was applicable. This resulted in uncertainty in gravity height
corrections of about 0.8− 1.3 µGal.
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Figure 3.3: Schematic illustration of gravity correction for seabed subsidence. The observa-
tion point is moved 1 cm from point A to point B. The underwater gradient to correct for
the height change is computed as: 3.086 (the free air gravity gradient) - 0.431 (the Bouguer
plate gravitational attraction of 1 cm thick seawater column with 1028 kg/m3 density) =
2.655 µGal/cm.

3.2.3 Atmospheric effects

The influence of atmospheric pressure variations on gravimetric measurements is
twofold. First, air pressure changes result in mass changes above the gravimeter and,
through Newtonian attraction, directly affect gravity measurements: the air pressure
increase will decrease the measured gravity value. The direct gravitational effect of
air pressure changes is usually < 1 µGal in short-term (few hours), can reach 3 µGal
over a season and up to 15 − 20 µGal over several days at extreme weather condi-
tions (Torge 1989, Crossley et al. 2002). Secondly, atmospheric load (which acts in
the opposite direction as compared to the mass attraction effect) deforms the Earth’s
surface. The peak-to-peak vertical surface displacements can reach 20-30 mm for
large regional air pressure changes (≥50 hPa) occurring over extended area (≥100 km
in radius, Sun et al. (1995)).
There are two main approaches to model the effect of atmospheric pressure variation
on gravity. The first is based on a physical model, whereas the second one uses an
admittance (transfer) function between gravity and local pressure changes (El-Gelil
et al. 2008).
The model-based approach requires, except pressure, measurements of other atmo-
spheric parameters (e.g., temperature, humidity) at the Earth’s surface with good
spatial resolution (often better than 1°×1° grid covering hundreds or thousands of
km’s). Green’s functions are used to estimate the direct Newtonian effect and the
indirect (loading) effect of the 2D pressure field on gravity (Boy et al. 2002, Kroner
& Jentzsch 1999, Boy et al. 1998, Mukai et al. 1995). If atmospheric data are avail-
able at different altitudes, then more complete 3D models can be used (Neumeyer
et al. 2004). The physical model requires data covering large areas. Therefore, in
practice due to limited data availability, this approach is not frequently applied.
The other, more common approach, uses an admittance function between pressure
and gravity changes. The combined mass attraction and loading effect is usually cor-
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rected using a factor of 0.3 µGal/hPa factor (IAG2 Resolution No. 9, 1983). The
gravity correction based on this relation generally removes 90% of the atmospheric ef-
fect (Crossley et al. 2002) and reduces the residual errors to < 1−2 µGal (Torge 1989).
The simplicity of this correction method has lead to its wide use.

3.2.4 Polar motion

Polar motion is a movement of the Earth’s rotation axis with respect to the mean
pole CIO3 (Torge 1989). The polar motion induced gravity fluctuations on the Earth’s
surface are mostly below a few µGal. However, in mid-latitude regions, the peak-to-
peak gravity variations can reach 10-13µGals (Xu et al. 2004).
Because the changes are slow, corrections for polar motion are not necessary for
short-term surveys (shorter than 1 month). For long-term time-lapse surveys, as
for hydrocarbon reservoir monitoring, the corrections must be applied. They can
be performed to a high accuracy with a residual uncertainty of the order of 0.01 −
0.05 µGal (Niebauer et al. 1995, Ferguson et al. 2008).

3.2.5 Local mass displacements due to reservoir compaction

Hydrocarbon fluid extraction usually leads to pressure decline in the reservoir forma-
tion. Consequently, reservoir rock may compact under the overburden load. Then
reservoir volume decreases (mostly the reservoir height) and associated surface sub-
sidence may occur (Fig. 3.4).

reservoir

Figure 3.4: Schematic illustration of reservoir compaction and surface subsidence, after Fjar
et al., 2008.

2International Association of Geodesy
3Conventional International Origin - based on average pole position over time interval 1900-1906
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Most oil and gas reservoirs experience little compaction and negligible subsidence.
For a significant subsidence to occur several conditions are needed (Fjar et al. 2008):

• reservoir pressure drop must be significant; pressure maintenance through, e.g.,
water injection and/or aquifer support may counteract the compaction;

• reservoir rock must be compressible; the compaction is likely to be relevant for
soft rocks;

• reservoir must be thick (several tens up to hundreds of meters);

• elastic/geological properties of reservoir overburden must allow propagation of
reservoir compaction to the surface; how reservoir compaction affects the sur-
face subsidence depends on reservoir depth, reservoir geometry and contrast of
reservoir rock properties with the properties of overburden rock.

Therefore, production of large and thick gas reservoirs where a significant pressure
drop is expected (often down to 30% of the initial reservoir pressure) can induce
surface subsidence. Examples of real gas fields where surface/seabed subsidence was
observed include the Groningen gas field in the Netherlands (van Gelderen et al. 1999)
and the Troll field, offshore Norway (Eiken et al. 2008, Eiken & Stenvold 2005).
Reservoir compaction and surface subsidence may result in temporal gravity varia-
tions and, therefore, can be considered as one of the potential noise sources in the
context of gravimetric reservoir monitoring. A part of the noise is caused by position
(mostly height) changes of gravity observation points, discussed in the previous sec-
tion, and can be accounted for by applying corrections based on gravity gradient and
subsidence data, if available. The other part of gravity noise originates from tempo-
ral mass shifts caused by local changes in the subsurface density distribution. Little
material is published on this topic in the context of reservoir engineering and most
of the literature is related to time-lapse volcano gravimetry (Battaglia et al. 2008).
There, both a surface uplift and subsidence can be observed, which are caused by
magma intrusion/depletion and/or subsurface pressure variations related to volcano
dynamics. Analytical and numerical approaches have been used to estimate temporal
gravity changes related not only to mass changes (magma in- and outflow) but also
taking into account (sub-) surface deformation (see Battaglia et al. 2008 and refer-
ences therein). Here we assume a fixed mass of the system, fixed gravity observation
points at some reference level and, hence, investigate only temporal gravity changes
associated with medium deformation.
Walsh & Rice (1979) showed that for a fixed gravity observation point and a spher-
ical homogenous deformation source embedded in an elastic homogenous half-space
(Fig. 3.5), the combination of gravity changes induced by the source inflation/shrinkage
(at fixed source mass) and surrounding medium deformation is zero. However, non-
zero gravity changes can be generated when medium heterogeneities and source-shape
asymmetry are taken into account. For instance, results included in Bonafede & Maz-
zanti (1998) show that for a spherical source model embedded in a density-stratified
half space gravity changes induced by medium deformation, though small, are not
zero: the signal estimate was in the range of 0.1−0.2µGal/cm for some of the gravity
stations in Campi Flegrei (Italy) volcanic region. Therefore, in reality a few µGal of
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gravity variation can be expected when significant (tens of cm) surface deformation
occurs. For gravimetric reservoir monitoring this signal adds to the observation noise.
Certainly, it could, at least partly, be estimated and removed by coupling geomechan-
ical and gravimetric modeling. This however, is beyond the scope of this research.

fixed reference level

Figure 3.5: Schematic illustration of a compacting spherical source.

3.2.6 Hydrological effects

Gravity observations can be affected by hydrological processes (Amalvict et al. 2004,
Harnisch & Harnisch 2006, Naujoks et al. 2010), in particular, local variations of
water table and soil moisture (Fig. 3.6) and regional/global water storage changes
(Fig. 3.7). The natural or man-made groundwater variations can reach several
meters (Fig. 3.8b) and their direct gravitational effect can reach 10-20 µGal and
more (Torge 1989, Creutzfeldt et al. 2008). Therefore, the hydrological influences on
gravity need to be estimated and properly corrected for. In practice, due to the lack
of measurements, a detailed hydrological model is rarely available. Consequently,

Figure 3.6: Water table ups and downs through the seasons. Source:
http://geoscape.nrcan.gc.ca.
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(a) global gravity field variation (b) global gravity field variation, zoomed

Figure 3.7: Global gravity field variations derived from satellite GRACEmission. A deviation
in August 2004 with respect to the yearly mean is shown. Source: DMT-1 model, Delft
University of Technology, The Netherlands; courtesy of P. Ditmar and H. Hashemifarahani

hydrological gravity corrections can be based on only a few (often a single) local
observations of water table and soil moisture variations. This may not be sufficient
to appropriately remove all hydrological disturbances leaving an unknown error in
gravity observations.

(a) example of moderate groundwater variations (b) example of large groundwater variations

Figure 3.8: Examples of field data (port Phillip monitoring site, Australia) showing ground-
water level variations. The data is taken from the Victorian Water Resources Data Ware-
house, Australia (www.vicwaterdata.net, accessed 25 May 2012). Depths above the sea level
(DSE) are shown. Note different scale of y-axis in both figures.

Our objective is to estimate the magnitude of uncertainties in repeated gravity ob-
servations caused by temporal variations of water table, soil moisture and imperfect
gravity corrections of them. For that purpose a synthetic experiment based on a
stochastic forward modeling approach is designed. Random realizations of temporal
variability of water table and soil moisture are simulated. To account for the whole
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range of hydrological scenarios, different degrees of spatial correlation of groundwater
variations are considered, varying from tens of meters to several kilometers (Bierkens,
personal communication; Hu et al. 2005, Lyon et al. 2006). The reference gravimetric
signal induced by hydrological variations is compared with the estimated one and the
gravity residuals are computed. Different sampling densities of hydrological observa-
tions are considered. The magnitude and composition of the gravity error for various
hydrological scenarios is presented.

Simulation approach

The proposed methodology is based on a synthetic experiment which briefly can be
summarized as follows:

1. Simulate the reference temporal water table and soil moisture variation.

2. Compute the reference gravity variation for the simulation results of step 1.

3. From the reference water table and soil moisture extract a number of hydro-
logical measurements. Spatially interpolate the measurements to estimate the
hydrological variation.

4. Use the results of step 3 to estimate the gravity variation.

5. Compare the reference gravity variation with the estimated one and compute
the gravity residuals.

The varied parameters are (explained in more detail later) the correlation scales of
groundwater and the density of hypothetical groundwater measurements. Only one
scenario for the soil moisture correlation length is considered. For different parame-
ter configurations, steps 1-5 are repeated N = 100 times. Finally, the RMSE of N
residual gravity fields is calculated.

It is known (Creutzfeldt et al. 2008, Christiansen et al. 2011) that most (∼ 90%)
of the hydrology-induced gravitational effect is generated within the close vicinity
(a few hundreds of meters) of the gravity measurement location. To illustrate this
effect, we express the change in water table by an infinite horizontal slab, i.e., the
Bouguer slab. Gravity variation generated by a water (1000 kg/m3 density) rise of
1 m in a medium with a drainable porosity of 0.25 equals 10.48 µGal regardless of the
distance between the gravimeter and the slab. This gravitational attraction can be
approximated using a finite-size vertical cylinder model (Fig. 3.9). Fig. 3.10 shows
the percentage of the Bouguer plate gravitational attraction generated with the cylin-
der model for different cylinder radii r and cylinder depths d. It is clear that the larger
the cylinder radius the more of the Bouguer slab attraction is recovered and about
90% of the signal is generated within a radius of 50− 300 m. This demonstrates the
importance of the contribution of a local (or shallow) mass redistribution around the
gravimeter on the total gravitational attraction.

Based on this simple sensitivity analysis, we use in the later experiment for the study
area a grid of 1 km × 1 km with a cell size of 10 m × 10 m × △H. The simulated
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Figure 3.9: Vertical cylinder model. The gravimeter position at the surface is aligned with
the cylinder axis.
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Figure 3.10: Percentage of the Bouguer slab (1 m thick, 0.25 porosity filled with water 1000
kg/m3 density) gravitational attraction recovered by vertical cylinder model representing
groundwater mass change for different cylinder radii r and cylinder burial depth d. The
gravimeter position at the surface is aligned with the cylinder axis, see Fig. 3.9.

variables are: the time-lapse rise (△H) of the water table and the rise in water content
in soil (m of water layer equivalent). For a decrease of these variables the procedure
is analogous.
For the simulation of random realizations of water table and soil moisture rise we use
the Sequential Gaussian Simulation Method (SGSIM, Remy et al. 2009). A spherical
variogram model (see, e.g., Isaaks & Srivastava 1989)

f(h) =

{
c0

[
1.5h

θ − 0.5
(
h
θ

)3]
, if h ≤ θ,

c0, otherwise,
(3.1)

where c0 is the scale parameter, h is the lag distance (in meters) and θ is the variogram
range (in meters), is used to model the scales of spatial correlations. Here we assume
geometric isotropy, i.e., the variogram range in x- and y-direction is the same. An
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example of a spherical variogram for different values of θ is shown in Fig. 3.11.
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Figure 3.11: Spherical variogram model for different variogram range.

The correlation lengths of the water table variations can vary from tens of meters
(Lyon et al. 2006) to tens of kilometers (Hu et al. 2005). A high degree of spatial
heterogeneity is likely for shallow water tables (< 2 m) and a higher degree of homo-
geneity for deep water tables (> 30− 50 m). Three cases for the correlation strength
are considered: a ”high case” with the variogram range θ = 10 km, ”intermediate
case” (θ = 1 km) and a ”low case” (θ = 0.1 km).
Spatial patterns of soil moisture variations are in general very heterogeneous. Typi-
cal correlation lengths are on the order of 0.03− 0.1 km (Anctil et al. 2002, Western
et al. 2004). In this study we consider only one scenario for correlation lengths of soil
moisture with the variogram range equal to θ = 0.05 km.
The magnitude of water table and soil water content rise are randomly generated
from a log-normal distribution with probability density function

f(x) =
1

xσ
√
2π

exp

[
− (lnx− µ)2

2σ2

]
, x > 0, (3.2)

where µ denotes the mean and σ denotes the standard deviation of the natural log-
arithm of the random variable x. The choice of the log-normal distribution is sup-
ported by high p-values (Fig. 3.12) of the Kolmogorov-Smirnov goodness of fit test
(Massey 1951) to the two real data sets shown in Fig. 3.8. The interpretation of the
test results is such that at the significance level of 0.05 there is no reason to reject the
hypothesis that the (positive) water table variations follow the log-normal distribution
(the p-value is larger than the significance level of 0.05).

We consider three scenarios for the water table variations, which are summarized in
Tab. 3.1. In all the cases we use a constant drainable porosity equal to 0.25, which
is close to an average among different geological materials (see Tab. 3.2). Note that
the gravity signal scales proportionally with density and hence with porosity (see
Eq. 2.20 and Eq. 2.23). Therefore, if smaller/larger porosity was used the resulting
gravity variations would scale accordingly. Temporal variations of water content in
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Figure 3.12: Goodness of fit evaluation of log-normal distribution to groundwater variation
field data. The probability density function is fitted to the positive, approximately 6-months
groundwater variations computed for the data shown in Fig. 3.8.

soil can reach 30-40% and more of the soil volume (see, e.g., Loague 1992, Vinnikov
et al. 1996). In this study we simulate only one scenario where we set the mean water
content rise in 1 m of soil to 0.15 m (this is equivalent to 15 cm of water layer),
which can be considered as some average soil moisture variation. In all the cases the
standard deviation of the simulated variables is set to 25% of the mean value.
In practice, the soil and the water table changes can be dependent, e.g., the increasing
water content in the soil may imply the increasing water table later in time (after the
drainage takes place). For this study, however, we do not have a horological model
available to model these effects. Therefore, the soil moisture and the water table
variations are simulated independently of each other.

Table 3.1: Groundwater level change scenario summary. All values are given in m.

mean µ std. σ variogram range θ depth
low case 1 0.25 100 2
medium case 2 0.50 1000 10
high case 2 0.50 10000 30

An example of a simulated realization of soil water content rise is presented in
Fig. 3.13a. The corresponding gravity variation is shown in Fig. 3.13b. The signal
maximum is about 14 µGal and the signal RMSE is about 6 µGal .

Examples of the simulated water table rise are shown in Fig. 3.14. Fig. 3.14a to
Fig. 3.14c show the 10 km × 10 km simulation window to visualize the correlation
lengths. Fig. 3.14d to Fig. 3.14f show these results in the actual 1 km×1 km domain
used in this study. The temporal gravity variations are presented in Fig. 3.15. Note
the signal maximum amplitudes reaching about 22 µGal and the RMSE of about
10 µGal in case of short spatial correlation of water table variations (average water
table rise 1 m) and the amplitudes of about 35 µGal and the RMSE of about 26 −
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Table 3.2: Representative values of drainable porosity (specific yield) for various geologic
materials (Morris & Johnson 1967)

Material Drainable porosity (%)
(Specific Yield)

Gravel, coarse 21
Gravel, medium 24
Gravel, fine 28
Sand, coarse 30
Sand, medium 32
Sand, fine 33
Silt 20
Clay 6
Sandstone, fine grained 21
Sandstone, medium grained 27
Limestone 14
Dune sand 38
Loess 18
Peat 44
Schist 26
Siltstone 12
Till, predominantly silt 6
Till, predominantly sand 16
Till, predominantly gravel 16
Tuff 21
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Figure 3.13: Example of the simulated realization of water-content rise (m) in soil (variogram
range 0.05 km). The mean water-content rise is 0.15 m and the water-content rise standard
deviation is 0.0375 m (25% of the mean).

28 µGal in the remaining two cases (average water table rise 2 m). The total gravity
variation, resulting from the soil water content rise and the water table rise are shown
in Fig. 3.16 with the maximum up to 43 µGal and RMSE up to 34 µGal.

The results of the spatial (linear) interpolation of the synthetic measurements of wa-
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Figure 3.14: Example of the simulated realizations of water table rise (m) for different lengths
of spatial correlations (variogram range) of groundwater. In the top row simulation results
for the 10 km × 10 km grid are shown and in the bottom row results for the 1 km × 1 km
grid are presented (denoted with black rectangle in the top row figures). The mean water-
level change is 1 m in case of variogram range of 0.1 km and 2 m in the remaining cases. In
all scenarios the water-level change standard deviation is set to 25% of the mean value.
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Figure 3.15: Example of the simulated gravity variation (µGal) caused by water table rise
for different correlation lengths (variogram range) of groundwater. The results correspond
to the simulated water table rise shown in Fig. 3.14d to Fig. 3.14f.

ter table rise are shown in Fig. 3.17. The results for soil water content change are not
displayed here because they are similar to those presented for the shortest correlation
length of groundwater. The measurement network is regular, i.e., the distance be-
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Figure 3.16: Example of the simulated total gravity variation (µGal) caused by soil moisture
and water table rise for different correlation lengths (variogram range) of groundwater. The
results correspond to the simulated water content rise in soil shown in Fig. 3.13a and water
table rise shown in Fig. 3.14d to Fig. 3.14f.

tween the observations ds is fixed. Different sampling densities are considered, namely
ds = 0.1 km with 100 measurements in total, ds = 0.25 km with 16 measurements
in total, ds = 0.5 km with 4 measurements in total and ds = 10 km with only 1
measurement. As expected, increasing the number of sample data used in the spatial
interpolation improves the results: the estimated water table rise and the resulting
gravity variation (Fig. 3.18) match the corresponding reference values more closely.
Already with a single water table measurements the hydrological signal RMSE can
be reduced from 10-26 µGal to about 2-4 µGal (Fig. 3.19). A further increase of the
density of measurements could reduce the RMSE to 0.3-2 µGal.
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Figure 3.17: Interpolated water table rise (m) for different groundwater correlation lengths
(variogram range) and for various densities of the hypothetical water table observations
(black dots). A linear interpolation scheme was used.
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Figure 3.18: Example of the estimated gravity variation (µGal) caused by water table rise
for different groundwater correlation lengths and for various densities of the hypothetical
water table observations. The results correspond to the interpolated water table rise shown
in Fig. 3.17.
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Figure 3.19: Example of the simulated gravity noise realization (µGal) caused by water table
rise for different groundwater correlation lengths and for various densities of the hypothetical
water table observations. The noise estimates are derived as a difference between hydrological
signal estimate (Fig. 3.18d to Fig. 3.18o) and the reference signal (Fig. 3.19a to Fig. 3.19c).
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Results

Fig. 3.20 shows an average RMSE of all 100 simulation runs for each of the sce-
narios considered. The RMSE prior to and after the hydrological signal estimation
and correction is displayed. In the case of short correlation lengths of groundwa-
ter (Fig. 3.20a) the noise average RMSE is of the order of 3-4 µGal. The major
contribution to the error comes from water table variations. Since both soil and
groundwater correlation lengths are in the order of tens of meters, decreasing the
measurement spacing from 1000 m to 100 m does not significantly reduce the RMSE.
For the medium degree of spatial correlation (Fig. 3.20b) the RMSE is within 2-
5 µGal. Here, the main contribution originates again from water table variations.
However, since the groundwater spatial correlation lengths are larger than the sam-
pling density, increasing the number of water table measurements is effective and
leads to a reduction of the RMSE from about 5 to 2 µGal. Under long water table
correlation (Fig. 3.20c) the total error is about 2-2.5 µGal and originates mainly from
temporal soil moisture variations. The results show that by even using only a single
water table measurement the hydrological noise RMSE can be reduced 2-3 times.
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Figure 3.20: Average (over 100 realizations) RMSE of gravity residuals for different sampling
densities (ds), source of error (water table, soil moisture) and degree of spatial correlation
(variogram range) of groundwater. For case a) the mean groundwater-level change of 1 m
and for b) and c) of 2 m is assumed. The error bars show ±2× σRMSE interval.
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3.3 Summary

Table 3.3 contains a short summary of the major components contributing to the
time-lapse gravimetry uncertainties. It is clear that different operational environ-
ments lead to different data acquisition challenges and make some noise sources more
relevant than others. For instance, hydrological noise can affect onshore gravimetric
surveys whereas it is not a problem in offshore measurements. Similarly, the ocean
tide signal is more relevant in offshore gravity campaigns than onshore. For both
environments the uncertainty budget is within about 2 − 6 µGal which is in good
agreement with uncertainty estimates in recent field applications (O. Eiken, personal
communication). Certainly, some site-specific factors, such as mass shifts due to
reservoir compaction and especially shallow mass variations induced by hydrological
processes, may increase the uncertainties. We showed that the influence of hydrologi-
cal signals can be very large and additional in-situ data are needed to correct for these
variations. Already with a single measurements, hydrological noise RMSE induced
by water table variations can be reduced 2-3 times, depending on the groundwater
correlation lengths. Correction for soil moisture variations may be more challenging
due to the short correlation lengths of soil.

Table 3.3: Time-lapse gravimetry noise sources.

source signal range residual uncertainty comment
solid Earth tides 280 µGal 0.2− 0.5 µGal1

ocean tides 20 µGal 0.2 µGal1

1.2 µGal2 at sea
polar motion 10− 13 µGal 0.01 µGal1

height changes 2.2− 2.7 µGal/cm 0.8− 1.3 µGal3,4 underwater
3.1 µGal/cm 2− 4 µGal6 in the free air

atmospheric effects 0.3 µGal/hPa 1− 2 µGal6,7

gravimeter tens of µGal8 1.2− 5 µGal5 instrument-
dependent

total 2.5− 6.7 µGal onshore
2.1− 5.7 µGal offshore

compaction/ a few µGal site-dependent
subsidence
hydrological effects 20 µGal and more 2− 5 µGal and more site-dependent

1Niebauer et al. (1995)
2this estimate is concluded from the results presented by Sasagawa et al. (2008)
3Zumberge et al. (2008)
4Eiken et al. (2008)
5refers to the CG-3, CG-5 relative gravimeters widely used in field applications, (Christiansen

et al. 2011)
6Ferguson et al. (2008)
7Torge (1989)
8e.g., instrument drift





Chapter 4
Gravity data inversion for reservoir monitoring and

characterization

Inversion of geophysical observations, and gravimetric observations in par-
ticular, is an ill-posed problem. Therefore, to stabilize and constrain the
solution some sort of regularization must be applied. In classical regu-
larization methods, which are based on the Tikhonov regularization con-
cept, the solution is constrained by applying dedicated stabilizing func-
tionals, which are some mathematical functions of model parameters. An
alternative approach is data assimilation, where available observations are
merged into a dynamical model of the phenomenon under investigation.
In this chapter we discuss inversion/estimation methods used through-
out the thesis, namely focusing inversion which belongs to the class of
Tikhonov regularization methods. We also introduce two ensemble data
assimilation techniques, namely the ensemble Kalman filter and the en-
semble smoother. A common framework between the Tikhonov regular-
ization concept and data assimilation is briefly discussed, complemented
by illustrative examples of application.

59
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4.1 Introduction

In Chapter 2 we considered various reservoir types and reservoir production processes
and performed a forward modeling of the gravimetric signal, i.e., for a given mass
redistribution in the reservoir a corresponding gravity field variation was determined.
Thus, we were solving the forward problem, which in a general form, can be formulated
as

F(x) = d, (4.1)

where x = [x1, x2, . . . , xM ]T is the vector of model parameters (in M-dimensional
parameter space), d = [d1, d2, . . . , dN ]T denotes the vector of predicted signal (in
N-dimensional data space) and F is the forward modeling operator defining the func-
tional dependence between x and d. In practice however, the complete subsurface
cannot be observed directly and its state must be inferred from indirect observations
which are usually contaminated with noise. Therefore, a problem opposite to (4.1)
must be solved

y = F(x) + ǫ, (4.2)

where y = [y1, y2, . . . , yN ]T denotes the noisy observations and ǫ = [ǫ1, ǫ2, . . . , ǫN ]T

denotes the observation noise.
To translate the observations into the estimates of unknown parameters at least three
things are required: a suitable parametrization, the functional model and the inver-
sion procedure. An example of parametrization in our context, is reservoir domain
discretization into a finite set of grid cells (subdomains), with a constant parameter
value within each grid cell. The functional model defines the quantitative link be-
tween available observations and the model parameters, i.e., it allows to simulate the
observations for a given parameter set at prescribed locations. The inversion proce-
dure does the opposite job, i.e., it translates available observations into the parameter
estimates.
In general solving the inverse problem (4.2) is not a trivial task. First, because in
many cases F is a nonlinear function of model parameters x. Furthermore, F may
not be known exactly in any closed form. Therefore, in many practical situations one
may need to linearize the problem and search for approximate solutions. When the
signal is linearly related to the model parameters, one could write

Ax = d (4.3)

where A is N ×M matrix, often called design matrix, sensitivity matrix or Jacobian
matrix.
Another, more fundamental difficulty, is that the inversion of geophysical observations,
and gravity observations in particular, is an ill-posed problem. This means that the
solution may not exist at all, the solution may not be stable (the two observed data
sets, different only within a noise-level, may provide significantly different parameter
estimates) and it may not be unique. Therefore, typically some sort of regularization
must be applied to obtain any reasonable parameter estimates.
In this chapter we will introduce two regularized inversion (estimation) methods,
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which will be used throughout the thesis, namely focusing inversion and data assimi-
lation.
Focusing inversion is based on the Tikhonov regularization concept, where some sort
of mathematical stabilizer is used to regularize the solution. There are various sta-
bilizers proposed in the literature (for an overview see, e.g., Zhdanov 2002), and
some of the traditional choices are the minimum norm and the maximum smooth-
ness stabilizer (see Section 4.3). However, when applying the traditional stabilizers it
may be challenging to obtain blocky parameter estimates such as, e.g., the water/gas
front position in the reservoir. For such problems, focusing stabilizing functionals
can be useful. They offer a mathematical tool to constrain the inversion to models
with a compact support and sharp transitions between parameter values. Two types
of stabilizers have been proposed for that purpose: the minimum support stabilizing
functional and the minimum gradient support stabilizing functional. They will be
presented in Section 4.4.
Often, to understand and predict reservoir behavior a numerical model is constructed
based on available measurements, assumptions and underlying physics. It incorpo-
rates available information from e.g., seismic surveys, geological studies and core
samples but also prior knowledge and assumptions based on geologist’s and/or reser-
voir engineer’s knowledge and experience with similar fields. The underlying physics
of reservoir flow is modeled using physical flow equations (for reservoir flow mod-
eling see Peaceman 1977) discretized in space and time. The reservoir model may
contain many uncertain parameters, such as reservoir saturation, pressure, porosity,
permeability, structure, initial conditions (fluid contacts) and others, some of which
are static and some of which are time-variable. Because the unknowns need to be
assigned to every grid cell, their number can easily reach 106-108 for complex models.
Furthermore, the relation between the model parameters and the observations can be
nonlinear. For such problems data assimilation methods can be very useful.
Data assimilation, in the context of reservoir engineering is often called ”computer-
assisted history matching”. It offers a methodology to combine available measure-
ments with physically based numerical model predictions. The uncertain parameters
of a model are adjusted by comparing real observations with the synthetic data pre-
dicted by the numerical model. If the observations do not match the model predic-
tions, the parameters are adjusted accordingly. This process is called history match-
ing. Recently, in reservoir engineering applications the ensemble Kalman filter and
ensemble smoother method have been demonstrated to be powerful (Evensen 2007,
Aanonsen et al. 2009, Oliver & Chen 2011, Skjervheim et al. 2011) and they will also
be applied in this thesis.
We start the chapter with a brief introduction of a Bayesian framework or in other
words a statistical regularization concept. Then the classical Tikhonov regularization
approach is discussed, followed by the introduction of the focusing inversion stabiliz-
ers and a simplified demonstration example. Then, the ensemble Kalman filter and
the ensemble smoother methods are presented. For the sake of completeness we intro-
duce also the Kalman filter method and its extension to non-linear problems, namely,
the extended Kalman filter method. Subsequently, a common framework between
the Tikhonov regularization concept and data assimilation will be briefly discussed,
followed by an example of the application of the focusing inversion method and the
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ensemble Kalman filter method to the parameter estimation in a gas field synthetic
case study. Some of the materials in Sections 4.1, 4.2 and 4.6 are based on Ditmar
(2010).

4.2 Statistical regularization in the Bayesian frame-

work

The statistical regularization concept (Turchin et al. 1971) is embedded within the
Bayesian framework, where the unknown model parameters x and measurements y are
considered as realizations of random variables described by a multivariate probability
distribution. The theorem of Bayes states that

P (x|y) = P (y|x)P (x)
P (y)

, (4.4)

where

• P (x|y) is the posterior probability distribution of model parameters x condi-
tioned to available observations y;

• P (y|x) is a likelihood function, i.e., the probability distribution of observations
y given the model parameter x;

• P (x) is the prior probability distribution expressing initial uncertainty of the
model parameters x;

• P (y) is the probability distribution of the observations y.

Typically, the observation errors ǫ are assumed to follow a zero-mean Gaussian distri-
bution. In this case the conditional probability density function (pdf) of observations
given model parameter x is proportional to

P (y|x) ∝ exp

[
−1

2
(y −Ax)TC−1

y (y −Ax)

]
, (4.5)

where Cy is the data noise covariance matrix and ∝ denotes proportionality and
where we have assumed that (4.3) is valid, i.e., the model parameters are linearly
related to the signal. If the model parameters are also assumed to be Gaussian then

P (x) ∝ exp

[
−1

2
(x− x0)

TC−1
x (x− x0)

]
, (4.6)

where x0 is the prior estimate of x and Cx is the parameter covariance matrix. Then
the Bayes’ theorem allows expressing the pdf of x conditioned to available data y as

P (x|y) ∝ exp

[
−1

2
(y −Ax)TC−1

y (y −Ax)− 1

2
(x− x0)

TC−1
x (x− x0)

]
, (4.7)

or alternatively as
P (x|y) ∝ exp [−J(x)] , (4.8)
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where

J(x) =

[
1

2
(y −Ax)TC−1

y (y −Ax) +
1

2
(x− x0)

TC−1
x (x− x0)

]
(4.9)

is called the objective function. The most probable estimate of x is the one for which
the conditional pdf given by expression (4.7) attains its maximum, which is equivalent
to the minimum of the quadratic objective function J(x). The minimum of J is found
by setting its gradient with respect to x equal to zero. It can be shown that (Oliver
et al. 2008)

∇xJ = C−1
x (x− x0) +ATC−1

y (Ax− y) (4.10)

and consequently the estimate of x is given by

x̂ = x0 + (C−1
x +ATC−1

y A)−1ATC−1
y (y −Ax0). (4.11)

The solution (4.11) is called the maximum a posteriori (MAP) estimate of x. Thanks
to known matrix identities (for the proof see, e.g., Oliver et al. (2008))

(C−1
x +ATC−1

y A)−1ATC−1
y = CxA

T (Cy +ACxA
T )−1, (4.12)

the MAP estimate of x can also be written as

x̂ = x0 +CxA
T (Cy +ACxA

T )−1(y −Ax0). (4.13)

Note that the use of MAP expression (4.11) requires the solution of a M ×M matrix
problem, whereas expression (4.13) involves a N × N matrix problem. Therefore,
the choice of the expression for MAP estimate may be motivated by the numerical
efficiency. If M << N then formulation (4.11) can be preferred. If N << M then
(4.13) is usually computationally efficient, even if M is large (Oliver et al. 2008).
Statistical regularization of the inverse problem solution requires the specification of
the data noise and the model parameter covariance matrices. The noise covariance
matrix Cy acts as a weighting operator giving a lower weight to the more uncertain
data. The model parameter covariance matrix Cx plays a double role: it is the weight-
ing and regularization operator at the same time. It allows a priori knowledge about
the parameter to be incorporated into the final solution. Typically, some knowledge
about the data noise properties is available because, e.g., accuracy of measuring de-
vice is known and the data noise covariance matrix can be approximated. Contrary
to that, a limited knowledge about parameter characteristics is often available before
any measurements are acquired and specification of the model covariance matrix can
be problematic. In such cases regularization techniques can be used, which are based
on the Tikhonov regularization concept.

4.3 Tikhonov regularization

The way of solving ill-posed inverse problem, according to the Tikhonov regularization
concept (Tikhonov & Arsenin 1977) is based on the minimization of the Tikhonov
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parametric functional
Pα(x) = m(x) + αs(x), (4.14)

where
m(x) = ‖Ax− y‖2 = (Ax− y)T (Ax− y) (4.15)

is the misfit functional, s(x) is the stabilizing (regularization) functional and α is the
regularization parameter. To account for the uncertainties in observations, the misfit
functional can be weighted, i.e.

m(x) = ‖WyAx−Wyy‖2 = (Ax− y)TWy
TWy(Ax− y), (4.16)

where Wy is the observations weighting operator and frequent choice is Wy =
diag

[
1
σ

]
with σ being an estimate of observation noise standard deviation. The stabi-

lizing functional s(x) defines a class of models for the inverse problem solution. There
are several traditional choices for the stabilizer s(x). The minimum norm stabilizing
functional is defined as the squared L2 norm of the model parameter vector

sMN (x) = ‖x‖2 = xTx, (4.17)

and it usually leads to a relatively smooth image of the inverse model (Zhdanov 2009).
In a similar way the maximum smoothness stabilizing functional is defined as

smaxSM (x) = ‖∇x‖2 = (∇x)T (∇x), (4.18)

where ∇x denotes the vector of the parameter spatial gradient.

For a unified approach towards regularization with different stabilizers it is conve-
nient to express stabilizer s(x) using L2 norm of a function of the model parameters

s(x) = ‖Wxx−Wxx0‖2 = (x− x0)
TWx

TWx(x− x0), (4.19)

where the form of matrix operator Wx varies depending on the stabilizer used and
some of the examples will be given in one of the following subsections. Using ex-
pressions (4.16) and (4.19), the Tikhonov parametric functional (4.14) can be written
as

Pα(x) = (Ax− y)TWy
TWy(Ax− y) + α(x− x0)

TWx
TWx(x− x0). (4.20)

The regularized solution can be found by setting the gradient of Pα(x) with respect to
x equal to zero. It can be shown that the least-squares estimate of x can be expressed
as (Zhdanov 2002)

x̂ = x0 + (ATWT
y WyA+ αWT

xWx)
−1ATWT

y Wy(y −Ax0). (4.21)

The use of Tikhonov regularization requires the specification of the regularization
parameter α, which determines the trade-off between best model fitting to the data
and strength of regularization applied to the solution. When a very small α is selected,
minimization of the parametric functional (4.14) is equivalent to the minimization of
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model misfit (4.15) and the solution may not be stable. On the other hand, for a
too large α minimization of parametric functional is equivalent to minimization of
the stabilizing functional s(x). In this case one may obtain a stable solution but it is
determined by a priori knowledge and the stabilizer used. Therefore, the choice of the
regularization parameter α strongly influences the final solution. There are several
methods available for the regularization parameter selection, e.g., the L-curve method
(Hansen & O’Leary 1993) which offers a graphical tool for quasi-optimal selection of
α, the Generalized Cross-Validation (GCV) method (Girard 1989, Golub et al. 1979),
and the Variance Component Estimation (VCE) method (see, e.g., Koch & Kusche
(2002) and references therein) which estimate α explicitly. In this chapter we will use
an empirical approach based on adaptive α tuning proposed by Zhdanov (2002). It
will be described in Subsection 4.4.3.

4.4 Focusing inversion

Application of traditional stabilizers, such as the minimum norm (4.17) or the max-
imum smoothness (4.18) stabilizer, is likely to produce smooth parameter estimates,
i.e., without sharp contrasts in parameter values. In some cases however, such as in
hydrocarbon or mineral exploration, blocky parameter estimates can be desired to
describe sharp property transitions within complex geological structures. For such
problems focusing stabilizing functionals can be useful. They offer a mathematical
tool to constrain the inverse problem solution to models with a compact support and
sharp transitions between parameter values. For that purpose two types of stabilizers
have been proposed: the minimum support stabilizing functional and the minimum
gradient support stabilizing functional.
Focusing inversion was first introduced by Last & Kubik (1983) who proposed the
minimum support stabilizer. It was further developed by Portniaguine & Zhdanov
(1999), who introduced the minimum gradient support functional. Since its intro-
duction, focusing inversion has been applied in many synthetic studies (Zhdanov &
Tolstaya 2004, Zhdanov et al. 2006, Zhdanov 2007, Zhang et al. 2012) and also to
various types of geophysical data inversion in field case applications. For instance,
Zhdanov et al. (2011a) inverted synthetic electromagnetic observations to estimate a
3D subsurface resistivity model of the Shtokman gas field in the Barents Sea.
Zhdanov et al. (2011b) used the focusing inversion of electromagnetic data to map the
salt body structure in the field case in Gulf of Mexico. Čuma et al. (2012) inverted
airborne gravity and magnetic data to estimate a large-scale (hundreds of km), 3D
distribution of subsurface density and magnetic susceptibility.
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Focusing inversion stabilizers are based on the following integral expression applied
to the model parameters x

i(x) =

∫

V

x2

x2 + β2
dv, (4.22)

distributed in some 3D physical domain, denoted V . Note that now we consider the
parameter as a spatial function of coordinates. To distinguish the notation from the
one used in the previous section when the parameter was treated as a vector, we don’t
use a bold font for x.
Let us denote the support of x as sptx and define it as the combined closed subdomains
of V where x 6= 0. Then expression (4.22) can be written as

i(x) =

∫

sptx

[
1− β2

x2 + β2

]
dv (4.23)

= Vx − β2

∫

sptx

[
1

x2 + β2

]
dv.

From (4.23) we can see that if β → 0 then i(x)→ Vx, where Vx denotes the volume
of the parameter support. Therefore, the minimum support stabilizing functional is
defined as

sMS(x) = i(x) =

∫

V

x2

x2 + β2
dv, (4.24)

where β is called the focusing parameter. From (4.23) and (4.24) it follows that for
small β the stabilizer sMS is proportional to the parameter support. Furthermore,
parameters in the solution with values close to zero will have negligible contribution
to sMS while large parameter values will have contributions close to 1. This allows
enhanced solutions with compact parameter support to be produced.
In a similar way the minimum gradient support functional is defined (Portniaguine &
Zhdanov 1999)

sMGS(∇x) = i(∇x) =
∫

V

(∇x)2
(∇x)2 + β2

dv, (4.25)

where ∇x denotes the spatial parameter gradient. The details of the gradient approx-
imation scheme used in this study are shown in the Appendix A.
Using Eq. (4.23), we can also write

sMGS(∇x) = V∇x − β2

∫

spt
∇x

[
1

(∇x)2 + β2

]
dv, (4.26)

which shows that for small β the functional sMGS(∇x) is proportional to the volume
of the parameter gradient support V∇x. From expression (4.25) it follows that terms
with the parameter gradient nearly zero will have negligible contribution to sMGS

while terms with large parameter gradient will have contributions close to 1. This
promotes solutions with sharp boundaries because the penalty for large gradients
is not excessive (Portniaguine & Zhdanov 1999). The schematic illustration of the
focusing inversion is shown in Fig. 4.1.
For the cases when prior knowledge about the parameter values is available, i.e., when
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x0 6= 0, the minimum support functional is given by

sMS, apr(x− x0) = i(x− x0) =
∫

V

(x− x0)2
(x− x0)2 + β2

dv. (4.27)

In this case, the minimization of the functional sMS, apr is equivalent to the minimiza-
tion of the support of the deviation from a given a priori model x0. Similarly, we may
write for the minimum gradient support stabilizer (Zhdanov et al. 2011a)

sMGS, apr(∇(x− x0)) = i(∇(x− x0)) =
∫

V

(∇(x− x0))2
(∇(x− x0))2 + β2

dv. (4.28)

gradient 
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gradient 

support

smooth 

solution
sharp 
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Figure 4.1: Schematic illustration of the sharp inversion with the minimum gradient support
stabilizer. After Zhdanov (2002).

4.4.1 Pseudo-quadratic form of the parametric functional

For a unified approach to regularization using different stabilizers, it is convenient
to express the functional s(x) as squared L2 norm of weighted model parameters
(Portniaguine & Zhdanov 1999, Zhdanov 2002)

s(x) =

∫

V

(wxx)
2dv, (4.29)

where wx is a function of model parameters x taking different forms depending on the
stabilizer and where we assumed that x0 = 0. For instance, for the minimum support
functional (4.24)

wMS
x =

1

(x2 + β2)1/2
. (4.30)

Similarly, for the minimum gradient support functional (4.25) we want to have

s(x) =

∫

V

(wxx)
2dv =

∫

V

(∇x)2
(∇x)2 + β2

dv. (4.31)
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This is satisfied if

wMGS
x =

∇x
((∇x)2 + β2)1/2(x2 + e2)1/2

, (4.32)

where e is a small number (e→ 0) included to avoid a singularity for the points where
x = 0.

In a practical case when the model parameters are arranged in a column vector x the
functional (4.29) can be written as

s(x) = ‖Wxx‖2 = xTWT
xWxx, (4.33)

where Wx is a matrix operator of the form

Wx = diag[wx], (4.34)

i.e., it is diagonal matrix with elements of wx. Obviously, Wx depends on the stabi-
lizer used. For instance, for the minimum norm stabilizer,

WMN
x

= I, (4.35)

where I is M ×M identity matrix. In case of the maximum smoothness functional,

WmaxSM
x

= diag

[ ∇x

(x2 + e2)1/2

]
. (4.36)

For the minimum support functional,

WMS
x

= diag

[
1

(x2 + β2)1/2

]
, (4.37)

and for the minimum gradient support,

WMGS
x

= diag

[ ∇x

((∇x)2 + β2)1/2(x2 + e2)1/2

]
. (4.38)

In case x0 6= 0, we have for the minimum support stabilizing functional,

WMS, apr
x

= diag

[
1

((x− x0)2 + β2)1/2

]
, (4.39)

and for the minimum gradient support stabilizer

WMGS, apr
x

= diag

[ ∇(x− x0)

(∇(x− x0)2 + β2)1/2((x− x0)2 + e2)1/2

]
. (4.40)

If Wx is independent of x then the functional (4.34) is quadratic. When Wx is
a function of model parameters, as, e.g., in case of the minimum support or the
minimum gradient support stabilizers, the functional (4.34) is not quadratic. For
that reason, it is called ”pseudo-quadratic” (Zhdanov 2002).
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4.4.2 Focusing parameter choice rule

The choice of the parameter β in the focusing inversion method influences the sharp-
ness (compactness) and stability of the obtained solution. A too large focusing param-
eter β may produce smooth images (Blaschek et al. 2008), whereas extremely small
values of β may result in a singular behavior (division by zero) of the functional and
an unstable solution. Zhdanov & Tolstaya (2004) proposed an empirical approach for
focusing parameter selection which resembles the L-curve method. Their idea is to
consider the plot of the normalized stabilizing functional for a range of values of the
focusing parameter β and for a given priori estimate x0 (Fig. 4.2). If prior knowledge
about x is absent then x0 could be obtained from, e.g., a smooth inversion with the
minimum norm stabilizer. The quasi-optimal value of the focusing parameter βopt is
found as the point of the maximum curvature (quasi L-corner point). For β < βopt
the value of the stabilizer changes rapidly with decreasing parameter β. For β > βopt
the stabilizer decreases more slowly. For that reason, values of β near the point of
maximum curvature are considered to be close to optimal.
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Figure 4.2: Schematic illustration of the focusing parameter empirical selection. After Zh-
danov & Tolstaya (2004).

4.4.3 Re-weighted regularized conjugate gradient optimization
scheme

In order to find the inverse problem solution by minimization of the parametric func-
tional (4.14), various approaches can be used. For instance, one could apply directly
the least-squares expression (4.21) for the regularized parameter estimate. However,
this approach is not that useful when, e.g., the forward modeling operator is large
and/or the regularization operator is a function of model parameters which are to be
determined. Therefore, iterative methods are more frequently used, among which the
gradient-based ones, such as quasi-Newton methods (Oliver et al. 2008) or conjugate
gradient methods.
In order to minimize the parametric functional (4.14) we follow the approach pro-
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posed by Portniaguine & Zhdanov (1999) and Zhdanov (2002), which is called the
re-weighted regularized conjugate gradient method (RRCG). In this approach the
variable regularization operator Wx = Wxn

is pre-computed before every iteration
using the solution obtained in the previous iteration. During one iteration process
this operator is fixed as a constant matrix. The RRCG algorithm is summarized as
follows (Zhdanov 2002)

rn = Axn − y,

sn = Wxn
(xn − x0),

lαn
n = ATW2

yrn + αnWxn
sn,

βαn
n = ‖lαn

n ‖2/‖lαn−1

n−1 ‖2, l̃αn
n = lαn

n + βαn
n l̃

αn−1

n−1 , l̃α0

0 = lα0

0

k̃αn
n =

(
l̃αnT
n lαn

n

)
/
[
l̃αnT
n

(
ATW2

yA+ αW2
xn

)
l̃αn
n

]
,

xn+1 = xn − k̃αn
n l̃αn

n .

(4.41)

The iteration process is terminated if the misfit condition is satisfied, i.e., if

‖rn‖2 ≤ δ, (4.42)

where δ is the data noise level.
Because the solution is re-weighted after every iteration, the stabilizing functional, in
some instances, can increase from iteration to iteration. To assure convergence of the
parametric functional to the global minimum, Zhdanov (2002) proposed to damp the
regularization parameter α proportionally to the increase of the stabilizer

αn+1 =

{
αn, if γ ≤ 1

αn/γ, if γ > 1,
(4.43)

where

γ =
s(xn+1)

s(xn)
=

(xn+1 − x0)
TW2

xn+1
(xn+1 − x0)

(xn − x0)TW2
xn
(xn − x0)

. (4.44)

Then, the product of the regularization parameter and the stabilizing functional de-
creases or does not change

αn+1s(xn+1) =

{
αns(xn+1) = αnγs(xn), if γ ≤ 1

αns(xn+1)γ = αns(xn), if γ > 1.
(4.45)

If the convergence rate is slow, Zhdanov (2002) proposed to decrease α further with

α′n+1 = qαn+1, q < 1 if ‖Wyrn‖2 − ‖Wyrn+1‖2 < 0.01‖Wyrn‖2, (4.46)

where, based on empirical experiments, values of q ∈ (0.5; 0.9) are used. Note, how-
ever, that a damping of α using condition (4.46) decreases the magnitude of the
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regularization applied to the solution. If α is reduced too quickly, the minimization
of the parametric functional may turn into the minimization of the model misfit, and
weakly-regularized solution may be obtained. We will demonstrate this effect in Sub-
section 4.4.4.
Following Zhdanov (2002) we run the first iteration without regularization. This re-
sult is used to determine the initial value of the regularization parameter α which
assures the balance (equality) between the model misfit term m(x) and the stabiliz-
ing term αs(x) at the start of inversion process. Equating m(x) with αs(x) gives the
initial value of α

α1 =
‖WyAx1 −Wyy‖2
‖Wx1

x1 −Wx1
x0‖2

. (4.47)

4.4.4 Example

A simple 2D density model is considered for the application of the focusing inversion
of gravity data. The model domain is discretized into 20×20 cubes, each of dimen-
sion 100×100×100 m. The distance from the surface to the model top layer is 350
m. The true model (Fig. 4.3a) contains two rectangular bodies consisting of 3×3×1
cubes (300×300×100 m) with a density contrast of -50 kg/m3 with respect to the
homogenous background density.
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Figure 4.3: Layout of the true model (Fig. 4.3a) and layout of the gravity observation (µGal)
grid (Fig. 4.3b). The density contrast in Fig. 4.3a with respect to a homogenous background
is -50 kg/m3 (shown in dark blue). In Fig. 4.3b the black rectangles show the boundaries of
the true model.

Synthetic residual gravity measurements are simulated on a regular grid of dimension
12×12 with measurement spacing of 150 m in x- and y-direction (Fig. 4.3b). The
maximum gravity variation for the true model is about -18 µGal. The synthetic data
are contaminated with zero-mean uncorrelated Gaussian noise with 5 µGal standard
deviation.
We perform both the regularized focusing inversion and the unregularized least-
squares model fit to the synthetic gravity data to estimate the subsurface density
anomaly. The unregularized least-square solution could be directly determined by
using Eq. (4.21), with α set equal to zero. Here, we want to apply the lower/upper
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bound constrains on the estimated parameter values

xi = xmin if xi < xmin,

xi = xmax if xi > xmax, for i = 1, . . . , 400, (4.48)

where
x = [x1, x2, . . . , x400]

T , (4.49)

and xmin = −50 kg/m
3
and xmax = 0 kg/m

3
. Therefore, the use of iterative methods,

such as the conjugate gradient scheme is more convenient in this case. Furthermore,
it provides a unified framework for the comparison of results in case of the regularized
and the unregularized solutions.
Fig. 4.4 shows the results of the focusing inversion compared to the least-squares
solution without regularization. In both cases, the a priori model is x0 = 0 and the
observation weighting operator (see eqn. 4.16)

Wy = diag

[
1

σ

]
, (4.50)

has been used, which is a diagonal matrix with σ=5 µGal. For the focusing inver-
sion with the minimum support stabilizer, the regularization operator (4.37) is used
and for the inversion with the minimum gradient support functional operator (4.38)
is applied. The regularization parameter α is adjusted (decreased) after every 10-th
iteration using condition (4.43). The focusing parameter β is chosen based on the
empirical method described in Subsection 4.4.2 and is set to β = 0.5 kg/m

3
, which is

1% of the density contrast in the true model.
The application of the minimum support stabilizer resulted in a significantly more
compact parameter support distribution as compared to the unregularized least-
squares parameter estimate (Fig. 4.4a, Fig. 4.4b). The minimum gradient support in-
version gave not only a compact support, but also a sharp-boundary solution (Fig. 4.4b).
Nevertheless, many iterations were required to obtain focused images. For instance
in case of the minimum support inversion, 717 iterations were performed. For a com-
parison, the unregularized least-squares inversion scheme converged after already 6
iterations. Fig. 4.5 shows the parametric functional convergence for the inversion
with the minimum support stabilizer. We observe that after about 300 iterations
the regularization term played a major role, and the minimization of the parametric
functional Pα(x) was driven by the minimization of the stabilizing functional s(x).
The regularization parameter α remained almost unchanged during the iteration pro-
cess (Fig. 4.5b). If we attempt to increase the speed of convergence by damping α
with a parameter q = 0.8 (originally q = 1) then the results shown in Fig. 4.6 are
obtained. We notice that the convergence speed is improved almost an order of mag-
nitude (Fig. 4.7). Nevertheless, due to the fast damping of α and, consequently, small
contribution of the stabilizing functional s(x) to the minimization of the parametric
functional Pα(x), the final solution is very smooth.
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Figure 4.4: Example of the focusing gravity inversion results for a simple 2D density model
(kg/m3). Only the values greater than -2kg/m3 are shown. The regularization parameter
α is adjusted after every 10-th iteration using condition (4.43). The focusing parameter β
is set equal to 0.5 kg/m3 in this case. The black contour shows the boundaries of the true
model.
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Figure 4.5: Example of the parametric functional convergence for the minimum support
gravity inversion. Pα(x) denotes the parametric functional, m(x) denotes the misfit term
and αs(x) denotes the regularization term. The results are shown for the inverse solution
presented in Fig. 4.4b. The regularization parameter α is adjusted after every 10-th iteration
using condition (4.43). The changes (decrease) of α are to small to be visible. The focusing
parameter β is set equal to 0.5 kg/m3.
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Figure 4.6: Example of the focusing gravity inversion results for a simple 2D density model
(kg/m3). Only the values greater than -2kg/m3 are shown. The regularization parameter
α is adjusted (decreased) after every 10-th iteration using conditions presented in equations
(4.43)-(4.46). The damping coefficient q = 0.8 and the focusing parameter β is set equal to
0.5 kg/m3 in this case. The black contour shows the boundaries of the true model.
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Figure 4.7: Example of the parametric functional convergence for the minimum support
gravity inversion. The results are shown for the inverse solution presented in Fig. 4.6b.
The regularization parameter α is adjusted (decreased) after every 10-th iteration using
conditions presented in equations (4.43)-(4.46). The damping coefficient q = 0.8 and the
focusing parameter β is set equal to 0.5 kg/m3.
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4.4.5 Summary

Focusing inversion is an attractive regularization method for inverse problems where
the solution of interest is characterized by a compact parameter support and/or sharp
property transitions in parameter values. Two types of stabilizers, namely, the mini-
mum support and the minimum gradient support stabilizer can be used for such prob-
lems. The minimum support stabilizer promotes focused solutions with a compact pa-
rameter support. The minimum gradient support stabilizer allows obtaining estimates
with sharp transitions in parameter values. To demonstrate this, both stabilizers were
applied to a simple 2D gravity inverse problem where the unknown parameter was a
subsurface density anomaly. For a comparison, the unregularized least-square inver-
sion was performed. The focusing inversion provided solutions, which were much more
compact and closer to the blocky-structure model. Contrary to that, very smooth and
blurred density anomaly estimates were obtained from the least-squares model fit.
The focusing inversion method with the minimum support stabilizer will be applied
to the field case feasibility study in Chapter 5.
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4.5 Data assimilation

4.5.1 Introduction

Data assimilation (computer-assisted history matching) methods can be used for sys-
tem state or combined system state and parameter estimation problems. In the con-
text of this research the system states refer to, e.g., reservoir pressure, saturations,
density and the parameters are, e.g., porosity and permeability. In this section we
will introduce two data assimilation techniques, namely the ensemble Kalman filter
(EnKF) and the ensemble smoother (ES), which will be applied in this thesis.
The ensemble Kalman filter was introduced by Evensen (1994), and has since recently
been applied for state- and parameter-estimation problems in the petroleum industry.
In one of the first EnKF applications, Nævdal et al. (2002) updated the permeability
field to history match and forecast a 2D near-well reservoir model. The range and
complexity of synthetic experiments with the EnKF was extended quickly. Gu &
Oliver (2005) estimated permeability and porosity using production data for the 3D
PUNQ-S3 model. Liu & Oliver (2005) applied the EnKF to update facies boundaries,
and Seiler et al. (2010) estimated the top and bottom reservoir horizons. In a recent
publication, Chang et al. (2010) investigated the applicability of the EnKF to the
problem of coupled fluid flow and geomechanics. They assimilated jointly produc-
tion and subsidence data and found improved estimates of reservoir permeability and
Young’s-modulus fields. Encouraging results of many synthetic studies have stimu-
lated the use of EnKF for real-field cases. Bianco et al. (2007) applied the EnKF
to history match the Zagor reservoir model and to update the uncertain porosity
field. Evensen et al. (2007) assimilated production data from a North Sea reservoir
to update model parameters, including porosity, permeability, fault transmissibilities,
and depths of initial fluid contacts. An overview of other field-case studies using the
EnKF can be found in Aanonsen et al. (2009) and in Oliver & Chen (2011) and an
extensive literature overview of Kalman filtering (general) applications is included in
Evensen (2007). The EnKF method is briefly introduced in Subsection 4.5.4 of this
Chapter. Further theoretical details of the EnKF can be found in Evensen (2007) and
practical implementation aspects are discussed in Evensen (2003).
The EnKF is a sequential Monte Carlo simulation-based method where an ensemble
of models are propagated forward and updated each time new measurements become
available. This makes the EnKF capable of uncertainty assessment and uncertainty
propagation and real-time model updating. However, the sequential nature of the
EnKF may require restarts (either from the start of the simulation or from the previ-
ous time step) of the ensemble models (why the restarts may be required will explained
in more detail in Subsection 4.5.6). For complex large-scale reservoir systems this may
lead to a significant computational load. Furthermore, dealing with structural model
(reservoir horizons, thickness, fault locations, etc.) updates resulting in changes of the
numerical grid may not be straightforward using the EnKF. Therefore, the ensemble
Smoother (ES) has recently been considered as an alternative approach for reservoir
history-matching. The ES differs from the EnKF by computing one global update in
the time-space domain rather than updating the models recursively as the EnKF does.
Thus, when using the ES frequent model restarts are not necessary and computational
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time can be significantly reduced. The ES was proposed by van Leeuwen & Evensen
(1996) and its performance for a reservoir history-matching problem was recently
evaluated by Skjervheim et al. (2011). Skjervheim et al. (2011) used a 3D synthetic
example based on the real sector model and also a real North Sea field application to
test the performance of both the ES and the EnKF. In the synthetic case production
data (oil rates and water cuts) and 4D seismic data (cumulative two-way travel times)
were assimilated to estimate reservoir permeability and porosity fields. Fairly similar
results were obtained using both methods. The major difference was the quantifica-
tion of the associated uncertainty: the EnKF-based uncertainty estimate was slightly
smaller than the one obtained with the ES. In a real case study they history-matched
the production data (oil and water rates) and updated the reservoir structure (top
and bottom horizons). Also in this case the results were rather similar, but the ES
required significantly less computational time, i.e., about 10% of that used by the
EnKF because a large number of recursive model restarts could be avoided. However,
based on these studies they could not conclude that one method is better than the
other.
The ensemble Kalman filter and the ensemble smoother methods are briefly intro-
duced in Subsections 4.5.4 and 4.5.5, respectively. For completeness we start with a
brief sketch of the Kalman filter and and its extension to non-linear problems, namely,
the extended Kalman filter method.

4.5.2 Kalman filter

The Kalman filter (KF) is an optimal sequential assimilation method for linear system
dynamics and Gaussian assumptions about the system and measurement noise (see
Evensen 2007, Oliver et al. 2008, Heemink et al. 2010). The optimality refers to
the minimization of analysis errors with respect to the true state. The KF is based
on sequential updating of system state using a predictor-corrector approach. For a
particular time step when measurements become available a prediction of the system
state is made using estimates from the previous time step. The mismatch between
observed and predicted data is used to update (correct) the modeled system state and
produce forecasted state for the next assimilation time. Furthermore, the statistics of
estimation/prediction error can be determined and propagated forward. This allows
the quality of the estimates to be assessed.
For a linear system a stochastic state space representation is defined as follows

xk+1 = Fkxk +Bkuk +wk (4.51)

yk = Hkxk + vk, (4.52)

where k is the time-index, x denotes the state of the system, F is the linear forward
operator of the system state, B is the control input operator, w denotes the zero-mean
Gaussian system noise with covariance Cwk

, y denotes the noisy observations, H is
the linear measurement operator relating the system state to the observations, and v

denotes the zero-mean Gaussian measurement noise with covariance Cyk
.
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The initial conditions are assumed to be Gaussian with

xa
0 = x0 (4.53)

Ca
x0

= Cx0
, (4.54)

where x0 denotes the mean, Cx0
is the covariance matrix of the Gaussian distribution,

and xa denotes the analyzed (updated) estimate. It is assumed that the system noise
process, the measurement noise and the initial condition distribution are mutually
independent.
For an optimal state estimate, the Kalman filter combines sequentially information
provided by the model with available measurements. A two-stage process is applied
where the first stage is the system state forecast

x
f
k = Fk−1x

a
k−1 +Bk−1uk−1 (4.55)

Cf
xk

= Fk−1C
a
xk−1

FT
k−1 +Cwk−1

, (4.56)

where x
f
k is the forecast of the system state at time tk, C

f
xk

is the forecasted state
covariance matrix, and Ca

xk
is the analyzed state covariance matrix. In the next step,

the model information is combined with available measurements using

xa
k = x

f
k +Kk(yk −Hkx

f
k), (4.57)

where the weighting term Kk is called the Kalman gain, defined as

Kk = Cf
xk
HT

k (HkC
f
xk
HT

k +Cyk
)−1. (4.58)

The state covariance matrix provides an estimate of the analysis errors, and is updated
using

Ca
xk

= (I −KkHk)C
f
xk
. (4.59)

There are several ways to derive the Kalman filter estimation scheme summarized
in Eqs. (4.57)-(4.58), see Jaźwinski (1970) for more details. It can be obtained as
a posterior variance minimizing scheme (minimization of the trace of the analyzed
state covariance matrix) or as a sequential least-square estimate embedded within the
Bayesian framework (Oliver et al. 2008, Evensen 2007).

4.5.3 Extended Kalman filter

The Kalman filter provides optimal state estimates for linear system dynamics and
Gaussian assumptions about the noise processes. In nonlinear cases, however, with
(for simplicity we assume Bk = 0)

xk+1 = fk(xk) +wk, (4.60)
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where f denotes the nonlinear forward operator or

yk = hk(xk) + vk, (4.61)

where h denotes the nonlinear measurement operator, the KF estimation scheme is
not applicable.
An ad hoc extension of KF to (weakly) nonlinear problems is based on determining
approximate linear operators

xk+1 ≈ Akxk +wk, (4.62)

where Ak is the tangent linear operator (Jacobian matrix) of fk(xk). In a similar way
the relation between observations and system state can be linearized

yk ≈ Hkxk + vk. (4.63)

This approach is known as extended Kalman filter (EKF). Due to the inherent ap-
proximations it provides sub-optimal state estimates (Jaźwinski 1970, Evensen 2007,
Oliver et al. 2008). In addition, for large-scale problems not only the storage and
forward propagation of the state covariance matrix, but also the approximation of
the Jacobian matrices can be expensive.

4.5.4 Ensemble Kalman filter

To overcome some of the shortcomings of KF and EKF another sequential data assim-
ilation method can be used, namely the ensemble Kalman filter (EnKF), proposed by
Evensen (1994). The EnKF is a Monte Carlo implementation of KF, which approx-
imates the state covariance matrix using a finite set of randomly generated system
states, and where the ensemble mean is considered as the best-guess estimate of the
state. Consequently, there is no need to linearize the dynamic system equations,
because the state covariance matrix is not explicitly propagated forward, but is ap-
proximated from the ensemble of system states. Thus, the state covariance matrix
does not need to be stored. This makes the EnKF attractive for nonlinear models
and large-scale problems.
In the following we introduce the EnKF notation as will be used throughout the the-
sis. In particular, we consider a joint parameter and state estimation problem instead
of state estimation problem as in the traditional KF formulation. This means that
the state vector will be augmented with uncertain static parameters, which are simul-
taneously solved for together with the model state (Evensen 2007).
The EnKF algorithm, similarly to the classical KF, uses three major steps: initial-
ization, forecast and update. The EnKF is initialized by generating an ensemble of
model states, where typically 40− 200 members are used in reservoir engineering ap-
plications. We denote the matrix holding the ensemble of augmented state vectors at
time tk as

Ψk = [ψk,1, ψk,2, . . . , ψk,Ne
] , (4.64)
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where Ne is the number of ensemble members and ψk,j , j = 1, . . . , Ne are the aug-
mented ensemble state vectors, i.e.,

ψk,j =
[
xT
k,j , θ

T
k,j , g(xk,j , θk,j)

T
]T
. (4.65)

In Eq. 4.65 x denotes the system state (e.g., pressure, saturations), θ denotes the
static parameters (e.g., permeability, porosity) and g(xk,j , θ) denotes the simulated
data, which in general can be nonlinear function of the state x variables and the static
parameters θ. Note that in (4.65) the predicted data are explicitly included in the
augmented state vector. This is a common approach in EnKF reservoir engineering
applications, which allows to linearly relate predicted observations y to the augmented
state vector ψ even in a nonlinear case, and still use the recursive KF scheme.
In the forecast step all the ensemble members are propagated forward to the next
time when measurements are available

ψf
k,j = f(ψa

k−1,j), (4.66)

where f(·) denotes the nonlinear forward modeling operator. In context of this re-
search f(·) stands for simulator of reservoir flow. The superscript a denotes analyzed
(updated) ensemble member realization obtained according to

ψa
k,j = ψf

k,j +Kk(yk,j −Hkψ
f
k,j), (4.67)

where Kk is the ensemble Kalman gain, Hk = [0, I] is the measurement operator
extracting predicted data from the ensemble state vector, 0 is a N ×M matrix filled
with zeros, and I denotes the N × N identity matrix. Burgers & Evensen (1998)
showed that in order to obtain proper error covariance of the analyzed state, random
perturbations must be added to the observations, i.e

yk,j = yk + ǫj , j = 1, . . . , Ne, (4.68)

where ξj is a random perturbation drawn from the same distribution as the mea-
surement error, i.e., zero-mean Gaussian with covariance matrix Cyk

. The ensemble
Kalman gain is analogous to (4.58) and is given by

Kk = C
f
Ψk

HT
k (HkC

f
Ψk

HT
k +Cyk

)−1, (4.69)

but in this case the state covariance matrix is approximated from

C
f
Ψk

=
LkL

T
k

Ne − 1
, (4.70)

where

Lk = Ψ
f
k −Ψ

f

k = Ψ
f
k(I− 1Ne

), (4.71)

and
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Ψ
f

k = [ψ
f

k , ψ
f

k , . . . , ψ
f

k ], (4.72)

with

ψ
f

k =
1

Ne

Ne∑

j=1

ψf
k,j . (4.73)

In Eq. (4.71), I is the Ne ×Ne identity matrix and 1Ne
is a Ne ×Ne matrix with all

elements equal to 1/Ne. Using (4.70) the ensemble Kalman gain can be written as

Kk = Lk(HkLk)
T
[
(HkLk)(HkLk)

T + (Ne − 1)Cyk

]−1
, (4.74)

which typically is computationally more efficient because the state covariance matrix
does not need to be stored.
Following Evensen (2007) it can be shown that the updated ensemble is a combination
of the forecast ensemble members. To simplify the notation, we skip the time index
k. Let us define the ensemble of innovation vectors as

Y′ = Y −HΨf , (4.75)

where Y = [y1,y2, . . . ,yNe
] is a matrix holding the ensemble of perturbed measure-

ments. Let

S = HL, (4.76)

and

M = SST + (Ne − 1)Cy. (4.77)

Then, using (4.74), the update equation can be written as (Evensen 2007)

Ψa = Ψf + LST
(
SST + (Ne − 1)Cy

)−1

Y′

= Ψf +Ψf (I− 1Ne
)STM−1Y′

= Ψf
(
I+ (I− 1Ne

)STM−1Y′
)

= Ψf
(
I+ STM−1Y′

)

= ΨfX, (4.78)

where X =
(
I+ STM−1Y′

)
is called the transformation matrix. In (4.78), Eq. (4.71)

was used together with 1Ne
ST ≡ 0 (note that the ensemble mean is removed in 4.71).

Equation (4.78) shows that the updated ensemble members are a combination of the
forecasted ensemble members, and hence, by applying this result recursively in time,
are the combination of the initial ensemble members. This clearly shows that the
EnKF solution is searched for in the space spanned by the initial ensemble members.
Thus, unless the true model is contained in this space it is not possible to obtain a
true model solution from any combination of ensemble members. We will demonstrate
this with a simplified example in Subsection 4.6.1.
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4.5.5 Ensemble smoother

The Ensemble smoother (ES), introduced by van Leeuwen & Evensen (1996), differs
from the EnKF by computing one global update in the time-space domain rather than
performing recursive updates as the EnKF does. Let us define the ensemble matrix
of a joint state from time t0 to time tm

Ψ̃f =




Ψ
f
0

Ψ
f
2
...

Ψf
m


 . (4.79)

In an analogous way as in (4.71), the ensemble perturbation matrix is defined as

L̃ = Ψ̃f − Ψ̃
f

= Ψ̃f (I− 1Ne
). (4.80)

The time-space ensemble of perturbed measurements is stored in

Ỹ =




Y1

Y2

...
Ym


 , (4.81)

and the time-space measurement operator is given by

H̃ =




H1

H2

...
Hm


 . (4.82)

In analogy with (4.75), (4.76) and (4.77), the ensemble of innovation vectors

Ỹ′ = Ỹ − H̃Ψ̃f , (4.83)

measurements of ensemble perturbations

S̃ = H̃L̃, (4.84)

and the matrix
M̃ = S̃S̃T + (Ne − 1)C̃y (4.85)

are defined, where C̃y is the error covariance matrix of all measurements from time
t0 to time tm. Using this notation, the ES update equation can be expressed as

Ψ̃a = Ψ̃f + L̃S̃T
(
S̃S̃T + (N − 1)C̃y

)−1

Ỹ′

= Ψ̃f + Ψ̃f (I− 1Ne
)S̃TM̃−1Ỹ′



4.6 The common framework 83

= Ψ̃f
(
I+ (I− 1Ne

)S̃TM̃−1Ỹ′
)

= Ψ̃f
(
I+ S̃TM̃−1Ỹ′

)

= Ψ̃fX̃. (4.86)

4.5.6 Discussion

For linear systems and Gaussian assumptions about the noise processes, KF, EnKF
and ES will result in the same solution for the same inputs and an infinitely large
number of ensemble members (Evensen 2007). For nonlinear problems, the KF is
not suitable and the EnKF and the ES can be used. In practice, their application
provides approximations to the optimal solution because of the limited number of
ensemble members that can be afforded. Furthermore, in case of highly non-Gaussian
(e.g., multimodal, skewed) parameter distribution, the probability density function
(pdf) of the final estimate may converge to a Gaussian-like pdf because only two
statistical moments, i.e., the mean and the variance, are used in the update step. For
that reason, various transformations (e.g., logarithmic to the permeability field) are
applied to assure that the prior parameter pdf is close to Gaussian. Other alternative
is to use particle filters, which approximate the evolution of the complete parameter
pdf (see, e.g., van Leeuwen 2009, Vossepoel & van Leeuwen 2007). However, many
particles (ensemble members) may be required (often more than 1000) what for large
and complex models is (nowadays) computationally expensive.
Another issue in the use of EnKF is the inconsistency problem, which may arise when
the static and dynamic variables are combined together in a state vector. By con-
sistency it is meant that the state estimates (e.g., pressures, saturations) obtained
using the filter are the same as those we would obtain if we re-run the model with the
corresponding static parameter estimates (e.g. permeability, porosity) from time zero
with a given initial state. The limited number of ensemble members and the linear
EnKF update step may not always guarantee that the physically meaningful rela-
tionship between the static and dynamic variables is preserved after the update (see,
e.g., Emerick & Reynolds 2011). This means, for instance, that resulting permeabil-
ity estimates may not be physically consistent with the estimates of pressure and/or
saturation. Furthermore, negative values of pressure or saturation can be obtained.
To mitigate this problem, the reservoir simulator can be restarted from time zero
with the latest estimates of the static parameters to compute new realizations of the
dynamic variables (Thulin et al. 2007). In this case only the static parameters are up-
dated. This approach solves the consistency problem, but it may be computationally
expensive for complex and large-scale models.

4.6 The common framework

In the previous section we discussed two approaches for the estimation of uncertain
model parameters (or system state). In the first one, more traditional approach
based on the Tikhonov regularization concept, the estimates of uncertain parameters
are determined in the inversion process using available observations and, to constrain
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the solution, some sort of mathematical regularization. Usually, no distinction is
made between static parameters and dynamic variables and the unknowns are simply
called model parameters. Thus, the model parameters to be determined can be,
e.g., values of porosity or density for every grid cell of a reservoir model. The second
approach, called data assimilation (or computer-assisted history matching), estimates
a system state by combining information provided by available measurements and
the physical model (here, reservoir flow simulator) forecast. Thus, the term ”model”
has a broader meaning here: it refers not only to a set of uncertain parameters (as
in the classical inversion), but also includes the physics (discretized flow equations,
boundary conditions and constraints) of phenomena under investigation. Usually, a
distinction is made between state variables and static parameters. Depending on the
implementation approach, only the static parameters can be estimated whereas values
of the time-variable state variables (pressures, saturations, densities) are simulated
from the model given the updated parameters or both, the state variables and static
parameters, can be estimated simultaneously.
In this section we will try to show some of the similarities and differences between
these two approaches, especially in the context of regularization.

Let us recall the MAP estimate of x derived within the Bayesian framework

x̂ = x0 +CxA
T (Cy +ACxA

T )−1(y −Ax0). (4.87)

For a comparison the generalized least-square solution following from minimization
of the Tikhonov parametric functional (4.20) is

x̂ = x0 + (ATWT
y WyA+ αWT

xWx)
−1ATWT

y Wy(y −Ax0). (4.88)

If we define
Px = αWT

xWx, (4.89)

and
Py = WT

y Wy, (4.90)

then (4.88) can be written as

x̂ = x0 + (ATPyA+Px)
−1ATPy(y −Ax0). (4.91)

Using again the matrix identities (4.12), the Eq. (4.91) can be expressed as

x̂ = x0 +PxA
T (Py +APxA

T )−1(y −Ax0). (4.92)

Finally, let us recall the Kalman filter update equation

xa
k = x

f
k +Cf

xk
HT

k (Cyk
+HkC

f
xk
HT

k )
−1(yk −Hkx

f
k), (4.93)

where k is the time index.
From the above we can see that the generalized least-squares estimate can be writ-
ten in the same form as the MAP estimate derived within the Bayesian framework.
Note however, that in these cases regularization of the solution is performed from a
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different point of view, i.e., in Eq. (4.92) the matrix Px acts purely as a numerical
operator and takes various forms depending on the stabilizer used, whereas the model
covariance matrix Cx in Eq. (4.87), acting also as regularization operator, has a sta-
tistical meaning. The Kalman filter, and hence EnKF and ES, are closely related
to the statistical regularization concept. In the EnKF and ES, however, the model
(or state) covariance matrix is not explicitly specified, but is approximated from the
prior ensemble. We showed that in this case the true solution is searched for in the
space spanned by the prior ensemble members, which provide a regularization of the
solution. We will demonstrate this with a simple example in Subsection 4.6.1.

4.6.1 Example

A 2D synthetic gas-reservoir model extending from 0 to 3000 m in both the x- and
y-directions with a uniform 75 × 75 × 50 m grid-cell size is considered. The dis-
tance from the reservoir top to the free surface is 1700 m. The reservoir gas produc-
tion causes pressure drop and water influx through the western reservoir boundary
(Fig. 4.8a). Because the reservoir permeability (Fig. 4.8b) is heterogenous, the water
front (Fig. 4.8a) does not propagate uniformly. Further details of this model setup
will be given in Chapter 6. Here, we consider the problem of the reservoir density-
change estimation (and hence, implicitly, the water-front position) given observations
of temporal gravity variations after 1500 days of the gas production. There are in
total 1600 uncertain density change values to determine (40×40 model grid size) and
900 gravity observations available, separated by about 166 m in x- and y-direction.
A zero-mean Gaussian noise with 5µGal standard deviation is added to contaminate
the synthetic gravity data. Three approaches will be used to estimate the density
variation, namely, the unregularized least-squares model fit, the focusing inversion,
and the ensemble Kalman filter.

(a) reservoir saturation at 3500 days
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Figure 4.8: The reservoir model permeability field and the corresponding saturation at 3500
days. Initially (at time t=0) the reservoir is saturated with gas only.
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Figure 4.9: Density change (kg/m3) between time t=0 and t=1500 days for the reference
model. The negative density variation is caused by gas takeout and the positive density
variation by water influx.

The ensemble Kalman filter setup

The use of the ensemble Kalman filter requires the specification of the initial ensemble
which spans the parameter space where the solution is searched for. To generate the
ensemble representing the temporal density variation, we apply the following proce-
dure. A set of 100 different realizations of the permeability field is used as input to
the physical model of the gas reservoir which, subsequently, is run forward for 1500
days using the reservoir simulator. How the initial ensemble of different permeabil-
ity fields was created will be explained in detail in Chapter 6. An example of the
generated permeability field realizations is shown in Fig. 4.10 and an example of the
corresponding density changes is shown in Fig. 4.11.

The focusing inversion setup

Similarly as in the previous section, we apply both the minimum support and the
minimum gradient support inversion. In both cases, the focusing parameter β is set
equal to 120 kg/m3 × 10−2 i.e., to about 1% of the density change induced by the
water/gas replacement. Again the re-weighted regularized conjugate gradient scheme
(4.41) is applied with adjusting the regularization parameter α at every iteration us-
ing condition (4.43).

Density change estimates

The estimates of density change are shown in Fig. 4.12. To evaluate quantitatively
the results we first estimate the water front position. They estimates are derived
from the density change maps by reading the contour line with the specified density
change threshold. In this study we assume that a threshold of 20 kg/m

3
defines the

boundaries of the water front. Susequently, the RMSE of the water front position is
calculated.
The unregularized least-squares estimate is significantly smoother and far from the
true model (shown in Fig. 4.9) compared to the other cases. The front position
RMSE is 581 m in this case. The minimum support and the minimum gradient
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Figure 4.10: Example of the initial permeability fields (natural logarithm scale, mdarcy).

support solutions are fairly similar with the RMSE of 325 m and 316 m, respectively.
Compared to the EnKF solution (mean of the 100 updated ensemble members), which
gives the lowest front position RMSE of 218 m, the focusing inversion results are
slightly overshooting the reference density change in the southern part of the reservoir.
Because the EnKF is based on the Monte Carlo approach it provides additionally
uncertainty estimates for the solution which are shown in Fig. 4.13. We can see that
the standard deviation (std) of the density change estimate is reduced by about 40%
compared to the initial ensemble uncertainty spread.

The case with incorrect initial ensemble

We showed in (4.78) that the EnKF solution (the updated ensemble) is searched
for in the space spanned by the initial (prior) ensemble members, i.e., it is a linear
combination of them. This provides not only very strong regularization of the EnKF
inversion but also means that it may not be possible to obtain a reasonable solution if
the initial ensemble members are specified incorrectly. We will demonstrate this with
a simple example applying some changes to the current experiment setup. Previously,
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Figure 4.11: Examples of the initial ensemble members (density change in kg/m3 from
time t=0 to time t=1500 days) used in the EnKF history matching. The density change is
obtained by running the reservoir simulator model with different permeability field (shown
in Fig. 4.10) for each ensemble member.

it was assumed that the aquifer water can enter the reservoir via the western reservoir
boundary. All the prior ensemble members were constrained to this assumption while
generating initial predictions of the subsurface density changes. Suppose now that
we assume the water influx from the South while the reference model is unchanged,
i.e., water enters the reservoir from the West. The example of ”incorrect” prior
ensemble members is show in Fig. 4.14 and the corresponding subsurface density
change estimate in Fig. 4.15. It’s clear that in this case it is not possible to obtain
accurate results, because as it is schematically shown in Fig. 4.15b, the true solution
is not contained in the space spanned by the initial ensemble members.
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Figure 4.12: The reservoir density (kg/m3) change estimates (from t=0 to t=1500 days)
caused by reservoir gas production and water influx. The black contour shows the true
water front position.
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Figure 4.13: Standard deviation of the density change estimates (kg/m3) for the initial and
the updated ensemble members.



90 4 Gravity data inversion for reservoir monitoring and characterization

 

 

−40 0 40 80 120

Figure 4.14: Examples of the incorrect prior ensemble members (density change in kg/m3

from time t=0 to time t=1500 days) used in the EnKF history matching.
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Figure 4.15: Example of the gravity inversion for reservoir density change estimate (kg/m3)
in case of incorrect prior ensemble members. The black curve shows the true water front
position.
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4.7 Bias-aware data assimilation

4.7.1 Introduction

A frequent assumption in reservoir engineering applications of data assimilation is
that there are no model errors and the measurement errors are purely random, typ-
ically drawn from a zero-mean Gaussian distribution. The first assumptions implies
that for a set of correct input parameters the true signal can be predicted perfectly
by running the numerical model. The second assumption implies that there is no
systematic component in the measurement noise.
However, the numerical model even for perfectly correct input parameters may not be
able to accurately simulate the true data. Model errors may originate from e.g., too
coarse parametrization (too large grid blocks) or linearization and numerical approx-
imations applied to solve a system of physical equations. Another source of errors
relates to the unrepresented model physics and poorly known boundary conditions,
such as, e.g., aquifer support. Therefore, the model errors can arise both as random
as well as systematic. Similarly, errors in measurements may have different origins
and some of them are, e.g., data processing or influence of the environmental pro-
cesses. In Chapter 3 of the thesis we have shown that gravimetric observations can
be affected by spatio-temporal variations of groundwater which can add a correlated
signal to the measured gravity variation.
In data assimilation a systematic part of the model or the measurement errors is
called a bias. Dee & Da Silva (1998) showed that the Kalman filtering scheme for
any Kalman gain K (see, e.g., Eq. 4.58) will result in a biased analysis if the model
and/or observations are biased. On the other hand, the influence of a bias on analysis
results can be large, especially in case of severely ill-posed problems. Therefore, there
is a need for bias-aware data assimilation schemes where systematic error components
are taken into account properly.
Various authors have investigated bias estimation in data assimilation framework.
Jaźwinski (1970) proposed the state augmentation approach for model bias estima-
tion, i.e., the model bias is estimated simultaneously with the state variables. Fried-
land (1969) introduced an alternative approach where the bias estimation is decoupled
from the state estimation and showed that it is algebraically equivalent to the Kalman
filter for the augmented system. Dee & Da Silva (1998) extended the work of Fried-
land to the sequential bias estimation and state correction for the bias influence. De
and Da Silva discussed extensively estimation of model bias. Recently, Lea et al.
(2008) used the Bayesian formulation to derive an analysis scheme for a joint estima-
tion of observation and model bias in sequential data assimilation. This scheme will
be introduced in this chapter. For an overview of general bias estimation theory see,
e.g., Dee (2005).

The information about the presence of bias can be obtained from innovations, i.e., a
difference between the model predictions of observations and the actual observations
(Ménard 2010)

〈y −Hxf 〉, (4.94)

where y denotes the observations, H is the measurement operator, xf denotes the
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forecasted state and 〈·〉 denotes the mean. The non-zero mean innovations indicate
the presence of bias. However, they do not distinguish the source of a bias, therefore
additional knowledge is needed to discriminate the bias origin which can be the model,
the observations or both. The constraints on the bias can be incorporated through
the prior information about the possible source of bias and its characteristics. In next
section we introduce the bias-aware data assimilation methodology following Ménard
(2010).

4.7.2 Bias-aware assimilation scheme

Let us introduce first the notation for the observation and the model bias

xf = xt + et + εf

y = Hxt + bt + εo

ef = et + εe

bf = bt + εb, (4.95)

where xf is the forecasted state, xt is the true state, et is the true model bias, εf

are the random forecast errors of the state with covariance matrix Cf
x, y denotes the

observations, H is the measurement operator, bt is the true observation bias, εo is
the random measurement noise with covariance matrix Cy, e

f is the forecasted model
bias, εe are the random errors of model bias forecast with covariance matrix Qe, b

f

is the observation bias forecast, bt is the true observation bias and εb denotes the
random errors of the observation bias forecast with covariance matrix S

f
b .

The following three assumptions are needed to derive analysis equations in the pres-
ence of both the observation and the model bias (see, e.g., Ménard 2010)

• the observations y are independent of the model bias e, i.e.

P (y|x,b, e) = P (y|x,b), (4.96)

• the model state x is independent of the observation bias b, i.e.

P (x|b, e) = P (x|e), (4.97)

• the model bias e is independent of the observation bias b, i.e.

P (b, e) = P (e|b)P (b) = P (b)P (e), (4.98)

where P denotes the probability density function.
The above assumptions are used to find the maximum a posteriori (MAP) estimate
of the state, the observation and the model bias given available observations and a
priori information about the state and the biases. Using the Bayes’ theorem

P (x,b, e|y) = P (y|x,b, e)P (x,b, e)
P (y)

. (4.99)
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and
P (x,b, e) = P (x|b, e)P (b|e)P (e). (4.100)

Using (4.100) and the assumptions (4.96)-(4.98) the expression (4.99) reduces to

P (x,b, e|y) = P (y|x,b)P (x|e)P (b)P (e)
P (y)

. (4.101)

Under the Gaussian assumptions for the noise processes the sequential formulation
(the time index is skipped) of the solution for (4.101) is given by (for derivation details
see Ménard 2010)

xa = xf − ea +K
[
y − ba −H

(
xf − ea

)]
, (4.102)

K = Cf
xH

T
(
HCf

xH
T +Cy

)−1
, (4.103)

which requires the knowledge of analyzed bias estimates ea and ba. The model bias
estimate ea is obtained from

ea = ef − L
[
y − ba −H

(
xf − ef

)]
, (4.104)

L = Qf
eH

T
(
HCf

xH
T +HQf

eH
T +Cy

)−1
, (4.105)

and the observation bias estimate from

ba = bf −M
[
y − bf −H

(
xf − ef

)]
, (4.106)

M = S
f
b

(
HCf

xH
T +HQf

eH
T +Cy + S

f
b

)−1

. (4.107)

This coupled system is solved by first estimating the observation bias with (4.106)
then by updating the model bias with (4.104) and finally using this estimates to up-
date the state estimate with (4.102).
Further in the thesis we will use the ensemble formulation for the scheme (4.102)-
(4.106). This means that apart from the state covariance matrix Cf

x the bias co-
variance matrices Qf

e and S
f
b will be approximated using a finite set of Ne ensemble

realizations
e
f
k =

[
efk,1, e

f
k,2, . . . , e

f
k,Ne

]
, (4.108)

and
b
f
k =

[
bfk,1, b

f
k,2, . . . , b

f
k,Ne

]
, (4.109)

with

efk,j = fe(e
a
k−1,j), (4.110)

bfk,j = fb(b
a
k−1,j), (4.111)

where fe and fb denote some function describing the model and the observation bias
evolution, respectively and j = 1, . . . , Ne. The model bias covariance matrix is ap-
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proximated from

Qf
ek

=
LekL

T
ek

Ne − 1
, (4.112)

where

Lek = e
f
k(I− 1Ne

), (4.113)

an analogously the observation bias covariance matrix

S
f
bk

=
LbkL

T
bk

Ne − 1
, (4.114)

where

Lbk = b
f
k(I− 1Ne

). (4.115)

In (4.113) and (4.115) I is Ne ×Ne identity matrix and 1Ne
is Ne ×Ne matrix with

all elements equal to 1/Ne.
An example of application of this methodology to estimate both the observation and
the model bias in gravity data assimilation will be shown in Chapter 8 of the thesis.

4.8 Summary

Focusing inversion and two data assimilation methods, namely the ensemble Kalman
filter and the ensemble smoother, were discussed in this chapter.
Focusing inversion belongs to the family of mathematical regularization techniques
based on the Tikhonov regularization concept. In focusing inversion, constraints to
the solution are incorporated using specific stabilizing functionals, namely the mini-
mum support and the minimum gradient support stabilizers, which promote focused
solutions with sharp transitions in parameter values. It requires tuning/estimation
of the regularization parameter α and the focusing parameter β, which balance the
tradeoff between the model fit to the observations and the strength of regularization.
Focusing inversion can be used for both linear and nonlinear problems. However, in
the nonlinear case one needs to determine the tangent linear operator. For large scale
problems this can become computationally expensive. Furthermore, no explicit dis-
tinction is made between time-dynamic and static parameters, and all the unknowns
are treated in the same way regardless of their nature. The unknowns are simply
called parameters, which are estimated from the available observations at a partic-
ular moment in time. The estimate obtained at a given moment does not explicitly
influence the estimates obtained later.
In the EnKF and ES, which belong to the class of ensemble data assimilation tech-
niques, regularization of the solution is performed in a statistical sense, embedded
within the Bayesian framework. The state covariance matrix, which acts as a regular-
ization operator, is approximated from a finite set of ensemble members, which span
the space in which the solution is searched for. The EnKF and the ES are suitable
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methods for nonlinear problems and parameter/state estimation of time-dynamic na-
ture. A numerical model of the phenomenon under investigation, acting as a forward
operator, is, however, needed to simulate synthetic data and to propagate forward
the ensemble members. The updated estimates combine the model predictions with
the information contained in the assimilated observations. Usually, a distinction is
made between state variables and static parameters. Depending on the implemen-
tation approach, only the static parameters (e.g., porosity and permeability) can be
estimated whereas the values of the time-variable states (pressures, saturations, and
densities) are simulated from the model given the updated parameters, or the state
variables and the static parameters can be estimated simultaneously. There is no
need to linearize the problem because the state covariance matrix is approximated
from the evolving ensemble. In the EnKF the ensemble members are continuously
updated whenever new observations are available. Hence, the estimate obtained at a
given moment influences the estimate at a later moment. Similarly in the ES, where
all the data are matched simultaneously, the previous solution is affected by the fu-
ture observations, because of the cross correlations between the parameter/state and
the observations acquired at different moments in time. Furthermore, provided that
the prior information about the source and the characteristic of the systematic errors
(called bias) in the model and/or the observations is available, the data assimilation
scheme can be extended with the explicit estimation-correction scheme of these errors.
Both the focusing inversion method and the EnKF and the ES are attractive inver-
sion/estimation methods and they will be used throughout the thesis.





Chapter 5
Gravimetric monitoring of a Carbonate Field in the

North of Oman: a feasibility study

This Chapter summarizes findings of the feasibility study on gravimet-
ric monitoring of the Thermally-Assisted Gas-Oil Gravity Drainage (TA-
GOGD) process at a carbonate field in the North of Oman. The mon-
itoring objective is time-evolution of the heat-front position. The study
includes quantification of the expected changes in the temporal gravity
signal resulting from the reservoir mass redistribution induced by the TA-
GOGD process. These estimates are based on the synthetic data predicted
from the reservoir model of realistic complexity developed for the field.
Furthermore, using historical groundwater measurements, the estimates
of noise in gravity data related to the specific hydrological conditions in
the field are considered. It is shown that hydrological signals can be a very
significant source of noise affecting the gravimetric monitoring of the field.
Therefore, it is investigated under which conditions the hydrological influ-
ences can be minimized. For this purpose a set of hypothetical scenarios
is evaluated, where various densities of the water-level observation wells
are simulated. Finally, we perform a focusing inversion of the gravimetric
observations and analyze the achievable accuracy of heat-front position
estimates under the specific hydrological conditions.
Major findings included in this chapter have been submitted for a publi-
cation (Glegola et al. n.d.).

97
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5.1 The carbonate field in the North of Oman

The field is a highly fractured carbonate containing heavy (16°API gravity) and vis-
cous (200-220 cP) oil. The reservoir is a very shallow (∼300 m below the surface),
dome-shaped structure (Fig. 5.1) of about 6 km × 3 km extent. It has high porosity
of about 30% and low matrix permeability of 5-15 milidarcy (Hartemink et al. 1997).
The main reservoir production mechanism is Gas-Oil Gravity Drainage.

Figure 5.1: Cross-section of the considered field in Oman, after Hartemink et al. (1997).

5.1.1 Gas-Oil Gravity Drainage (GOGD)

GOGD is a hydrocarbon recovery process applied to fractured reservoirs, particulary
carbonates. It is based on the density difference between oil and gas and a natural
mechanism where gravity is a major driving force. The GOGD process occurs when
gas is introduced into a highly fractured reservoir formation and a fracture gas cap is
established. When the oil in the matrix is above the fracture gas-oil contact (FGOC)
a lack of hydrodynamic equilibrium causes gravity forces to drain the oil down the
matrix (see Fig. 5.2). In the absence of vertical flow barriers the oil drainage takes
place entirely down the matrix until it reaches the location of the FGOC. As a result
an oil rim is established in the fracture system from which the oil can be produced
(Penney et al. 2007). The mathematical description of the GOGD process can be
found in Hagoort (1980).
The effectiveness, i.e., the oil drainage rates of the GOGD process strongly depends
on the properties of oil and the properties of the reservoir rock. Heavy and viscous
oils will be drained at lower rates. Similarly, low matrix permeability may slow down
the oil drainage. Finally, density and connectivity of the fracture network have a
strong impact on the overall drainage distribution. In the field example considered
in this study oil is relatively dense and viscous and, therefore, low production rates
from the GOGD process were achieved. Consequently, the GOGD was expected to
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recover only 3-5% of the oil in place. Therefore, to enhance the field production
Thermally-Assisted GOGD (TA-GOGD) has been implemented.

Figure 5.2: Schematic view of the GOGD process, after Penney et al. (2007). The green
color denotes gas, the red is oil and the blue denotes water. GOC stands for Gas-Oil Contact
and OWC stands for Water-Oil Contact.

5.1.2 Thermally-Assisted Gas-Oil Gravity Drainage (TA-GOGD)

In the TA-GOGD process, steam is injected to heat up the oil in the matrix (Fig. 5.3)
and to accelerate the GOGD recovery. The heat is transferred from fractures into the
rock matrix by conduction. The steam releases its heat, condenses, and flows down
the fractures as hot water. The heated oil becomes less viscous and drains at acceler-
ated rates, where the rate yield is proportional to the viscosity reduction. An increase
in the reservoir temperature results in the development of gas volumes in the matrix.
The gas originates from the reservoir oil and the connate water vaporization. Another
important effect induced by the heat transfer is thermal expansion of the reservoir
fluids. In the result some of the oil is squeezed out of the matrix into the fracture
system (Boerrigter & van Dorp 2009, Bychkov et al. 2008).
In the field example considered here, heating the matrix rock through the steam
injection is expected to increase the GOGD rate by a factor of about 100 (Habsi
et al. 2008). The full field scale TA-GOGD is the world’s first project of this type.

5.2 Temporal gravity variations

5.2.1 Gravity field variations caused by TA-GOGD

The effectiveness of the TA-GOGD strongly depends on the fracture density and
distribution. The fractures are means to provide steam and, hence, heat into the
reservoir, which determines to a large extent the oil drainage rates and drainage areas.
As a result of the TA-GOGD process application, the movable oil in the matrix will
be replaced by a mixture of steam and hydrocarbon gases (Fig. 5.4). This will create
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Figure 5.3: Schematic view of the TA-GOGD process, after Penney et al. (2007). The yellow
color denotes steam, the green color denotes gas, the red is oil and the blue denotes water.
GOC stands for Gas-Oil Contact and OWC stands for Water-Oil Contact.

a negative variation in the reservoir formation density since the oil is denser than the
steam and hydrocarbon gases. Consequently, the reservoir density change will lead
to local gravity field variations. Therefore, measurements of the temporal gravity
changes could be used to make inference about density/mass redistribution due to
TA-GOGD.

Figure 5.4: Schematic illustration of the distribution of injected steam, after Penney et al.
(2007).

To estimate the time-lapse gravity variations resulting from the field production with
TA-GOGD we perform a numerical study. We use numerical model outputs provided
by the field operating asset. The synthetic data are obtained by running forward a
realistic complexity reservoir model, consisting of 157×102×9 cells, which was devel-
oped for the field. The model simulates steam injection and oil production and is
propagated forward for a period of 10 years, i.e., from year 2010 to year 2020. Af-
ter every 5 years of the simulation, the predicted reservoir phase densities and the
saturations are extracted. The time evolution of the reservoir phase saturation is
shown in Fig. 5.5. As a result of the oil drainage caused by the TA-GOGD process,
a significant gas cap with a fairly regular, circular shape at the top of the reservoir
structure will develop. The gas saturation will gradually increase in time and will be
distributed mostly in the top 4 reservoir layers. The gas/oil displacement will lead to
the time-lapse density changes with a predicted maximum amplitude after 10 years
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of reservoir production of about 120 kg/m3 (Fig. 5.6).
The other data provided by the field asset team for the simulation of the gravity
signal include the reservoir model porosity, the reservoir model grid geometry, and
the elevation of the surface.
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Figure 5.5: The reservoir model saturation in time, top view. The green color denotes gas,
the red color is oil and the blue color denotes water.
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Figure 5.6: Simulated time-lapse density change (kg/m3) after 5 and 10 years of the field
production. Cross-sections through the reservoir parts with major time-lapse density changes
are shown.

For the computation of the gravimetric signal the analytical solutions for the grav-
itational attraction of a rectangular prism are applied (see Chapter 2). Since the
reservoir model grid is composed of irregular cells rather than prisms, a model grid
approximation is performed after the reservoir model simulation. Each cell in the
original grid is approximated by 4 rectangular prisms (Fig. 5.7). This means that the
grid refinement is performed in the proportion 1:2 in x- and y-directions, respectively.
The grid cell size is reduced from about 50×50 m to about 25×25 m.

The time-lapse gravimetric signal is simulated on a regular observation grid containing
552 observation points (Fig. 5.8). The measurement separation distance is fixed and
equal to about 150 m, which is close to half of the reservoir depth. Three gravimetric
surveys are simulated: the baseline survey in 2010, the first monitoring survey in
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(a) the original model grid (b) the model grid approximated by prims

Figure 5.7: Reservoir model grid representation. Only a part of the whole grid is shown.

2015 and the second monitoring survey in 2020. Subsequently, two time-lapse gravity
variations are determined: the 5 years difference between the first monitoring survey
and the baseline survey (2015-2010) and the 10 years difference between the second
monitoring survey and the baseline survey (2020-2010). The predicted time-lapse
gravity variation is shown in Fig. 5.9. The signal amplitudes are 84 µGal for the
2015-2010 difference and 148 µGal for the 2020-2010 difference. They are significantly
above the typical measurement uncertainty, which is in the order of 5 µGal.
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Figure 5.8: Schematic layout of the field gravity measurement network (black dots). The
measurement spacing is regular with about 150 m in x- and y-direction. The gravity obser-
vation network is compared to the reservoir layout (in the background).
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Figure 5.9: Simulated time-lapse gravity variation induced by the TA-GOGD process after
5 (a) and 10 (b) years of the reservoir production. One contour interval is 5 µGal.

5.2.2 Field estimates of the gravity data noise

In order to estimate the gravity data noise levels under the specific conditions of the
Oman field, three gravity test surveys with CG5 relative gravimeter were performed
by the reservoir operating asset. The relative gravity measurements were made in
August, September and October 2010 with about 100 stations per survey (Fig. 5.10).
The observational-noise estimates are determined by computing the mean and the
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Figure 5.10: Measurement network layout for the gravity observational-noise test survey in
the Oman field. Black dots denote the location of gravity stations. The reservoir layout is
shown in the background.

standard deviation of the time-lapse difference data sets, i.e., September-August,
October-August and October-September. Prior to the calculation of the statistics,
the data outliers are removed. An outlier is defined to be the time-lapse difference
exceeding 30 µGal in the absolute sense.
The field estimates of gravity data observational noise are presented in Tab. 5.1 and
Fig. 5.11. As can clearly be seen, the noise estimates based on the difference data with
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Figure 5.11: Gravity time-lapse data representing the observational noise, µGal.

the August survey as the baseline show unsatisfactory results. The mean differences
seem to be biased by about 5µGal whereas the standard deviations are high: in the
order of 11-12 µGal. Significantly improved estimates are obtained for the time-
lapse data of the October and September surveys: the mean difference is less than 2
µGal and the standard deviation of the difference is close to 5 µGal, which is not far
from the typical uncertainty of the gravity field measurements. The poor quality of
the August survey could be due to many reasons such as instrument drift, insufficient
accuracy of the instrument positioning in the vertical direction, inaccurate application
of gravity data corrections, etc. Therefore, it should be further investigated at the
data processing stage.

Table 5.1: Summary statistics of time-lapse difference data.

September-August October-August October-September
# of outliers 3 1 1
mean (µGal) -6.2 -4.6 1.6
std. (µGal) 11.3 12.1 5.5

5.2.3 Hydrological signal estimates

The specific conditions in the field include a dynamic hydrological environment.
Fig. 5.12 shows that temporal variations in groundwater levels in the order of 10 m
are possible. The variations are partly due to the natural recharge and discharge
processes and partly due to the extraction and the disposal of production water.
Therefore, a detailed modeling of gravimetric signal resulting from the groundwater
variations may be crucial to properly assess the feasibility of gravimetric monitoring
of the TA-GOGD at the field.
Since a detailed hydrological model of the field was not available for this study we
followed a stochastic approach to investigate the potential contributions of the hydro-
logical signal to the observed time-lapse gravity changes. Our simulation is based on
the observed variability in the groundwater field data. The available measurements
are a time series of water levels at observation wells in the field. From these data
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Figure 5.12: Groundwater data for the field in Oman. In (a) location of the groundwater
observation wells is compared to the location of the predicted time-lapse density change
(kg/m3) in the reservoir after 10 years of production (2020-2010).

we extract 2 snapshots between which significant changes in the groundwater levels
occurred. The first sample S1 are the water level measurements at 01.04.2002 and the
second sample S2 is taken at 18.04.2008. Further, the difference of the two readings,
i.e., δS=S2-S1 is determined. The data show a decrease in the water table reaching
several meters at some observation wells (Tab. 5.2).

Table 5.2: Groundwater level change sample data.

well number 1 2 5 6 8 9 10 11
water level
change (m) -0.85 -0.05 -7.21 -2.92 -0.61 -0.67 -1.04 -1.22

The time-lapse water level changes δS are used to constrain the stochastic simulation
of the groundwater-level variations. The realizations are generated in such a way
that the well data are matched. For this purpose the Direct Sequential Simulation
(DSSIM) method (Remy et al. 2009) is applied. To account for the uncertainties
related to the properties of the aquifer (e.g., aquifer continuity) we considered different
scales of the spatial correlation for the groundwater variations and used the variogram
range of about 7.5, 15 and 30 km. Furthermore, for every case, 50 simulation runs
are performed, giving in total 150 different stochastic realizations of the water-level
change. Two examples of the generated realizations are shown in Fig. 5.13. To
translate the hydrological variation into the gravimetric signal we use a homogenous
drainable aquifer porosity of 0.12 and an aquifer water density of 1000 kg/m3. The
resulting hydrological signal is shown in Fig. 5.14. As can be seen, the modeled
groundwater changes can result in correlated gravity signal with amplitudes up to
30-50 µGal. The root-mean-square error (RMSE) of the total hydrological signal,
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which is determined as

RMSEhydr.signal =

√√√√ 1

552

552∑

i=1

(
∆gW,T

i

)2
(5.1)

where ∆gW,T is the true temporal gravity change due to groundwater variation, is in
the order of 15-26 µGal in this case.
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Figure 5.13: Two examples of the simulated time-lapse groundwater variation (m) for dif-
ferent groundwater correlation scales. In the top row results of the first simulation run are
shown and in the bottom row of the second run, respectively. The black rectangle denotes
the boundaries of the gravity measurement network. The black circles denote the location
of the conditioning well-data.
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Figure 5.14: Examples of the simulated hydrological signal realizations. One contour interval
is 5 µGal. The RMSE is computed using Eq. (5.1).

5.2.4 Hydrological noise estimates

We showed in Chapter 3 that using spatial interpolation of water level measurements
the hydrological gravity signal caused by temporal variations of groundwater can be
estimated. Subsequently, this estimate can be subtracted from the observed gravity
data to remove the unwanted hydrological influences. In practice, however, not all
of this signal can be removed because of the limited number of hydrological data.
Therefore, a residual signal, i.e., the difference between the signal estimate and the
true signal, will constitute the hydrological gravity noise remaining in the data.
In order to investigate the potential influences of the hydrological noise on gravimetric
monitoring of the TA-GOGD process in the considered field we simulate a number
of hypothetical scenarios. First, we assume that the stochastic realizations of the
groundwater variations generated in Section 5.2.3, and based on the field sample data,
serve as the true (reference) values, which are used to generate the true hydrological
gravity signal. Next we attempt to estimate this signal using spatial interpolation
of hypothetical groundwater measurements. Here, we consider three scenarios where
various densities of groundwater measurements are simulated ranging from 6 × 6 grid
and 36 observations to 24 × 24 grid and 576 observations (see Tab. 5.3).

The results of the spatial interpolation of the synthetic groundwater data are shown
in Fig. 5.15. As expected, with increasing number of hydrological measurements a
more detailed picture of the unknown groundwater variation can be recovered.
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Table 5.3: Density of the synthetic measurements of groundwater for the field in Oman.

36 obs. wells 144 obs. wells 576 obs. wells
6 × 6 grid 12 × 12 grid 24 × 24 grid

separation distance in
x- and y-direction (m) 860 470 240

The interpolated groundwater measurements are subsequently used to estimate the
unknown hydrological signal (Fig. 5.16) and to compute the hydrological noise as the
difference between the signal estimate and the actual signal (Fig. 5.17). Comparing
Fig. 5.14 with Fig. 5.17 we can observe that already with 36 groundwater observation
wells the amplitudes of the hydrological gravity noise can be reduced 2-3 times, i.e.,
from about 30-45 µGal to about 10-25 µGal. Nevertheless, the remaining spatial
correlations in the noise are still present in this case. This is especially true for the
shortest correlation range of the groundwater, i.e., 7.5 km. With a denser groundwater
observation network most of the unwanted hydrological signal could be removed. For
instance, with 144 groundwater measurements the remaining noise amplitudes are
below 10-14 µGal in case of a 7.5 km variogram range and below 5-7 µGal for 15 km
and 30 km variogram range, respectively. For the most idealized scenario of 576
measurements, the noise amplitude is below 3-5 µGal. These results are further
quantified by computing the RMSE values of the hydrological noise from

RMSEhydr.noise =

√√√√ 1

552

552∑

i=1

(
∆gW,E

i −∆gW,T
i

)2
(5.2)

where ∆gW,E is the estimated and ∆gW,T is the true temporal gravity change due to
groundwater variation, respectively. The above procedure to generate the gravimet-
ric noise is repeated for every simulated conditional realization (50 runs × 3 cases of
groundwater correlation) of groundwater level change and for each of the three scenar-
ios for the density of well observations. The combination of all the cases gives in total
(50 stochastic realizations of groundwater × 3 cases of groundwater correlation scales
× 3 cases of groundwater observation well density) 450 different hydrological noise
realizations. These realizations are subsequently used to contaminate the 5 year and
10 year predicted time-lapse gravity variation (Fig. 5.9) resulting from the reservoir
production. The average (over 50 simulation runs) RMSE values of the simulated
hydrological signal and hydrological noise are shown in Tab. 5.4. With already a 6 ×
6 groundwater observation grid, the average RMSE is significantly reduced, i.e., from
about 17-22 µGal to about 3-7 µGal. Further increasing the density of groundwa-
ter observation wells would lead to average RMSE of about 2-5 µGal in case of 144
observation wells and 1-2 µGal in case of 576 wells.

Additionally to the hydrological noise, the observational noise, related to the instru-
ment operation and data processing, is simulated and added to the data. Here, based
on the field noise estimates (Fig. 5.11), we assume 5 µGal uncorrelated zero-mean
Gaussian noise. For each gravity survey data (i.e., at 2010, 2015 and 2020) we add a
set of random values simulated from that distribution. To account for the sensitivity of
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Table 5.4: Average (over 50 simulation runs) RMSE (µGal) of the simulated hydrological
signal and hydrological noise for the field in Oman. The results are presented for different
correlation scales of groundwater (variogram range) and for different density of the hypo-
thetical groundwater measurements.

range 7.5 km range 15 km range 30 km

RMSEhydr.signal 21.50 21.20 16.70
RMSEhydr.noise, 36 obs. 7.40 5.00 3.29
RMSEhydr.noise, 144 obs. 4.56 2.90 1.90
RMSErhydr.noise, 576 obs. 2.19 1.43 0.98

the results to the observational noise, 50 different sets of random values are simulated.
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Figure 5.15: Interpolated groundwater variation (m) for different groundwater correlation
scales (variogram range) and for various densities of the hypothetical observation wells of
groundwater (black dots). Linear interpolation was used. The black rectangle denotes the
boundaries of the gravity measurement network.
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Figure 5.16: Examples of the estimated hydrological signal realizations for different corre-
lation scales of groundwater and for different density of groundwater measurements. One
contour interval is 5 µGal.



112 5 Gravimetric monitoring of Carbonate Field in the North of Oman

X, km

Y
, 
k
m

RMSE=7.62

0 1 2 3 4 5
0

1

2

3

4

(a) range 7.5 km, 36 obs.

X, km

Y
, 
k
m

RMSE=5.34

0 1 2 3 4 5
0

1

2

3

4

(b) range 15 km, 36 obs.

X, km

Y
, 
k
m

RMSE=3.31

0 1 2 3 4 5
0

1

2

3

4

(c) range 30 km, 36 obs.

X, km

Y
, 
k
m

RMSE=4.92

0 1 2 3 4 5
0

1

2

3

4

(d) range 7.5 km, 144 obs.

X, km

Y
, 
k
m

RMSE=2.99

0 1 2 3 4 5
0

1

2

3

4

(e) range 15 km, 144 obs.

X, km

Y
, 
k
m

RMSE=1.95

0 1 2 3 4 5
0

1

2

3

4

(f) range 30 km, 144 obs.

X, km

Y
, 

k
m

RMSE=2.35

0 1 2 3 4 5
0

1

2

3

4

(g) range 7.5 km, 576 obs.

X, km

Y
, 

k
m

RMSE=1.49

0 1 2 3 4 5
0

1

2

3

4

(h) range 15 km, 576 obs.

X, km

Y
, 

k
m

RMSE=1.01

0 1 2 3 4 5
0

1

2

3

4

(i) range 30 km, 576 obs.

 

 

−25 −20 −15 −10 −5 0 5 10 15 20 25

Figure 5.17: Examples of the hydrological noise realizations for different correlation scales of
groundwater and for different density of groundwater measurements. One contour interval
is 1 µGal. The RMSE is computed using Eq. (5.2).
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5.3 Gravity data inversion for heat-front monitor-

ing

To investigate the feasibility of gravimetric monitoring of TA-GOGD in the consid-
ered field, the focusing inversion of the synthetic gravimetric observations with the
minimum support stabilizer is performed (see Chapter 4 for details of the methodol-
ogy). We assume that the target of gravimetric monitoring is a time-evolution of the
heat-front. In the interior of the evolving heat-front, the mixture of steam and hot
hydrocarbon gases (see Fig. 5.4) will gradually substitute the oil in the reservoir rock
matrix. Since oil is denser than steam and hydrocarbon gases, negative time-lapse
variation in the reservoir bulk density will occur. The decrease in the reservoir bulk
density will induce negative time-lapse variations in the local gravity field, which as
we showed in Section 5.2, should be significantly above the expected uncertainy of
gravimetric measurements in the field. Therefore, gravimetric observations can be a
source of information about the heat-front evolution.
Because the direct inversion of gravity data for the spatial position of the heat-front
is a challenging and non-linear problem, a simplified two-step approach is followed. In
the first step, the gravity data are inverted to estimate the time-lapse density change
in the reservoir. Then the inverse problem becomes linear because the density change
and the gravity change are linearly dependent, i.e., the time-lapse gravimetric signal
scales proportionally with the temporal density variation (see Chapter 2). Here, since
surface gravimetric observations offer limited vertical resolution, we solve a 2D linear
inverse problem instead of a 3D. The uncertain parameters are the vertical averages
of the time-lapse reservoir density change. To reduce the number of parameters, the
recovered density change is represented on a coarser grid than the original fine-scale
grid used to simulate the time-lapse gravity observations (see Fig. 5.7). The upscal-
ing is 6:1 (Fig. 5.18), in both x- and y-direction, so that the upscaled grid consists of
30×22×1 prisms, each of 150×150×130 m size.

Figure 5.18: Grid upscaling.

In the second step, the heat-front position is estimated. It is derived from the inverted
density change maps by reading the contour line with the specified density change
threshold. In this study we assume that a threshold of -20 kg/m3 defines the bound-
aries of the heat front. This choice follows from a simplified approximation. Note
that at the edge of the heat front the time-lapse density variation is about -90 kg/m3
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(see Fig. 5.6) and only the first two layers are affected. If we take the average over 9
layers, this gives about -20 kg/m3. The application of this procedure to the reference
(true) average time-lapse density change in the reservoir after 5 and 10 years of pro-
duction results in the heat-front positions shown in Fig. 5.19.
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Figure 5.19: Time-lapse average density change after 5 (a) and 10 (b) years of the reservoir
production. The black lines define the heat-front position and are the average density change
contours (c) at -20 kg/m3.

In this feasibility study we investigate the conditions under which the gravimetric
monitoring in the considered field can provide a given accuracy of the heat-front posi-
tion recovery. For this purpose various scenarios concerning the noise contaminating
the gravity data are considered. First we consider a scenario when only the 5 µGal
uncorrelated (in space and time) Gaussian observational noise is added to the data.
An example of the heat-front recovery in this case is shown in Fig. 5.20. When ad-
ditionally to the observational noise the total hydrological signal (the signal without
any corrections) is present in the data, the heat-front estimation is significantly less
accurate (Fig. 5.21) with errors in the front position in the order of 500-800 m. More
importantly, we analyze the scenarios when an attempt is made to estimate and sub-
sequently remove the hydrological influences from the gravity data, i.e., the case when
additionally to the observational noise the hydrological noise (the difference between
the hydrological signal estimate and the true signal) is added to the data. An example
of the heat-front estimation in this case is shown in Fig. 5.22. Comparing Fig. 5.22
with Fig. 5.21 we can observe that hydrological signal corrections based on 12×12
groundwater observation wells significantly improved the accuracy of the front posi-
tion estimate in this case. Other scenarios for the density of groundwater observation
wells and scenarios for the scales of spatial correlation of groundwater are also con-
sidered. In total 450 gravity inversion experiments are run (50 stochastic realizations
of groundwater × 3 cases of groundwater correlation scales × 3 cases of groundwater
observation well density).
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Figure 5.20: Time-lapse average density change estimate (a-b) for the field in Oman in the
case when 5 µGal Gaussian observational noise is added to the gravity data. In c) and d)
the recovered heat-front positions are shown.
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Figure 5.21: Time-lapse average density change estimate (a-b) for the field in Oman. The
gravity data are contaminated with 5 µGal Gaussian observational noise and additionally
with the total hydrological signal, which is not removed from the gravity data. The hydro-
logical signal (Fig. 5.14e) corresponds to the case of 15 km variogram range used to simulate
the conditional groundwater variation. In c) and d) the recovered heat-front positions are
shown.

To evaluate the results in a quantitative way, the recovered heat-front positions are
compared with the true ones by computing spatial statistics. Between the front esti-
mate and the true front the maximum closest distance d is determined (see Fig. 5.23).
Then for a particular scenario (i.e., observation well density and groundwater corre-
lation scales) the error statistics based on the 450 simulation runs are computed,
i.e.

dmin = min{d1, ..., d450},
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Figure 5.22: Time-lapse average density change estimate (a-b) for the field in Oman. The
gravity data are contaminated with 5 µGal Gaussian observational noise and additionally
with the hydrological signal which is subsequently estimated and removed from the gravity
data. The hydrological signal (Fig. 5.14e) corresponds to the case of 15 km variogram range
used to simulate the conditional groundwater variation. The hydrological signal estimate
(Fig. 5.16e) is obtained from the spatial interpolation of 144 groundwater measurements. In
c) and d) the recovered heat-front positions are shown.
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Figure 5.23: Schematic illustration of the error computation for the heat-front position
estimate.
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5.3.1 Results

In Fig. 5.24 to Fig. 5.28 the heat-front position estimates are shown and Tab. 5.5 to
Tab. 5.7 contain the summary of the front recovery errors. The results are presented
for three cases: the case when gravity data are contaminated with 5 µGal obser-
vational Gaussian noise only; the case when additionally to the observational noise
the total (without any corrections) hydrological signal is added and the case when
additionally to the observational noise the hydrological noise is added, i.e., the differ-
ence between the hydrological signal estimate and the actual signal. The hydrological
noise is generated under various scenarios with respect to the correlation scales of
groundwater and the number of groundwater observation wells used to estimate and
subsequently remove the hydrological signal.
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Figure 5.24: Heat-front estimates for the case when only the 5 µGal Gaussian observational
noise is contaminating the data.

In the most favorable scenario (Fig. 5.20), i.e., in the case when only the observa-
tional Gaussian noise is present in the data, the average error in the front position
estimate is about 160 m after 5 years of the reservoir production and about 140 m
after 10 years, respectively. More accurate front position estimates in the latter case
are expected, because the 10 year time-lapse gravity variation is significantly stronger
than the 5 year variation (see Fig. 5.9). Furthermore, it can be observed that the
front-position estimates are rather smooth, i.e., the small-scale local heterogeneities
in the propagation of the true front were not recovered.
When additionally to the observational noise the total hydrological signal is added to
the gravity data the recovered front position estimates are very erroneous (Fig. 5.25).
For some cases, e.g., the case of 7.5 km and 15 km variogram range, the average error
is about 200-500 m larger than in the case when groundwater signal does not con-
taminate the data (see Tab. 5.6). Furthermore, more accurate (in the average sense)
5-year than 10-year results can be observed in this case. Large inaccuracies in the
10-year front recovery result from the overlap of the actual front position with the
severe negative groundwater variations, exceeding 7 m, around well #5 (see Tab. 5.2,
Fig. 5.12, Fig. 5.13 and Fig 5.25e).
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The front position estimates are significantly improved when the hydrological in-
fluences are estimated and removed from the data (Fig. 5.26 to Fig. 5.28). With
already 36 groundwater observations (6×6 grid), the estimation error is reduced by
about 150-550 m. Further increasing the density of water level measurements brings
the accuracy of the estimates close to the case when only the observational noise is
present in the data. For instance in the case of 12×12 grid of groundwater wells and
the most challenging case of 7.5 km variogram range of groundwater, the average error
in the front estimation is 10-40 m larger (202 compared to 163, or 147 compared to
138, see Tab. 5.5) than in the hydrological signal-free scenario. With a grid of 24×24
wells these differences are smaller than 10 m.
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Figure 5.25: Heat-front estimates for different correlation scales of groundwater. In this case
no hydrological signal is removed from the data. The top row shows the results for the front
position after 5 years of the reservoir production (front in 2015) and the bottom row after
10 years (front in 2020), respectively. The true heat-front position is shown in black, the
grey color denotes the position estimates.
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Figure 5.26: Heat-front estimates for a 7.5 km variogram range of groundwater and various
densities of the hypothetical observation wells of groundwater. The true heat-front position
is shown in black, the grey color denotes the position estimates.
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Figure 5.27: Heat-front estimates for a 15 km variogram range of groundwater and various
densities of the hypothetical observation wells of groundwater. The true heat-front position
is shown in black, the grey color denotes the position estimates.
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Figure 5.28: Heat-front estimates for a 30 km variogram range of groundwater and various
densities of the hypothetical observation wells of groundwater. The true heat-front position
is shown in black, the grey color denotes the position estimates.
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Table 5.5: Accuracy [dmin davg dmax] of the heat-front position estimates (m) for a 7.5 km
variogram range of groundwater.

36 obs. 144 obs. 576 obs. no hydr. sig. sig. not corr.
at 2015 161 252 403 130 202 379 104 170 218 105 163 207 254 620 1398
at 2020 124 157 198 127 147 225 116 145 342 113 138 197 298 707 1177

Table 5.6: Accuracy [dmin davg dmax] of the heat-front position estimates (m) for a 15 km
variogram range of groundwater.

36 obs. 144 obs. 576 obs. no hydr. sig. sig. not corr.
at 2015 163 225 289 115 192 566 113 168 213 105 163 207 184 412 1088
at 2020 128 148 200 122 148 343 114 140 191 113 138 197 266 637 1125

Table 5.7: Accuracy [dmin davg dmax] of the heat-front position estimates (m) for a 30 km
variogram range of groundwater.

36 obs. 144 obs. 576 obs. no hydr. sig. sig. not corr.
at 2015 151 199 246 114 176 338 117 165 210 105 163 207 117 216 357
at 2020 125 143 180 121 146 225 114 139 195 113 138 197 174 299 529

5.3.2 Alternative scenario - unexpected heat-front distribu-
tion

The predicted steam distribution, and hence the heat-front propagation, coming from
the reservoir model is characterized by a fairly regular round shape. It is interesting
to investigate if different shapes of the heat front and, hence, alternative scenarios for
the oil drainage areas could be inferred from gravity data inversion. Since a dynamic
model of the reservoir that could be used to create such scenarios is not available for
this study, a simplified approach is followed. We use the average time-lapse density
change (Fig. 5.19a and Fig. 5.19b) as predicted by the reservoir model and apply to
it an image transformation, i.e., a scaling and a shearing. The transformed image
(Fig. 5.29a and Fig. 5.29b) may represent scenario when the steam/heat distribution
in the reservoir is affected by different than expected subsurface characterization, e.g.,
presence of sealing faults or an alternative distribution of fractures. In the particular
case that we consider, the steam cloud moves preferentially into the south-east direc-
tion.
To demonstrate that gravimetric observations can be a source of information about
the propagation of the heat front, one scenario is presented. The synthetic gravity
data are contaminated with 5 µGal Gaussian observational noise and additionally
with hydrological noise. The hydrological noise results from the groundwater signal
estimation and correction using a 12 × 12 grid of water level measurements and as-
sumed variogram range of groundwater of 15 km (Fig. 5.17e). The results clearly
show (Fig. 5.29c and Fig. 5.29d), that gravimetric monitoring can provide informa-
tion about the heat-front evolution in this case.
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Figure 5.29: Heat-front estimates in case of an alternative oil drainage distribution. In
(a-b) the average time-lapse density change (kg/m3) in the reservoir is shown. The white
dashed lines indicate the position of the hypothetical sealing faults. In (c-d) the heat-front
position estimates (in grey) are compared to the true front (in black). The synthetic gravity
data were contaminated with 5 µGal Gaussian observational noise and with the hydrological
noise shown in Fig. 5.17b. This noise results from hydrological signal corrections based on
36 groundwater measurements. The assumed groundwater variogram range was 15 km.

5.3.3 Summary

In this study the feasibility of gravimetric monitoring of TA-GOGD process for one
of the fields in Oman was investigated. We applied the focusing inversion method
to synthetic time-lapse gravity observations. The minimum support stabilizer was
used to assure a compact distribution of the inverted density change model. From
the time-lapse density change estimate the heat-front position was determined.
We showed that the density redistribution and hence the time-evolution of the heat
front in the field has the potential to be monitored with time-lapse gravimetric ob-
servations. The predicted gravity signal amplitudes are very strong: about 80 µGal
and 150 µGal after 5 and 10 years of production, respectively. They are significantly
above the 5 µGal observed noise in the field. However, we showed also that the
gravimetric measurements can be to a large extent influenced by the hydrological sig-
nal resulting from spatio-temporal groundwater variations. Using a set of stochastic
simulations constrained to the groundwater field data, we demonstrated that large
groundwater level changes can produce correlated gravity signal with amplitudes up
to 30-50 µGal. In such a case the inversion of gravity data for the front propagation
monitoring can be very challenging. The resulting front position errors can reach
several hundreds of meters (200-700 m). However, by applying corrections based on
hydrological measurements, the accuracy of gravimetric heat-front monitoring can be
significantly improved. With already 36 groundwater observations (6 × 6 grid) the
estimation error in the front position can be reduced by about 150-550 m compared
to the case when no hydrological signal is removed from the data. Further increasing
the density of water level measurements to about 100-200 could bring the accuracy
of the estimates close to the case when only the observational noise is present in the
data. The average achievable accuracy was about 140-160 m in this case.
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5.4 Conclusions and recommendations

We demonstrated that gravimetric monitoring of TA-GOGD in the considered field
has a great potential. The heat-front evolution could be monitored with best accu-
racy in the order of 140-160 m, which is comparable to half of the reservoir depth.
Such accuracy can provide information about the shape of the front, whereas the
smaller-scale (below 150 m) local heterogeneities in the propagation of the front may
not be recovered. Furthermore, due to groundwater variations, the total error in the
estimation of the front position can reach 200-700 m and more. Therefore, a more
detailed study should follow addressing the specific hydrological conditions. It is rec-
ommended to use a hydrological model that was developed for the field to predict the
groundwater variations. The model should be calibrated to the available hydrological
measurements. Forward model simulations would result in the predicted groundwater
states in off-well locations. A number of extreme and typical cases could be further
considered with respect to aquifer properties and the amplitudes of the groundwater
variations. The possibilities to remove the unwanted hydrological signal in gravity
data is another issue to be investigated. For instance, the placement of additional
observational wells can be optimized. By simulating a number of different scenarios
a quantitative assessment of the feasibility of gravimetric reservoir monitoring for the
field could be achieved.
In the future research, other production effects such as subsidence or uplift due to
thermal rock expansion should also be considered and the benefits of a joint inversion
of gravity and surface deformation data for heat-front monitoring investigated.



Chapter 6

Case study 1–Gravimetric monitoring of water influx

into a gas reservoir: a 2D numerical study with the

ensemble Kalman filter

Water influx into gas fields can reduce recovery factors by 10−40%. Therefore, infor-
mation about the magnitude and spatial distribution of water influx is essential for
the efficient management of water-drive gas reservoirs. Time-lapse gravimetry may
provide a direct measure of mass redistribution below the surface, yielding in this way
additional and valuable information for reservoir monitoring.
In this chapter, we investigate the added value of gravimetric observations for mon-
itoring water-influx into a gas field. For this purpose we use data assimilation with
the ensemble Kalman filter (EnKF). For a simplified gas reservoir model, we assimi-
late the synthetic gravity measurements and estimate the reservoir permeability. The
updated reservoir model is used to predict the water front position. We consider a
number of possible scenarios, making various assumptions on the level of gravity mea-
surement noise and the distance from the gravity observation network to the reservoir
formation. The results show that with increasing gravimetric noise and/or distance,
the updated model permeability becomes smoother and its variance higher. Finally,
we investigate the effect of a combined assimilation of gravity and production data.
In the case when only production observations are used, the permeability estimates
far from the wells can be erroneous, despite a very accurate history match of the
data. In the case when both production and gravity data are combined within a sin-
gle data assimilation framework, we obtain a considerably improved estimate of the
reservoir permeability and an improved understanding of the subsurface mass flow.
These results illustrate the added value of gravimetric observations for monitoring
water influx and they show also that gravimetric and production observations can be
complementary.
The content of this chapter is to a large extent based on the results published in
(Glegola et al. 2012a).
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6.1 Introduction

Most hydrocarbon reservoirs are surrounded by aquifers. When reservoir fluids are
produced, a pressure gradient develops which may cause water influx from a neighbor-
ing aquifer to the reservoir formation. In practice, because of a lack of measurements
and consequently limited knowledge about aquifer properties (porosity, permeabil-
ity, thickness, and extent), large uncertainties in estimating water influx are common
(Dake 2001). For water-drive gas fields, water influx may have very significant im-
plications affecting the field production. Because gas can be trapped by encroaching
water, the recovery factors for water-drive gas reservoirs can be significantly lower
than for volumetric (no water influx) reservoirs produced by gas expansion. The gas
recovery factor for water-drive gas fields can range between 50 − 70%, whereas vol-
umetric gas reservoirs have an ultimate recovery of 80 − 90% (Ahmed 2006). This
implies that the information about the magnitude and spatial distribution of water
influx can be crucial for the efficient management of water-drive gas reservoirs. Time-
lapse (4D) gravimetry, which provides a direct measure of mass redistribution below
the surface, has a potential to yield complementary and valuable information in this
context.
Reservoir monitoring is one of the key components of closed-loop reservoir manage-
ment (see Chapter 1), which is recently receiving growing attention in the petroleum
industry . The concept is based on continuous or real-time updating of reservoir model
(Jansen et al. 2009) to optimize field operations and improve its long-term produc-
tion. The states (pressures, saturations) and/or parameters (permeability, porosity)
of reservoir models are updated by data assimilation methods. A number of studies
have shown that the EnKF is suitable for this purpose. The EnKF is a sequential
Monte Carlo method where an ensemble of models is propagated in time and updated
when new measurements become available (see Chapter 4 for details). This makes
the EnKF suitable for real-time model updating based on frequent input streams of
monitoring data. In reservoir engineering applications of data assimilation, typically,
reservoir models are updated using production measurements (i.e., well-fluid rates
and bottomhole pressures) and other data, mostly time-lapse seismic. The advan-
tage of assimilating time-lapse seismic data resides essentially in the large spatial
coverage of the data, making it possible to determine location-specific production-
induced changes and constrain the assimilation results. Also, time-lapse gravimetric
measurements could be considered, especially in cases where time-lapse seismic data
offer limited resolution, are difficult to acquire or are simply too costly. Particularly
in processes involving a moving gas/liquid contact (e.g., gas and water), time-lapse
gravimetric measurements have a potential to provide an additional source of spatial
information (see Chapter 2).
In this chapter, we investigate the added value of time-lapse gravimetric measure-
ments for monitoring of water influx into a gas reservoir. For this purpose, a simpli-
fied gas-reservoir model with a lateral aquifer influx is used. The synthetic time-lapse
surface-gravity observations are assimilated with the EnKF to update the static reser-
voir parameters (permeability) and determine improved estimates of the water front
position. The assimilation process is sequential, i.e., the reservoir models (ensemble
members) are updated whenever new observations become available. To evaluate the
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sensitivity of the results to the experiment setup and to understand the limitations of
the gravimetric technique, different scenarios are investigated. For instance, various
assumptions about the level of gravimetric noise and the distance from the gravity
stations to the reservoir formation are considered. Finally, the effect of a combined
assimilation of gravity and production data is examined.

6.2 2D gas reservoir model

We consider a synthetic 2D gas-reservoir model extending from 0 to 3000 m in both
the x- and y-directions with a uniform 75 × 75 × 50 m grid-cell size. There are four
active gas wells: P1, P2, P3, and P4, producing at maximum gas-rate constraint of
1.5×106 m3/d and at minimum bottomhole pressure (BHP) constraint of 40×105 Pa.
We consider an active aquifer along the western reservoir border, which leads to a
lateral water influx when the reservoir pressure decreases (Fig. 6.1a).

(a) reservoir saturation at
3500 days

(b) reference permeability field

Figure 6.1: Reservoir saturation after 3500 days of simulation (a) and the corresponding ref-
erence permeability (ln(k), where k is the permeability in milidarcies) field (b). In Fig. 6.1a
the blue color denotes water, green is gas and the black dots denote the four gas producers.

For simplicity, we assume that the permeability is the main uncertain model param-
eter, while the porosity is determined using a deterministic functional dependency

φi =
ln(200ki)

50
, (6.1)

where φi denotes grid-cell porosity and ki is grid-cell permeability in milidarcies. A
similar approach to relate these two parameters through a deterministic relationship
was used by Bianco et al. (2007) for the field-case EnKF application. The permeabil-
ity there was expressed as a function of porosity, and the dependence was determined
using geological information from the core and log data. The poro-perm relationship
we use here is close to the one determined for limestone at the Wellington West field
(Oliver et al. 2008). The reference permeability field in Fig. 6.1b was generated us-
ing a sequential Gaussian simulation (SGSIM) method (Remy et al. 2009), with an
isotropic spherical variogram model with a range of 35 grid cells (or 2625 m). Fig. 6.1a
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illustrates how the heterogeneities in the permeability field cause an inhomogeneous
water front propagation.
The initial ensemble members were generated with the SGSIM method using the same
isotropic spherical variogram model and applying a set of values for the variogram
range. More precisely, we simulated Ne = 100 unconditional permeability fields con-
sisting of five groups with 20 members each, and using variogram ranges of 5, 15, 25,
35, and 45 cells (or 375, 1125, 1875, 2625, and 3375 m), respectively. In practice,
not only the magnitude of permeability values is uncertain, but also the scale and
location of spatial patterns that may determine the reservoir flow behavior. There-
fore, we use different variogram ranges while generating the initial ensemble members
to account for the geostatistical uncertainty related to the correlation scales of the
unknown permeability field. Examples of one permeability realization for members
for each variogram range are shown in Fig. 6.2.

(a) range 5 (b) range 15 (c) range 25 (d) range 35 (e) range 45

 

 

1 2 3 4 5 6 7

Figure 6.2: Examples of permeability field realizations (ln(k), where k is the permeability in
milidarcies) for different variogram ranges (number of grid blocks).

In this study, the ensemble mean is considered as the best estimate of the reference
field. Fig. 6.3 shows the prior ensemble mean and variance. The initial uncertainty
over the permeability field is large: the mean is almost constant, with little to no
spatial patterns, and the ensemble variance is high (of the same order as the parameter
mean value).

(a) ensemble mean (b) ensemble variance

Figure 6.3: The initial ensemble mean and the initial ensemble variance of the permeability
field (ln(k), where k is the permeability in milidarcies).
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We assimilate the time-lapse gravimetric observations and production data with the
EnKF to update the reservoir permeability field and produce improved estimates of
the water front position. The reservoir model is propagated forward using a reservoir
simulator. To assure physical consistency between the static (permeability) and dy-
namic variables (pressure, saturation), after each update of the ensemble members,
we rerun the reservoir simulator from time zero. Therefore, our problem is reduced
to the static parameter estimation only. The state vector consists of a static log-
transformed permeability and the synthetic measurements. The following three cases
with different input data are considered: only gravity data, only production data,
and both types of data. To better understand the influence of gravimetric measure-
ments on the permeability estimate, we start the study with a sensitivity analysis.
In the later part, we perform a number of twin experiments using both gravity and
production measurements.

6.3 Data assimilation results

6.3.1 Sensitivity to gravimetric observations

The gravity data are assimilated after 1500, 2500, and 3500 days of the reservoir
production. The gravity network extends one kilometer beyond (from −1000 m to
4000 m in x- and y-directions) the reservoir boundaries, and contains 900 equally
distributed observation points separated by approximately 166 m. The resolution
of gravimetric measurements, i.e., the ability to separate two signal-source features
(e.g., two zones with mass redistribution in the reservoir) that are close together, is
related to the distance (denoted further as dist) from the gravity observation network
to the signal source. The ratio of the distance to the size (width and length) of the
signal source influences to a large extent the capabilities of gravimetric observations
to provide spatial information. More precisely, when the distance is much larger than
the lateral extension of the body (i.e., the zone with spatial mass redistribution in the
reservoir), the resulting gravitational attraction will not differ significantly from the
gravitational attraction of a point mass. In such a case, the gravimetric observations
will not add spatial information. Therefore, a range of values for dist, namely 1.0 km,
1.7 km, and 2.5 km, will be used (Fig. 6.4). To keep the reservoir conditions for all
the scenarios similar, we fix the reservoir depth at 2.5 km and move up and down the
gravity network by changing the value of variable dist. We assume uncorrelated (in
space and time), zero-mean Gaussian gravity measurement noise. Here, we investigate
two cases: a highly optimistic level of measurement noise with a standard deviation
σǫ = 2 µGal and a more realistic noise level with σǫ = 5 µGal. The assumed noise is
for a single survey, which means that the temporal gravity variations are computed
(we omit here the observation point index) as

△gk = (gk +Xk)− (g0 +X0), (6.2)

where △gk is the temporal gravity variation determined as a difference between the
baseline survey at time t0 and the monitoring survey at time tk andXk are the random
vectors sampled from a zero-mean Gaussian distribution with the diagonal covariance
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matrix filled with σ2
ǫ entries. The combination of assumptions about observation dis-

tance and measurement noise standard deviation provides six scenarios. The most
optimistic one combines σǫ = 2 µGal with dist = 1 km and the most pessimistic one
σǫ = 5 µGal with dist = 2.5 km. The noise added to the synthetic gravity data is
consistent, in a statistical sense, with the gravity noise assumptions used in the EnKF.

z1

z2
x1

y1x2

y2

dist

P=(xp,yp,zp) 

observation grid 

x

y

reservoir grid block

Figure 6.4: Schematic illustration of the acquisition of gravimetric data. The reservoir cells
are represented by a number (40 × 40) of rectangular prisms.. The distance dist from the
gravity observation network to the reservoir top is varied by shifting the network up and
down. We consider dist = 1 km, dist = 1.7 km and dist = 2.5 km. P stands for the gravity
observation point.

Fig. 6.5 shows the reference (true) time-lapse mass change after 3500 days of gas
production and water influx. The gas takeout creates negative and the water influx

Figure 6.5: Mass change between time t=0 and t=3500 days for the reference model.

creates positive mass variations. In our experiment, water density is approximately
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six times larger than the density of gas, and, as a consequence, a large mass increase
can be observed in the western part of the reservoir where gas is being replaced by
water. In the remaining part, the mass change is negative, but its magnitude is much
smaller. Therefore, most of the gravimetric signal originates from the waterflooded
areas. Consequently, one should expect more accurate permeability estimates in the
reservoir regions crossed by the water front. This is confirmed in Fig. 6.6, where the
time evolution of the mean of the ensemble log-permeability fields for the two extreme
scenarios is presented.

(a) t=1500 days (b) t=2500 days (c) t=3500 days

(d) t=1500 days (e) t=2500 days (f) t=3500 days
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Figure 6.6: The mean ensemble permeability field (ln(k), where k is the permeability in
milidarcies) after different update times. The black curve denotes the reference water front
position at that particular time. In the top row the results for the scenario with σǫ = 2 µGal
and dist = 1 km are shown and in the bottom row the results for the scenario with σǫ =
5 µGal and dist = 2.5 km.

In the optimistic scenario (σǫ = 2 µGal and dist = 1 km), some of the key parame-
ter features in the waterflooded regions (e.g., location of the high permeability zone)
could be reasonably well estimated already after the first update at 1500 days. After
the next model updates, the parameter estimate further improves also in the areas,
which were not crossed by the water front. This is because gravity field variations
induced by gas takeout are larger than the assumed noise level for the two last up-
date times. In the pessimistic scenario (σǫ = 5 µGal and dist = 2.5 km), the mean
permeability estimate is significantly less accurate. The parameter estimate becomes
smoother. The location of the high permeability zone could be estimated to some
extent only at the latest assimilation time at 3500 days and only for the reservoir
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regions crossed by the front. This is mainly because of the relatively large distance
from the gravity observation network to the reservoir top compared to the reservoir
size. In this case, the true gravity variation caused by gas takeout is less than the
assumed 5 µGal standard deviation of the measurement noise. The maximum vari-
ation of the true time-lapse signal is approximately 3 µGal at 1500 days, 7 µGal at
2500 days, and 12 µGal at 3500 days. This is larger than the assumed noise level only
at the latest assimilation time (3500 days), making it possible to recover the main
permeability features in the western reservoir part.
Fig. 6.7 shows examples of representative ensemble members after the final update.
The initial members consist of five groups, each generated with a different variogram
range (5, 15, 25, 35, and 45 cells or 375, 1125, 1875, 2625, and 3375 m) and each
having 20 members. A comparison of Fig. 6.2 with Fig. 6.7 shows how much the
correlation lengths were altered. For the optimistic scenario, the update was signifi-
cant, and even the members with initially very short variogram ranges seem to match
the reference field correctly. This case shows a high information content added by
gravity observations. In the other scenario, the results are less promising. The spatial
structure of the individual members is not improved significantly.

(a) range 5 (b) range 15 (c) range 25 (d) range 35 (e) range 45

(f) range 5 (g) range 15 (h) range 25 (i) range 35 (j) range 45
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Figure 6.7: Representative ensemble members (the same as in Fig. 6.2) after the final update
at t=3500 days. In the top row the results for the scenario with σǫ = 2 µGal and dist =
1 km are shown and in the bottom row the results for the scenario with σǫ = 5 µGal and
dist = 2.5 km.

Fig. 6.8 shows how the ensemble variance of the permeability is reduced in time. As
expected, in the optimistic scenario it is significantly lower than in the less favorable
scenario. The variance is reduced not only in the waterflooded areas, but also in
the negative mass change zone. On the other hand, in the pessimistic scenario, the
model is mostly updated in the regions crossed by the water front, leaving very high
uncertainty over the possible permeability structures in the remaining part of the
reservoir formation.
In Fig. 6.9, we present a brief summary of the results for all the six scenarios consid-
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(a) t=1500 days (b) t=2500 days (c) t=3500 days

(d) t=1500 days (e) t=2500 days (f) t=3500 days

 

 

0 0.5 1 1.5 2 2.5 3 3.5

Figure 6.8: The variance of the ensemble field (ln(k), where k is the permeability in mil-
idarcies) after different update times. In the top row the results for the scenario with
σǫ = 2 µGal and dist = 1 km are shown and in the bottom row the results for the scenario
with σǫ = 5 µGal with dist = 2.5 km are presented. The black curve denotes the reference
water front position at that particular time.

ered. It shows the root mean square error (RMSE) of the estimated mean permeability
field as well as the correlation between the estimated mean and reference permeability
fields. The results are presented separately for the waterflooded and dry areas. As
expected, the RMSE is reduced more for the reservoir region crossed by the water
front than for the remaining part of the reservoir. The RMSE rapidly decreases af-
ter the first assimilation of gravity data and then either slightly increases or remains
stable. The correlation coefficient shows in general a gradual improvement with a
maximum value of approximately 0.8. For the regions which were not crossed by the
front, these estimates are not significantly improved except for the smallest distance
to the reservoir.

To evaluate the history match of the reservoir model, we restart the reservoir sim-
ulator with the updated mean permeability field to determine the estimate of the
water front position. Fig. 6.10 shows that in the optimistic scenario, the water front
configuration could be tracked very well throughout all the assimilation times. The
estimate matches the truth closely, and the initial average standard deviation of the
water front position is reduced from approximately 380 m to approximately 150 m
after the final update. For the pessimistic scenario, the front position is reasonably
matched only after the last assimilation time. Here, the average standard deviation
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(a) RMSE, front crossed (b) RMSE, front not crossed

(c) corr., front crossed (d) corr., front not crossed

Figure 6.9: The RMSE (top row) and correlation coefficient (bottom row) in time for the
all the scenarios considered. In the left column results for reservoir regions crossed by the
water front are shown and in the right column for the remaining part of the reservoir. Note
that the reservoir region crossed by the front changes in time.

is reduced to approximately 290 m.

Fig. 6.11 shows the RMSE between the reference and estimated water front position
at 3500 days. The RMSE is reduced from approximately 300 m to approximately
90− 110 m in the case of dist = 1 km , and for the remaining cases to values between
190 − 210 m. Such a difference is caused by the fact that only for dist = 1 km the
main low permeability zone in the middle of the reference field (see Fig. 6.1b) was
recovered. For the remaining cases, only the high permeability zone in the region
crossed by the front was estimated reliably. It is important to note that these two
extreme permeability zones determine to a large extent the position of the water front
at 3500 days.
The effect of increasing the noise from 2 µGal to 5 µGal seems to be limited. Despite
some differences in the permeability estimate (compare the final RMSE and correla-
tion values in Fig. 6.9), the reproduced positions of the water front are fairly similar.
This is because of the physical properties of the flow: the main pattern of the flow is
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(a) t=1500 days (b) t=2500 days (c) t=3500 days

(d) t=1500 days (e) t=2500 days (f) t=3500 days

(g) t=1500 days (h) t=2500 days (i) t=3500 days

Figure 6.10: Mass change estimates in time with respect to the initial conditions. In the top
row results for the initial ensemble members (no assimilation of gravimetric observations)
are shown. In the middle row results for the scenario with σǫ = 5 µGal and dist = 2.5 km
and in the bottom row results for the scenario with σǫ = 2 µGal and dist = 1 km are
presented. The black curve denotes the reference water front position, the blue dotted curve
is the estimated front position ±2σ , where σ is the ensemble members standard deviation
of the front position. The color scale is the same as in Fig. 6.5.

relatively insensitive to small scale random perturbations of the permeability. There-
fore, because the time-lapse gravity is sensing temporal mass variations induced by
the flow, we should not expect that the permeability estimate fits the reference model
in the pixel-wise sense.
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Figure 6.11: The RMSE of the estimated water front position for time 3500 days.

We simulated the synthetic gravity observations on a relatively dense network consist-
ing of 900 stations with approximately 166 m measurement spacing. In practice, how-
ever, a coarser gravity measurement network is more common. To test the impact of
the survey design, we repeated the experiment with the most optimistic (σǫ = 2 µGal,
dist = 1 km) and most pessimistic (σǫ = 5 µGal, dist = 2.5 km) scenarios using only
100 gravity stations with 500 m measurement spacing. In Fig. 6.12, the final perme-
ability estimate and its ensemble variance are presented. The parameter estimate is
similar to the case with 900 gravity observation points (see Fig. 6.6), but, as expected,
the parameter variance scales with the inverse square root of a number of data points,
and therefore, is approximately 2− 3 times larger (see Fig. 6.8).
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Figure 6.12: The ensemble mean (top row) of ln(k) and the ensemble variance (bottom
row) of ln(k) after final assimilation of 100 gravity observations at t=3500 days (k is the
permeability in milidarcies). In the left column the results for the scenario with σǫ = 2 µGal
and dist = 1 km (a-c) and in the right column with σǫ = 5 µGal and dist = 2.5 km (b-d)
are shown, respectively.
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6.3.2 Joint assimilation of production and gravity data

In this section, we investigate the effect of assimilation of the gravity and production
data on the permeability and the water front position estimates. We simulate 900
gravity observations, and consider the scenario where the distance from the gravity
observation network to the reservoir top is dist = 1.7 km and the gravity measurement
noise standard deviation is σǫ = 5 µGal. Compared to the scenarios analyzed in the
previous section, this configuration can be considered as intermediate with respect to
the parameter dist while the noise level stays at the upper bound of the range.
The data assimilation window is as before from time 0 to 3500 days. Production
measurements are the gas rate and BHP from the four producers and are generated
by running the reference model and adding 5% zero-mean Gaussian noise to the
synthetic observations. As in the previous experiment, the noise assumptions used
for the EnKF algorithm are consistent with the actual noise contaminating the data.
The production data are assimilated every 90 days, and, as in the previous section,
the time-lapse gravity data are assimilated at 1500, 2500, and 3500 days.

Localization

The limited number of ensemble members may lead to spurious correlations in the ap-
proximation of the state covariance matrix. This problem is especially common when
the covariances between single measurements, such as well production data, and the
parameters of the whole reservoir grid are inferred. In Fig. 6.13, the cross-correlation
between the production data of the producer P1 and reservoir (log–) permeability for
a different number of ensemble members is plotted.

For 100 ensemble members we observe some strong correlation patterns located far
from the producer which are not present when the number of ensemble members is
doubled. As a result of the inaccurate covariance approximation, the corresponding
Kalman gain estimate may lead to the parameter updates in the region of no real
influence of a particular observation. To resolve this problem, covariance localization
is often applied by using the Schur product of the state covariance matrix with the
localization function (Hamill et al. 2001, Houtekamer & Mitchell 2001). Then the
Kalman gain is calculated (we omit the time index) as

K = (ρ ◦Cf
Ψ)H

T
[
H(ρ ◦Cf

Ψ)H
T +Cy

]−1

, (6.3)

where ◦ represents the Schur product (i.e., the element-wise matrix product). We use
the distance-based localization function (Furrer & Bengtsson 2007)

ρ(h) =
1

1 + (1 + f(0)2/f(h)2)/Ne
, (6.4)

where f is the covariance function, h is the distance, and Ne is the number of ensemble
members. We model the covariance between production data and permeability using
the exponential covariance function

f(h) = exp(−3h/θ), (6.5)



6.3 Data assimilation results 139

X, km

Y
 ,
m

 

 

0 1 2 3

0

1

2

3

0

2

4

6

8

10

12

14
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(b) BHP, Ne = 200
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(c) BHP, Ne = 100, localization
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(f) GAS, Ne = 100, localization

Figure 6.13: Example of cross-correlation between ln(k) and BHP (k is the permeability in
milidarcies) at time 270 days, and between gas rate and ln(k) at time 1800 days. In the
left column the results for 100 ensemble are shown, in the middle column the results for
200 ensemble members are shown and in the right column the results with 100 ensemble
members in case of localization are shown, respectively. The black dot denotes the position
of the producer P1.

where θ is the correlation range. To localize the production data, we use θ =
1500 m. The corresponding covariance function f(h) and the localization function
ρ(h) are shown in Fig. 6.14. The example of localized covariances is presented in
Fig. 6.13c-6.13f.

In Fig. 6.15 the cross-correlation between (log–) permeability and gravity data is
presented for time t = 3500 days and two different gravity observation points.

First, we can observe that the results for 100 ensemble members slightly underestimate
the cross-covariance compared to the case with 200 ensemble members. Furthermore,
it is interesting to note that the cross-correlation pattern coincides with the reservoir
mass redistribution pattern (see Fig. 6.5), i.e., the cross-correlation is positive for the
waterflooded regions (crossed by the water front) with the positive mass change and
is negative for the regions affected by gas takeout (negative mass change). This is
because the higher the permeability (and hence the porosity via relation (6.1)) in the
waterflooded part of the reservoir the more the positive mass change in those regions
and the stronger the positive temporal gravity variation. Similarly, the higher the
permeability (porosity) in the regions affected by gas takeout the larger the negative
mass change there and the larger the negative variation in the local gravity field.
Hence, it is clear that the correlation between gravity and reservoir permeability
(porosity) is not only a function of distance (from observation point to the reservoir
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Figure 6.14: The permeability covariance function f(h) and the localization function ρ(h)
for θ = 1500 m.

body) but also depends on the subsurface mass redistribution pattern which, in prac-
tice, is uncertain. Therefore, a distance-based localization is not applicable in this
case because, when using a fixed cut-off radius, physically meaningful correlations
could be tempered. From that reason, and also due to the fact that with already 100
members a reasonable approximation of the cross-covariance is obtained, no localiza-
tion of gravity data is used in this study.
To investigate the contribution of the production and gravity data to the permeability
estimate, we consider four cases with different data being assimilated: only produc-
tion data with and without localization; only gravity data; and production data with
localization and gravity data. Fig. 6.16 shows the history match to the synthetic
data for the producer P1. The predicted data result from re-running the reservoir
model from time zero with the final estimates of the permeability field. In all cases,
except the scenario where only the gravity data are assimilated, the history match
is satisfactory. The measurement predictions from the updated members and from
the mean model follow the reference predictions very closely. As expected, when lo-
calization is applied, the spread of the ensemble predictions slightly increases. This
spread is reduced when additionally gravity data are used. For the other producers,
we observed very similar results.

In Fig. 6.17, the final permeability estimates are shown. We see that despite a very
similar history match of the production data, they are significantly different. This
demonstrates clearly the non-uniqueness of the problem we deal with. When only the
production data are assimilated, the permeability estimates are acceptable only for the
regions within a range of approximately 1500 m from the wells. When no localization
is applied, the estimate in the more distant regions is inaccurate. On the other hand,
localization prevents any significant updates there. When only the gravity data are
used, some of the main features of the permeability can only be recovered for the
regions crossed by the water front. Combining both data sets gives satisfactory results
for the whole reservoir grid. Fig. 6.18 shows how the accuracy of the permeability
estimate translates into matched and forecasted positions of the water front. It is clear
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Figure 6.15: Example of cross-correlation between ln(k) and gravity data (k is the perme-
ability in milidarcies) at time 3500 days. In the left column the results for 100 ensemble
are shown and in the right column the results for 200 ensemble members. The black curve
denotes the water front position at that time. The pink dot denotes the position of the
gravity station.

that production data alone cannot provide sufficient information to track the water
front position accurately. Only when the gravity data are used the front position can
be history matched. Furthermore, the scenario combining both data types gives the
most accurate results in terms of the forecasted front positions, as shown in Fig. 6.19.
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Figure 6.16: History-match to production data versus different data assimilated: a) only
production data without localization; b) only production data with localization; c) only
gravity data; d) both types of data with localization of the production data. The predicted
data result from re-running the reservoir model from time zero with the final (and initial)
estimates of the permeability field.
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(a) only prod. data (b) only prod. data + localization

(c) only gravity data (d) gravity and prod. data + localization
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Figure 6.17: The mean ensemble ln(k) field (k is the permeability in milidarcies) after the
final update at 3500 days versus different data assimilated.
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Figure 6.18: Mass change estimates with respect to the initial conditions for different data
assimilated: a) only production data without localization: b) only production data with
localization; c) only gravity data; d) both types of data with localization of the production
data. The black curve denotes the reference water front position, the blue dotted curve is
the estimated front position ±2σ, where σ is the ensemble members standard deviation of
the front position. The color scale is the same as in Fig. 6.5.
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Figure 6.19: The RMSE of the estimated water front position at the end of a history match
(3500 days) and for the model forecast (7000 days) versus different data assimilated: a) only
production data without localization; b) only production data with localization; c) both
types of data without localization; d) both types of data with localization of the production
data.

6.3.3 Discussion

To simplify our experiments, we made a number of assumptions. For instance, for the
assimilation of gravity data with the EnKF, we assumed perfectly known statistical
properties of the measurement noise. We simulated stationary and spatially uncor-
related Gaussian noise with a known covariance structure. The covariance matrix
that describes measurement uncertainty was fully consistent with the actual noise
added to the synthetic data. This guaranteed an optimal performance of the filter.
In practice, however, the noise can be correlated. Moreover, the noise characteristics
are uncertain and may not match the assumptions used for the EnKF algorithm.
Using the Lorenz-96 model with 40 variables, Miyoshi et al. (2009) showed that the
analysis results could be deteriorated when the assumed noise covariance matrix is
inconsistent with the actual noise contaminating the data. Because gravity measure-
ments reflect the overall mass changes, many environmental processes and especially
spatiotemporal hydrological variations can contaminate gravity data with correlated
noise (see Chapter 3 of the thesis and, e.g., Glegola et al. 2009). Therefore, it requires
further research to assess how the filter performance can be degraded by errors in
the stochastic model, how this affects the added value of gravity data, and how to
estimate the unknown gravity noise characteristics properly.
We based our experiments on a simplified 2D gas reservoir model, where a determin-
istic relationship was used between the porosity and the permeability fields, and the
aquifer support was fixed and perfectly known. To investigate the added value of
gravity in a more realistic setting, in Chapter 7, we extend our study to a more realis-
tic 3D case, where not only porosity and permeability are uncertain parameters, but
also aquifer support characteristics and reservoir structure are considered unknown.



146 6 2D numerical study with the ensemble Kalman filter

6.4 Summary

In this chapter, we investigated the added value of time-lapse gravimetric observations
for the monitoring of water influx into a gas reservoir. We assimilated synthetic gravity
and production data with the EnKF method to estimate the reservoir permeability
and to predict the water front position. We started with a sensitivity study using the
gravity data only. By varying the level of gravity measurement noise and the distance
to the reservoir, we found that an increase in the noise level and/or distance leads
to a smoother parameter estimate with a higher variance. We demonstrated how the
subsurface mass redistribution induced by the water influx, and sensed by time-lapse
gravity, can be translated into a better knowledge about the reservoir permeability
with the EnKF inversion. The updated permeability can be further used to improve
forecasts of the actual mass redistribution and to decrease the uncertainty about the
water front configuration. We showed that the RMSE of the water front position can
be reduced even for deep reservoirs and realistic noise levels in gravity data. The added
value of gravity data has clearly been demonstrated. On the other hand, when only the
production data were used, the permeability field could not be estimated accurately
in the regions distant from the producers. Consequently, very erroneous estimates
of the water front position were obtained. We showed that despite a satisfactory
history match of production data, without additional information, here provided by
the gravity data, the inferred reservoir state may be very far from the truth. We
demonstrated that production and time-lapse gravity observations are complementary
sources of information, which, when combined within a data assimilation framework,
can provide a considerably improved picture of reservoir permeability and a better
understanding of the subsurface mass redistribution.



Chapter 7
Case study 2–History-matching time-lapse surface

gravity and well pressure data for estimating gas field

aquifer support: a 3D numerical study with the

ensemble smoother

In this chapter we investigate the added value of gravimetric observations for gas
field production monitoring and aquifer support estimation. We perform a numerical
study with a realistic 3D gas field model which contains a large and complex aquifer
system. The aquifer support along with other reservoir parameters, i.e., porosity,
permeability, and reservoir top and bottom horizons are simultaneously estimated
using the ensemble smoother (ES). We consider three cases where only gravity, only
pressure and both gravity and pressure data are assimilated. We show that a com-
bined estimation of the aquifer support with the permeability field, porosity field and
reservoir structure is a very challenging and non-unique history matching problem,
where gravity certainly has an added value. Pressure data alone may not discriminate
between different reservoir scenarios. Combining pressure and gravity data may help
reducing the non-uniqueness problem and provides not only an improved gas and wa-
ter production forecast and gas-in-place evaluation but also a more accurate reservoir
state description. The content of this chapter is to a large extent based on (Glegola
et al. 2012b).

147
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7.1 Introduction

Water influx is an important factor influencing production of gas reservoirs in many
aspects. First, the encroaching water can trap and/or bypass gas volumes and, there-
fore, can reduce the ultimate field recovery. Secondly, an aquifer influx can lead
to an early water breakthrough causing well operational problems (see, e.g., Veeken
et al. 2000). In some cases, a high degree of pressure support provided by a strong
aquifer may extend the reservoir life and turn out to be beneficial. The actual gas
yield depends on the interplay of aquifer flooding characteristics (such as aquifer size,
residual gas saturation, volumetric sweep) and the level of a reservoir abandonment
pressure (Dake 2001). Furthermore, characterization of a reservoir drive mechanism
(volumetric depletion or water-drive) and a reliable estimation of the amount of water
influx is crucial for an accurate gas reserves estimation. Gas initially in place (GIIP) is
commonly derived by means of the material balance analysis where the cumulative wa-
ter influx is one of the relevant input parameters. In practice however, due to the lack
of measurements, large uncertainties about aquifer characteristics and, consequently,
about water influx are common. No direct measurements of aquifer properties are
available and they must be inferred from other, mostly pressure data. It may be chal-
lenging to discriminate between a larger gas reservoir with no aquifer support and a
smaller gas reservoir with much aquifer activity since both may provide a similar pres-
sure response, especially the in early reservoir life. Diamond & Ovens (2011) showed
how ambiguous interpretations of results of a gas material balance analysis can arise
when compartmentalized or water-drive reservoirs are considered. The deviation from
an idealized tank-like reservoir behavior may be caused by non-homogenous pressure
communication and/or by water influx from a surrounding aquifer. Pressure data
alone may not be sufficient to uniquely discriminate between these two scenarios and
there is a need for complementary information. Time lapse (4D) gravimetry, which
is a direct measure of a subsurface mass redistribution, has the potential to provide
independent and valuable information on water influx into a gas reservoir.
Often, in computer-assisted history matching applications one updates reservoir model
states, e.g., pressures and saturations, static reservoir parameters such as permeability
and porosity, and since recently, also fluid contacts and structural parameters. Al-
though large uncertainties are associated with the reservoir aquifer characteristics, the
aquifer support is typically fixed and assumed to be known in history-matching exper-
iments. For gas fields however, the influence of aquifer support can be very significant
and, therefore, it should be appropriately accounted for in reservoir history-matching
workflows. In this chapter we extend the work presented in Chapter 6 where gravi-
metric observations were assimilated with the EnKF for water influx monitoring into
a gas field. On a simplified 2D gas reservoir model it was shown how mass redistri-
bution in the subsurface, as directly sensed by gravimetry, can be translated through
the EnKF inversion into an improved estimation of the reservoir permeability field
and, consequently, into the estimation of the water front position. In Chapter 6 the
permeability field was considered the only uncertain parameter whereas the aquifer
support was fixed and assumed perfectly known. In this chapter, we present a more
realistic synthetic 3D example inspired by some of the North Sea gas fields. This
3D example is not an exact copy of an existing field but reflects some of the typical
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North Sea gas field features like: a clustered and limited number of wells, seasonal
variability in gas production, and the uncertainty over the aquifer support. The key
field uncertainties addressed in this study are not only the permeability field but also
the porosity field, reservoir structural parameters and foremost the aquifer support
characteristics. The reference field (or the truth case) includes an explicitly modeled
complex, heterogeneous aquifer system and contains about 60000 cells, whereas the
ensemble models contain only the field fraction with the gas reservoir and consist of
about 5000 cells each. Note that the ensemble members do not contain an aquifer
explicitly; the aquifer response is modeled as boundary conditions using an analytical
aquifer model. Mostly due to the computational efficiency we use the ES rather than
the EnKF as an assimilation method. We compare scenarios where only gravity, only
production and both production and gravity data are assimilated. The added value
of gravity data is evaluated in the context of various reservoir engineering aspects,
such as reservoir characterization, reservoir state description, forecast reliability and
gas reserves estimation.
In this chapter we investigate the added value of time-lapse gravimetry for a gas
reservoir characterization and monitoring. We start with an overview of the modeling
workflow for the aquifer support estimation. Then, the setup of a comprehensive 3D
gas field model and data assimilation results with and without gravity data are shown
and discussed. Next, the sensitivity of the results on gravity data noise assumptions
and the magnitude of aquifer modeling errors are presented.

7.2 The Modeling Workflow

Fig. 7.1 illustrates the conceptual workflow for estimating an aquifer support along
with other reservoir parameters such as those related to a reservoir structure (e.g., top
and bottom horizons) or petrophysical properties (e.g., permeability and porosity).
In the first step of the workflow, the prior uncertainty over the aquifer is modeled.
Since in practice aquifer systems can be very large, complex structures with many
uncertainties, a complete, grid block-based aquifer modeling and property estimation
is very challenging. Therefore, a semi-analytical approach is proposed for the aquifer
support estimation. This approach combines a 1D analytical model response to simu-
late the amount of water influx into the reservoir with a gridlock-based simulation of
that water flow within the reservoir. The aquifer water influx simulation is based on
an ”in-house” version of the Van Everdingen-Hurst Unsteady-State (Van Everdingen
& Hurst 1949) analytical model which is fully integrated in the reservoir simulator
that we use. The Van Everdingen-Hurst methodology provides exact solutions to
diffusivity equations used for the water influx calculations and, therefore, is consid-
ered a correct technique for the water influx modeling (Ahmed 2006). However, the
approach proposed here for the aquifer support estimation is general and, depending
on the availability, other analytical aquifer models (e.g., the pot aquifer model and
Carter-Tracy water influx model, see, e.g., Ahmed 2006) can also be applied.

We start by generating the ensemble realizations of the primary aquifer parame-
ters, i.e., aquifer size (length, width, thickness) and 1D distribution of petrophysical
properties (permeability, porosity and compressibility). The realizations are used as
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Figure 7.1: The workflow for estimation of an aquifer support and other reservoir parameters.

input to the analytical aquifer model to compute the distribution of aquifer response
parameters. The approximation of the aquifer influence is represented by two model-
derived parameters, i.e., aquifer outflow S and aquifer time T , which are functions
of the primary aquifer parameters.1 The parameter S (m3/bar) describes how much
cumulative outflow corresponds to the pressure drop, whereas T (day) describes how
fast the aquifer reacts to the reservoir pressure change. For every grid block at the
reservoir boundaries the 1D aquifer model simulates the amount of water entering the
reservoir through that grid block as reservoir pressure drops. The aquifer response
is computed assuming a linear water-drive (a box aquifer model, Ahmed 2006). In
practice, infinitely many combinations of the basic aquifer properties exist which can
result in the same aquifer behavior. Therefore, in our experiments we estimate directly
the relevant aquifer response parameters rather than the primary aquifer parameters.
Another step in the workflow includes the structural and petrophysical prior uncer-
tainty modeling. The initial uncertainty over the reservoir structure is expressed by
alternative realizations of reservoir top and bottom horizons. The other structural
parameters (e.g., faults) are not considered in this study. Therefore, only a subset
of the possible uncertainty in the reservoir structure is addressed. For a simulation
and estimation of the reservoir top and bottom horizons we follow the approach pro-
posed by Seiler et al. (2010). The alternative reservoir top and bottom horizons are
simulated around the base-case model, which typically would be a result of seismic
data processing and interpretation. The inputs to the simulation algorithm are the
base-case reservoir top and bottom together with the associated uncertainty estimate
and the correlation structure. The model structure is updated with an ”elastic grid”
approach as used in Seiler et al. (2010). The reservoir grid is stretched appropriately
to match the reservoir top and bottom keeping the number of grid blocks fixed. Fur-
ther, the initial ensemble of reservoir models is propagated forward with the reservoir
simulator. Based on the mismatch between the synthetic and measured data, the
ensemble models are updated accordingly with the ES equations (see Chapter 4).

1due to copyrights the exact equations cannot be shown
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7.3 3D gas field model

A synthetic 3D gas reservoir model (Fig. 7.2) is considered. The field is a dipping half-
dome structure containing the gas reservoir at the top, which is surrounded by a large
aquifer system. The field, which includes the reservoir and the aquifer, is characterized
by heterogeneous permeability and porosity (Fig. 7.3) which affects the amount of
water influx into the reservoir and its spatial distribution. The dimensions of the
field model are about 55 × 19 km, the average thickness is about 80 m, the average
depth (distance to the formation top) is about 1250 m. The model is represented with
139×48×9 grid blocks. The gas reservoir has dimensions of about 15×5 km and the
aquifer area is about 900 km2. The reservoir is produced with 8 gas wells operating
under fixed, cycling production conditions which reflects typical seasonal gas demand
variations, i.e., the field is produced at higher rates during the winter than during the
summer months. The maximum water production constraint is 6000 m3/day. The
well flow is constrained to a minimal bottomhole pressure of 40 bar2 and whenever the
well flow pressure drops below this level the producer gas rate is reduced accordingly.

a) reference field b) ensemble model 

X,m

Y,m 

X,m 

Y,m 

Figure 7.2: Layout of the reference field (a) and the reservoir model used for ensemble
members simulation (b). The blue color denotes water and the green is gas. The reference
field contains the gas reservoir and the grid block-based aquifer system which is not present
in the ensemble model. There, the aquifer support is simulated with the analytical model.
The black dots denote the location of gas producers.

In this experiment we use 197 ensemble members. For all the ensemble members
the aquifer support, i.e., the amount of water influx into the reservoir, is simulated
with the proposed semi-analytical approach (Fig. 7.1). Consequently, the ensemble
members are constructed with less grid blocks, namely 38 × 14 × 9 and essentially
contain only the gas saturated field fraction (see Fig. 7.2). The initial realizations of

21 bar=14.5038 PSI
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porositypermeability

Figure 7.3: The permeability (in milidarcies) and the porosity field of the reference model.
In the upper right corner the cross-section through the small part (7 grid blocks) of the field
is shown.

the aquifer input parameters are sampled from uniform distribution with statistics
summarized in Tab. 7.1. The alternative realizations of the reservoir top and bottom

Table 7.1: Parameter range for the prior uncertainty modeling of the aquifer. These param-
eters are 1D and are inputs to the analytical aquifer model that we use.

porosity permeability total aquifer length width thickness
φ k compressibility (H) (W) (W)

(cf + cw)
min 0.05 1 mdarcy 8× 10−5/bar 1.5 km 0.5 km 20 m
max 0.35 500 mdarcy 3× 10−4/bar 150 km 50 km 200 m

horizons are simulated assuming 10 m (standard deviation) uncertainty of the base-
case model and are conditioned to well picks data. All realizations are generated
with the Sequential Gaussian Co-Simulation (SGCOSIM) method (Remy et al. 2009)
with an isotropic spherical variogram model with 10 cells range (about 3.9 km) and
the correlation between the top and bottom horizons of 0.6. Preserving to some
degree a correlation between the generated top and bottom structure deviations allows
maintaining the overall reservoir thickness. The generated realizations are shown in
Fig. 7.4.
The reference permeability and porosity distributions are generated with the SG-
COSIM method using a spherical variogram model with a range of 14 cells (about
5.5 km) in x and y-direction and a range of 3 cells (about 26 m) in z-direction. To
correlate the permeability and porosity fields, again a 0.6 correlation was used. We
assume a laterally isotropic permeability distribution and set the vertical permeabil-
ity to 20% of the horizontal permeability value. Similarly as for the reference field,
the initial ensemble permeability and porosity realizations were simulated with the
SGCOSIM method. To account for the uncertainty in the correlation structure of
the permeability and porosity fields, the variogram range was randomly selected from



7.3 3D gas field model 153

2 4 6 8 10 12
-1400

-1350

-1300

-1250

X, km

Z
, 
m

initial

base-case

reference

GWC

2 4 6 8 10 12
-1400

-1350

-1300

-1250

X, km

Z
, 
m

initial

base-case

reference

GWC

2 4 6 8 10 12
-1400

-1350

-1300

-1250

X, km

Z
, 
m

initial

base-case

reference

GWC

a) b) c)

Figure 7.4: Three different cross-sections (along x-direction) through the reservoir structure:
a) through the northern part of the reservoir; b) through the middle part of the reservoir; c)
through the southern part of the reservoir. The pink line indicates the base-case structure
used to generate the initial ensemble members shown in blue and the reference structure is
shown in grey. The GWC is indicated by the black dashed line.

the Gaussian distribution with the mean of 10 cells (about 3.9 km) and standard
deviation of 3 cells (about 1.2 km). The variogram range in z-direction was fixed to
3 cells (about 26 m). To correlate the prior ensemble porosity and permeability fields
0.6 correlation was used.
The unknowns in the state vector contain the log-transformed permeability field,
porosity field, reservoir top and bottom deviations, log-transformed aquifer strength,
log-transformed aquifer time, the temporal mass change and the cumulative water
influx into the reservoir. The history-matching window spans a period of about 7
years. The production data consist of the flowing bottom-hole pressure available
each 30 days. Here, we assume zero-mean Gaussian measurement errors with 1 bar
standard deviation. The time-lapse gravity data are available after about 3, 5 and
7 years. There are in total 96 stations simulated (Fig. 7.5), with a fixed spacing of
about 1200 m, which is comparable to the reservoir depth. The maximum temporal
gravity variation for the reference model is 4, 10 and 15 µGal after 3, 5 and 7 years,
respectively. Note however, that this signal is a sum of two major counteracting ef-
fects: a positive change in gravity caused by the water influx and a negative change in
gravity due to gas takeout. In practice, the negative gravitational effect of gas takeout
is not of interest because the amount of gas produced is known to a high accuracy.
Therefore the gas takeout effect can be estimated and subtracted from the observed
data leaving the gravitational effect of the water influx as the signal to be analyzed
(see, e.g., Eiken et al. 2008). In our case the strongest variation in gravity due to gas
takeout is −4, −7 and −10 µGal after 3, 5 and 7 years, respectively. Consequently,
the maximum gravity variation caused by water influx is about 8, 17 and 25 µGal
after 3, 5 and 7 years, respectively. Furthermore, in reality there will be a small neg-
ative gravity variation (nearby reservoir/aquifer interface) caused by aquifer pressure
drop and, consequently, density decrease of the aquifer water. However, such effect
typically is rather minor (see, e.g., Stenvold et al. 2008). In our example it accounts
for less than 2% of the signal of interest and, therefore, it is ignored in forward mod-
eling of gravimetric data for the ensemble members. The single-survey measurement
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Figure 7.5: Temporal gravity variation (µGal) after 7 years of the reservoir production. The
location of gravity stations is shown with colored circles and the layout of the gas reservoir
is shown in grey. The pink stars denote the position of gas producers. The black curve
indicates the stations which were selected to plot the gravity shown later in this chapter.

noise is uncorrelated (in space and time) and simulated from a zero-mean Gaussian
distribution with 2 µGal standard deviation. Consequently, the standard deviation of
temporal gravity noise is about 2.83 µGal, which is close to the best achievable preci-
sion of relative gravimetric measurements (Zumberge et al. 2008, Alnes et al. 2011).

7.4 Results

7.4.1 The data history-match

In Fig. 7.6 the history-match of the pressure and gravity data for the three assimi-
lation scenarios is presented. It shows the predictions from the initial and updated
ensemble members compared to the noisy measurements. The ensemble predictions
result from re-running the ensemble members from time zero with the initial and final
parameter estimates. The assimilation of the pressure observations provides a very
reasonable pressure history-match. On the other hand, when only the gravity data
are assimilated the spread in the pressure predictions is very large and not signifi-
cantly different from the spread in the initial model predictions. Combining both,
gravity and pressure data, improves slightly the overall data-match compared to the
case when only the pressure data are assimilated. The history-match to the time-lapse
gravity observations after 7 years of gas production is shown for the cross-section along
the x-direction through the middle of the reservoir (Fig. 7.5). The initial uncertainty
is large, spanning about 100 in the time-lapse signal variation. The updated models
match the noisy data reasonably well when the gravity observations are assimilated.
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Figure 7.6: History-match to the noisy pressure (top row) and the noisy gravity (bottom
row) data: a) only the pressure data are assimilated; b) only the gravity data are assimilated;
c) both, the pressure and gravity are jointly assimilated. The predicted data result from re-
running the reservoir models from time zero with the updated parameters. The time-lapse
gravity data are computed as the difference between the gravity survey after 7 years of the
reservoir production and the baseline survey at the start of the simulation. The data x-profile
through the middle of the field is shown (see Fig. 7.5).

7.4.2 Static parameter estimates

Fig. 7.7 shows the first layer of the reference permeability and the reference porosity
fields. The ensemble mean of the initial and the final permeability and porosity fields
for all the scenarios considered are shown in Fig. 7.8. The permeability and porosity
fields are not recovered accurately. When only the pressure data are used the final
mean estimate is close to the prior parameter mean, despite the reasonable pressure
data-match (Fig. 7.6). We obtained similar results for the remaining 8 layers, not
shown here. With the assimilation of 4D gravity data, some of the permeability and
porosity features in the first layer of the reference fields seem to be captured, e.g., the
high-permeability zone in the south-west part of the reservoir where a large part of
the aquifer water was distributed. We showed in Chapter 6 that reservoir permeabil-
ity estimates based on history-matching 4D gravity should be more accurate in the
reservoir regions affected by large temporal mass variations. This is also confirmed
here. Nevertheless, for some of the other reservoir layers the estimates based on the
assimilation of gravity data were not significantly improved. This is because the time-
lapse gravity observations offer a limited 3D resolution, i.e., they reflect the overall
mass variation integrated over all reservoir layers, but cannot provide information
about the vertical mass redistribution.

Fig. 7.9 shows depth residual maps (the ensemble mean minus the reference surface) of
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a) porosity b) permeability 

Figure 7.7: The first layer of the porosity and the permeability (ln(k) where k is the perme-
ability in milidarcies) field of the reference model. The pink dots denote the location of the
gas producers.

pressure gravity both initial 

Figure 7.8: The mean ES estimates of the porosity field (top row) and the permeability field
(bottom row) for different data assimilation scenarios (the first layer is shown). The color
scale is the same as in Fig. 7.7. The pink dots denote the location of the gas producers.

the initial and the updated reservoir top and bottom horizons. Because the alternative
reservoir horizons were conditioned to the well picks data, the residual surfaces are
close to zero around the well location. At some distant off-well locations, e.g., west-
and south-west reservoir regions, large negative residuals of the reservoir top and the
reservoir bottom for the mean of the initial members can be observed. This means
that at those locations the initial reservoir models are, on average, positioned deeper
than the reference structure. The mismatch there does not decrease when the pressure
data are assimilated. When gravity data are history-matched the mean of the updated
models is matching the reference structure more closely there. Nevertheless, not all of
the reservoir regions where significantly updated. This can be seen in Fig. 7.11 where
two cross-sections through the reservoir structure for one particular ensemble member
are shown: one cross-section through the reservoir region affected by a large time-
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lapse mass variation due to the water/gas displacement and the other through the
region which was not waterflooded. It can clearly be seen that no significant structure
updates were performed in the latter part of the reservoir. The final estimate of the
reservoir structure is erroneous there and close to the initial values.

pressure gravity both initial 

Figure 7.9: Depth residual maps of the reservoir top (top row) and bottom (bottom row)
horizons (the ensemble mean minus the reference surface) for different data assimilation
scenarios. The pink dots denote the location of the gas producers.

0 5 10 15

8

10

12

14

16

X, km

Y
, 
m profile #1

profile #2

Figure 7.10: Location of two different profiles used for structure cross-section plots shown
in Fig. 7.11.
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Figure 7.11: The two different cross-sections through the reservoir structure for one particular
model realization are shown: the top row profile #1; the bottom row profile #2, see Fig. 7.10.
The blue lines indicate the initial structure, the red lines delineate the updated structure
and the layout of the reference structure is shown in grey. The GWC is indicated by the
black dashed line. The top row shows the cross-section through the reservoir region affected
by the large mass variation due to water influx and the bottom row through the region not
affected by the water influx (see Fig. 7.12). The columns correspond to the different data
assimilation scenarios: a) only the pressure data are assimilated; b) only the gravity data
are assimilated, and c) both, the gravity and the pressure data are jointly assimilated.

7.4.3 Monitoring water influx

In Fig. 7.12 the ensemble mean of the total (sum over the 9 reservoir layers) 7-year
time-lapse mass change estimate is shown. The mass change estimate results from
the ES update and not from the reservoir model re-run from time zero with the
updated static parameters. In Fig. 7.12 the green and red colors denote the major
positive temporal mass variation and hence highlight the reservoir regions affected
by the influx of the aquifer water. The mean estimate based on the pressure data
only is inaccurate with the severe overshooting and underestimation of the actual
mass influx. The assimilation of gravity data improved very significantly the overall
mass change estimates, especially in the western and southern part of the reservoir.
Fig. 7.13 shows the direct ES cumulative water influx estimates for the end of the
data assimilation period, i.e., after about 7 years. The spread in the initial model
predictions is large with a standard deviation of 24.8 Mm3. It is reduced to 11.5 Mm3

when the pressure data are assimilated, though the final results tend to overestimate
the reference value. The mean estimate is 43.8 Mm3 compared to the reference value
of 32.4 Mm3. The uncertainty reduction is large and the estimate is much more
accurate when the gravity observations are used. The mean is 32.3 Mm3 and the
standard deviation is 1.4 Mm3. When both the pressure and the gravity data are
jointly matched, these results do not change very much. In this case the mean is
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32.6 Mm3 and the standard deviation is 1.3 Mm3. A significant added value of
gravity data for cumulative water influx estimates is expected because the amount of
cumulative water influx is directly sensed by gravity observations.

5
Mg×10

d) e)

a) b) c)

Figure 7.12: The temporal mass variation after 7 years of gas production and water influx. In
a) the reference mass variation is shown; in b), c) and d) the mean of the final ES estimates
for different data assimilation scenarios is presented: only the pressure data are assimilated
(b); only the gravity data are assimilated (c) and both, the pressure and the gravity data are
jointly assimilated (d). In e) the mean of the prior models is shown. The pink dots denote
the location of the gas producers.
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Figure 7.13: The ES cumulative water influx estimates versus different data assimilation
scenarios: a) only the pressure data are assimilated; b) only the gravity data are assimilated,
and c) the pressure and the gravity data are jointly assimilated.
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7.4.4 Gas Initially in Place (GIIP) estimates

We estimate GIIP volumes by two approaches; one is based on the ES-updated models
and the other one is based on material balance analysis. The GIIP estimates in the
first approach (Fig. 7.14) are derived by computing the volumes of gas above the
GWC in the reservoir models containing the final estimates of the reservoir top and
bottom horizons and of the reservoir porosity. Note that in this case no material
balance analysis is applied and the uncertainly in the GIIP volumes is mostly related
to the uncertainty in the reservoir porosity and the top and bottom horizons. The
reference GIIP, which is equal to 55.5 Gm3, is about 10% larger than the ensemble-
mean GIIP prediction from the initial models, which is equal to 50.7 Gm3. This is
because the base-case structure that was used to generate the alternative reservoir
top and bottom horizons is a few meters deeper at some off-well locations than the
reference structure (see Fig. 7.4). Since the initial GWC is fixed as homogenous
for all the ensemble members, the prior reservoir models positioned deeper than the
reference structure will underestimate the actual GIIP volumes. When only pressure
data are assimilated, the mean GIIP estimate is 53.1 Gm3 and the initial standard
deviation is reduced from 4.9 Gm3 to 2.4 Gm3. When only gravity data are used,
the mean GIIP is 56.1 Gm3 and the standard deviation of the GIIP estimate is equal
to about 4.3 Gm3. The joint assimilation of pressure and gravity data, results in a
compact GIIP distribution with the standard deviation of 1.3 Gm3, and the mean
GIIP estimate equal to 56.6 Gm3.
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Figure 7.14: The GIIP estimates versus different data assimilation scenarios; a) only the
pressure data are assimilated; b) only the gravity data are assimilated; c) the pressure and
the gravity data are jointly assimilated. The estimates are obtained by computing the initial
gas volumes in the updated reservoir models.

Volumetric material balance analysis results

The second approach is based on the commonly used volumetric material balance
analysis where the cumulative water influx is one of the relevant input parameters.
Here, for the cumulative water influx we substitute the direct ES estimates and for
the GIIP calculation we apply the Havlena-Odeh formulation which can be expressed
as (Dake 2001)

GpBg +Wp = G(Bg −Bgi) +GBgi

(
cwSwc + cf
1− Swc

)
∆P +We. (7.1)
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In Eq. (7.1) Gp is the cumulative gas produced at surface (standard) conditions,
Bg and Bgi are the gas formation volume factors at the current and initial reservoir
pressure, Wp is the cumulative water production at reservoir conditions, G is the
gas initially in place, cw is the compressibility of reservoir water and cf is the pore
volume compressibility, Swc is the connate water saturation, ∆P is the reservoir
pressure difference between the initial conditions and the current state, and We is
the cumulative water influx to the reservoir at reservoir conditions. Rearranging the
terms in Eq. (7.1), the GIIP can be expressed as

G =
F −We

Eg + Efw
, (7.2)

where
F = GpBg +Wp, (7.3)

Eg = Bg −Bgi, (7.4)

Efw = Bgi

(
cwSwc + cf
1− Swc

)
∆P. (7.5)

Often the term Efw can be omitted since typically Efw ≪ Eg. In our example
Efw ≈ 0.5%Eg, there is no water produced (Wp = 0) and, therefore, the GIIP is
computed from

G =
F −We

Eg
, (7.6)

with F = GpBg. After 7 years of the field production (end of the history matching
window) we have: Gp = 23.3 Gm3, Bg = 0.0129 and Bgi = 0.0081.
In Eq. (7.6) except for the cumulative water influx, other input variables can also be
uncertain, even though they can be measured directly. These uncertainties can origi-
nate from measurement errors of pressure or gas rates, PVT laboratory experiments
or representativeness of well samples for the whole field. To account for some of them
we add 1% zero-mean Gaussian noise to the measured cumulative gas produced and
4% zero-mean Gaussian noise to the formation volume factors (for the uncertainty
scales in reservoir fluid description see Meisingset 1999) .
The GIIP estimates based on the material balance analysis are presented in Fig. 7.15.
In this case the cumulative water influx is the major uncertain parameter influencing
to a large extent the GIIP volumes (see Eq. 7.6). When only the pressure data are
used the mean GIIP is lower than the reference value of 55.5 Gm3 by about 2 Gm3

and the ensemble standard deviation is reduced from the initial 5.3 Gm3 to 2.5 Gm3.
The assimilation of gravity data provided better cumulative water influx estimates
(see Fig. 7.13). In the result, the GIIP differs only by about 0.3 Gm3 from the
reference value and the ensemble standard deviation is reduced to about 0.7 Gm3.
Comparing Fig. 7.14 with Fig. 7.15, we observe that fairly similar estimates of the
GIIP were obtained using different approaches, especially for the case when only the
pressure data were matched and the case when both, the pressure and the gravity
data, were used. In both cases, the joint assimilation of pressure and gravity data
provided the most accurate results, and the benefits of a joint data inversion were
clearly visible in the model-based GIIP estimates. When only the gravity observa-
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Figure 7.15: The GIIP estimates for different data assimilation scenarios; a) only the pressure
data are assimilated; b) only the gravity data are assimilated; c) the pressure and gravity
data are jointly assimilated. The estimates are obtained from the material balance analysis.

tions were matched, more accurate estimates of the GIIP followed from the material
balance analysis compared to the model-based results. We explain this by accurate
total water influx estimates derived from the gravity data inversion and a limited abil-
ity to accurately update all the static reservoir parameters in this case. It is difficult
to judge which approach for the GIIP determination is more suitable because both
methods were applied under certain assumptions. For the material balance analysis
the total water influx was the major uncertain parameter, and the average reservoir
pressure drop was representative for the whole reservoir formation. On the other
hand, in the model-based approach GWC position and lateral extent of the reservoir
structure were fixed, and only the top and bottom horizons were tuned. Thus, only a
part of the possible structural uncertainty was modeled. It requires further research
in more complex settings to evaluate strengths and weaknesses of the two approaches.
Nevertheless, we demonstrated that in both cases gravity data assimilation a clear
added value.

7.4.5 Field production forecasts

The forecasts of the field gas and water production rates from 7 to 14 years are shown
in Fig. 7.16. The reference gas production rate and the predictions from the initial
and the final ensemble members are compared to the predicted gas demand, and it
is uncertain if the field is capable of producing at the desired gas rates during the
specified forecast period. The accuracy of production forecasts is further evaluated by
computing the root-mean square error for the forecasted cumulative gas production

RMSEG =

√√√√ 1

Ne

Ne∑

j=1

(
Gj

cum −Gref
cum

)2
, (7.7)

and for the forecasted cumulative water production

RMSEW =

√√√√ 1

Ne

Ne∑

j=1

(
W j

cum −W ref
cum

)2
, (7.8)
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where G denotes gas, W denotes water and Ne is the number of ensemble members.
The predicted gas production rates from the initial models are inaccurate with RMSE
(Fig. 7.16) of 4.8 Gm3. Some of the initial models show a severe drop in the gas
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Figure 7.16: The forecasts of the field gas (top row) and water (bottom row) production
from 7 to about 14 years for different data assimilation scenarios; a) only the pressure data
are assimilated; b) only the gravity data are assimilated; c) the pressure and the gravity
data are jointly assimilated. The estimates are obtained by re-running the reservoir model
from time zero with the final parameter estimates. The grey line denotes the predicted gas
demand.

production indicating the end of the reservoir life after only 9 years. On the other
hand there are also models predicting high rates up to 14 years. This uncertainty
is to a large extent reduced with the assimilation of pressure data. The rates of
the updated models match the reference rate more closely and the RMSE of the
forecasted cumulative gas production is reduced to 1.5 Gm3 in this case. When
only gravity data were assimilated the forecast accuracy is also improved, but the
effect is smaller compared to the results when only pressure data were assimilated.
Combining both, pressure and gravity data does further improve the results and
gives RMSE of 1.1 Gm3. Therefore, we may conclude that mostly matching the
pressure data influenced the gas production forecast improvement in this case. On
the other hand, the reference field does not produce any water during the forecast
interval. Contrary to that, there are many initial ensemble members giving high
field water production rates reaching 3000 m3/day and more (see Fig. 7.16). The
assimilation of pressure measurements improves the water rates predictions and the
RMSE of forecasted cumulative water production is reduced from 2010.8 × 103 m3

to 718.5 × 103 m3. However, there are still many final members predicting a water
breakthrough after 9−10 years with rates up to 500 m3/day and more. Matching the
gravity data gives more accurate water production forecast, where only a few members
show any water production. The RMSE is drastically reduced to 32.0 × 103 m3.
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A combined assimilation of pressure and gravity data does not change the results
noticeably. Therefore, we may conclude that matching the gravity data improved to
a large extent the forecast of water production in this case. These results show the
complementarity of pressure and gravity measurements, which, when combined can
provide more accurate gas and water production forecast.

7.4.6 The non-uniqueness

In the previous sections we showed that in the case when only the pressure data were
assimilated, despite the reasonable pressure history-match, the static parameter esti-
mates were inaccurate. Furthermore, the dynamic variables important for reservoir
monitoring, i.e., the cumulative water influx and the temporal mass variations, were
also erroneous. Nevertheless, the gas production forecasts resulting from the reservoir
model re-run from time zero with inaccurate static parameters was quite acceptable.
These results show the non-uniqueness of the history-matching problem. There are
four uncertain parameters that we update, namely permeability, porosity, reservoir
structure, and aquifer support which can all explain the pressure data mismatch. For
instance, a lower permeability reservoir will experience a quicker pressure drop. How-
ever, a similar effect could be obtained with a thinner reservoir structure, with smaller
volumes of gas above the GWC or a reservoir with smaller pore volume. Finally, the
reservoir pressure behavior can be very sensitive to the aquifer support. It is clear
that the interplay of all these parameters determines the pressure as measured in
the wells. Furthermore, many combinations exist which may give the same pressure
response. Therefore, the pressure data alone cannot discriminate between different
reservoir scenarios as illustrated in Fig. 7.17, where the data assimilation results for
one of the ensemble members are shown. In both cases when only the pressure data
or the pressure data in combination with gravity data are used the pressure history-
match and the pressure forecast are very accurate. Nevertheless, the estimates of the
aquifer support are significantly different in these two cases. Results based on pres-
sure data only suggest large and strong aquifer (large values of the parameters and )
and high water influx rates, whereas results based on both pressure and gravity data
show much weaker aquifer support. In the first case the permeability is significantly
underestimated (compare with Fig. 7.8) around the well region limiting the pressure
communication with the reservoir boundary (this region is shown with the dashed
circle in Fig. 7.17d-f)). Therefore, to compensate for a too low permeability there
the aquifer needs to ”push” harder to match the pressure as sensed in the wells. Con-
sequently, the well pressure is matched but the actual amount of water influx, which
is not seen in the wells, is substantially overestimated. Because gravity observations
can sense the subsurface mass redistribution and hence the water/gas displacement
directly, a joint assimilation of gravity and pressure data can provide more adequate
solution in this case.
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Figure 7.17: The data assimilation results for one particular model realization and various
assimilation scenarios. a) shows the pressure history-match for one of the producers; b)
shows the parameter estimates for the analytical aquifer model; c) shows the corresponding
estimate of the water influx rate obtained by re-running the updated ensemble models from
time zero and d-f present the 1st layer of the updated permeability field (ln(k) where k is the
permeability in milidarcies): d) only the pressure data are assimilated; e) only the gravity
data are assimilated; f) the pressure and gravity data are assimilated. The pink dot denotes
the location of the producer. Because the aquifer for the reference field is not modeled with
the analytical approach, no reference values are shown in b).

7.4.7 Sensitivity to gravimetric noise

To simulate gravimetric observations we assumed uncorrelated, zero-mean, 2 µGal
Gaussian measurement noise. Such noise levels for a single gravity survey are in
principle achievable but they should be considered rather as a best-case scenario.
Therefore, to investigate the sensitivity of the results on the gravity data noise as-
sumptions we increased the single survey gravity noise (standard deviation) to a more
pessimistic value of 5 µGal what results in about 7 µGal for the time-lapse gravity
noise. Here, we consider the case when the pressure and the gravity data are jointly
assimilated. Fig. 7.18 shows the field gas and the field water production forecasts
and the GIIP estimates based on the material balance analysis. Comparing Fig. 7.18
with Fig. 7.15c) and Fig. 7.16c) we observe that increasing the gravity noise did
not influence the results dramatically. The gas production forecast remaines almost
unchanged and the water production forecast becomes less accurate with a RMSE
increasing from 32.9 × 103 m3 to 82.9 × 103 m3. Due to the larger uncertainty in
the cumulative water influx estimates (not shown here) where the standard deviation
increased from 1.3 Mm3 to 2.5 Mm3, the standard deviation of the GIIP estimates
increased (derived from Eq. 7.6) from 0.7 Gm3 to 0.9 Gm3.
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Figure 7.18: The GIIP estimates obtained from the material balance analysis (a) and the
forecasts of the field water (b) and gas (c) production from 7 to about 14 years. The
case with a joint assimilation of the pressure and the gravity data is shown. The gravity
observations are contaminated with a 5 µGal Gaussian noise in this case. The water and
gas rate estimates are obtained by re-running the reservoir model from time zero with the
final parameter estimates. In Fig. 7.18c) the grey line denotes the predicted gas demand.

7.4.8 The aquifer modeling error

We perform a data assimilation experiment to investigate if the reference model output
can be matched using the analytical aquifer response. To find the best possible
parameter estimates of the aquifer model, we assimilate jointly the noise-free pressure
and the noise-free gravity data, and estimate the parameters of the aquifer model while
keeping the other parameters (porosity, permeability and reservoir structure) fixed
and set to the correct values of the reference model. Fig. 7.19 shows the predicted
outputs from the reference model: the well pressure for one of the producers and
the gravity variation profile. The reference model outputs are compared with the
predicted data from the final model, which results in the lowest RMSE over all data.
The RMSE for all the pressure data available (8 producers) is 1.4 bar and the RMSE
for all the gravity data available (after 3, 5 and 7 years) is 1.9 µGal. The predicted
data mismatch could partly be explained by the limitations of the analytical aquifer
model to accurately simulate the dynamic response of the 3D reference aquifer, partly
by limitations of the data assimilation to find the exact parameter estimates of the
analytical aquifer, and partly by the limited information content of the output data
about the aquifer properties. Unfortunately, at this stage it is not clear, which effect
contributes the most.
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Figure 7.19: The predicted outputs from the reference model (black): the well pressure (a)
for one of the producers and the 7-year gravity variation profile (b). The gravity profile from
Fig. 7.5 is shown. In red the predicted data from the updated model is presented, for which
the RMSE over all data is the smallest.

7.5 Discussion and conclusions

The purpose of this study was to investigate the added value of gravimetric obser-
vations for history-matching a gas field. Gravity and pressure data were assimilated
with the ES to infer the aquifer support characteristics, to update the static reservoir
model, and to estimate the GIIP volumes. We used the analytical approach for mod-
eling of the water influx, which made the estimation of the aquifer support possible
with using just a few parameters, compared to the thousands and more parameters
in case of the grid block based property estimation. However, a more detailed in-
vestigation of the aquifer modeling errors should follow to investigate in detail the
limitations of the proposed approach. Furthermore, only a subset of the actual struc-
tural uncertainty has been modeled in our experiments. For instance, no faults in the
gas reservoir were considered, which could potentially create reservoir compartments,
non-homogenous fluid contacts and much more complex reservoir pressure behavior.
We believe that such scenarios are very interesting for future research.
We showed that history-matching a gas field with only pressure data may provide
highly non-unique solutions because several parameter combinations can explain the
reservoir pressure behavior observed in the wells. Then, it is hardly possible to find
at the same time accurate estimates of aquifer support and reservoir structure or
permeability. Therefore, additional information is needed. Time-lapse gravimetric
observations are complementary to pressure data because they can sense the subsur-
face mass changes and infer aquifer support. We showed that a joint assimilation of
pressure and gravity data can provide more constrained inverse solutions and result
not only in improved gas and water production forecast but also gives more accurate
reservoir reserves evaluation and reservoir state description.





Chapter 8
Case study 3–Bias-aware data assimilation

In this chapter we show an example of an application of the bias-aware
data assimilation methodology introduced in Chapter 4. We perform syn-
thetic experiments based on the 2D gas reservoir model already used in
the data assimilation in Chapter 6. Similarly as in Chapter 6, we assimi-
late gravity data to estimate the reservoir permeability and the reservoir
mass redistribution. This time, however, we consider not only random
noise in the observations but also systematic errors (biases) in both the
observations and the forward model.

169
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8.1 Introduction

In reservoir engineering applications of data assimilation an assumption is often made
that the forward model is error-free and that the observation errors are zero-mean
and purely random. We also followed this approach in the synthetic 2D case study in
Chapter 6. It is known, however, that both the model and the observation errors can
arise as random as well as systematic. The numerical model may not be capable of
predicting the true signal perfectly even if the best possible set of the model parame-
ters was given. The model errors may occur due to, e.g., too coarse parametrization
(too large grid blocks), linearization, and numerical approximations. The errors can
also be caused by unrepresented model physics and poorly known boundary condi-
tions, such as, e.g., an aquifer support (see Chapter 7). Similarly, observation errors
can have many sources. The examples include the instrument, the data processing
procedures, and the influence of environmental processes (see Chapter 3).
In Chapter 4 we described briefly the extension of the ensemble-based data assim-
ilation methods used in this thesis to include explicit modeling and estimation of
systematic errors in the model and the observations, referred to as bias. In this
chapter we show the application of this methodology in the context of gravity data
assimilation. First, we introduce the experiment setup. Next, the origin and charac-
teristics of observation and model bias are presented. In the subsequent section, we
describe the bias-evolution models used in the data assimilation scheme. The assimi-
lation results are discussed after that. The chapter is finalized with a brief summary.

8.2 Experiment setup

8.2.1 2D gas field model

We consider the 2D gas reservoir model already used in the data assimilation ex-
periments in Chapter 6 (see Fig. 6.1). To recall, the model is represented as a
3000×3000×50 m box divided into 40×40 grid blocks with dimensions of 75×75×50 m.
The distance from the reservoir top to the free surface is set equal to 1700 m. To
simplify the analysis, this time we consider the assimilation of gravity data only. We
use a 5000× 5000 m regular gravity observation grid with 100 stations separated by
500 m in x- and y-direction. Similarly as before, the history-matching window spans
a period of 3500 days and the observations are assimilated at 1500 days, 2500 days
and 3500 days. Apart from the observation bias (discussed in Section 8.2.2), a 2 µGal
(std) uncorrelated (in time and space) zero-mean Gaussian noise is added to the obser-
vations. The noise is added to the single-survey data which means that the standard
deviation of the time-lapse gravity noise is

√
22 + 22 ≈ 2.83 µGal.

The unknown parameters are the grid-block permeabilities and the cumulative water
influx into the reservoir. We apply the EnKF method with 100 ensemble members
and use the same as in Chapter 6 initial ensemble realizations of the permeability
field (see Fig. 6.2). The estimates of the water-front position are obtained by running
forward the reservoir model with the updated permeability field. Porosity is updated
by applying the deterministic relationship between the permeability and the porosity
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(see Eq. 6.1).
Three cases are analyzed with respect to the presence of bias: only the observation
bias, only the model bias, and both the observation and the model bias.

8.2.2 Biases

The observation bias

The observation bias may have many sources and some one of them relate to gravity
data acquisition and data processing procedures. For instance, in time-lapse gravime-
try based on relative measurements, such as, e.g., offshore gravimetry, the relative
readings must be tied to reference stations. The reference stations need to be located
far enough from the target, i.e., the reservoir, so they are not affected by the signal
of interest. Tying the field relative measurements to those at the reference stations
allows comparing measurements in time despite of the gravimeter drift. However,
since measurements, including those at the reference stations, are always affected by
some kind of noise, this procedure may introduce a random offset (called zero-level
uncertainty, see Eiken et al. 2008) to time-lapse gravity differences. In this study this
offset will be considered as observation bias.
The observation bias, the zero-level uncertainty, is a random constant shifting the
whole gravity variation map up or down. Therefore, to model the evolution of the
observation bias b we use

bfk,j = βk,j , (8.1)

where bfk,j denotes the observation bias forecast for the ensemble member j, j =
1, . . . , Ne, k is the time index, k = 1, . . . , Ns where Ns denotes the number of assimi-
lation time steps, and βk,j is a random number sampled from the Gaussian distribu-
tion, i.e, βk,j ∼ N(0, σb), where σb denotes the standard deviation. Based on the field
estimates (Eiken et al. 2008) we use σb = 2 µGal for the observation bias modeling.

The model bias

Hydrology can introduce a model bias into history-matching gravimetric observations
since accurate information on hydrological processes at a site is rarely available. Con-
sequently, the observed gravity variations, which contain the hydrological signal (see
Chapter 3), cannot be predicted correctly. Thus, the model predictions of the ob-
served data can be biased because of the undermodeling error (Fig 8.1). The gravity
signal variations caused by the groundwater-level changes will define the model bias
in this study.

To generate realistic realizations of the model bias, we use outputs of a hydrological
model of a catchment area located in the southern part of the Netherlands. Figure 8.2
presents the predicted groundwater levels in terms of the mean highest groundwater
table and the mean lowest groundwater table in the catchment. A difference between
these two levels of more than 2 m at some locations can be observed. Because the
hydrological model domain is larger than the extent of the gravity computation grid of
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Figure 8.1: Schematic illustration of the model bias originating from undermodeling. The
observed gravity variations are caused by overall mass changes, i.e., those in the hydro-
carbon reservoir and in the shallow subsurface. However, the hydrological model for the
shallow subsurface is not available and only the numerical model of the reservoir can be
used. Consequently, the predicted gravity variations are biased because they do not contain
the hydrological signal.

Figure 8.2: The mean highest groundwater table (abbreviated GHG, left figure) and mean
lowest groundwater table (abbreviated GLG, right figure) predicted by the hydrological
model of the Netherlands, in meters below the surface elevation. Courtesy of G. Hendriksen,
Deltares. The black rectangle shows the location of data subset used in this study.

the reservoir, i.e., 575 km2 compared to 25 km2, only a subset of the available hydro-
logical data, shown with the dashed rectangle in Fig. 8.2, is used. Three snapshots of
the hydrological noise are taken (Fig. 8.3a–Fig. 8.3c) to contaminate the gravimetric
observations at the assimilation times at 1500, 2500 and 3500 days. Compared to the
true signal from the reservoir (Fig. 8.4) the hydrological noise is of the same magni-
tude (up to 20 µGal) but opposite in sign. Furthermore, the true signal is aligned
mostly with the propagating water front whereas the hydrological noise is distributed
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over the whole gravity observation grid and it is characterized by a mixture of short
and long-range spatial correlations. The hydrological noise will partly mask the signal
of interest where the two signals overlap.
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Figure 8.3: Examples of predicted gravity field variations (µGal) resulting from the ground-
water level changes in the catchment area shown in Fig. 8.2.

A simple modeling approach is used to propagate forward the model bias. It is based
on the observation that the spatial pattern of the natural groundwater variations is
relatively stable in time (Fig. 8.3). It mostly depends on the terrain topography and
the subsurface characterization such as, rock/soil type, porosity, permeability etc.,
and these parameters do not change in time rapidly. Certainly, the magnitude of the
groundwater changes is variable and relates to, e.g., the amount of precipitation. At
a given location, for different time epochs, the temporal groundwater level changes
with respect to a baseline state can be both positive and negative. Consequently, as
shown in Fig. 8.3, the pattern of hydrological gravity noise may stay similar but its
sign may flip. Therefore, to propagate forward the model bias e, we use

efk,j = γk,je
a
k−1,j , (8.2)

where γk,j ∼ N(0, σe) and the superscript a stands for the analyzed (updated) esti-
mate. In this way the bias structure estimate obtained in step k − 1 is fixed in the
bias forecast for the kth assimilation step. Because the sign of the true bias may flip
from update to update, the updated bias estimate from step k − 1 is multiplied with
a random constant to produce the forecast for step k. In this way there is higher
chance that the true bias is included in the space spanned by the ensemble of bias
models. In this study we use σe = 2.
The initial ensemble members of the model bias are generated with the Sequential
Gaussian simulation method (SGSIM) with a spherical variogram. To include the
uncertainty about the correlation lengths of the true model bias, a number of cases
for the variogram range (θ) is considered, i.e., θ = 2.5 km, 5 km, 7.5 km, 12.5 km and
17.5 km. For each variogram range we simulate 20 members giving in total 100 initial
realizations for the model bias. The representative examples of the initial model bias
realizations are shown in Fig. 8.5.
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Figure 8.4: The reference (true) time-lapse gravity variations caused by the reservoir mass
redistribution (top row) and the model bias resulting from the groundwater mass changes
(bottom row). The values are in (µGal). The model bias simulation is based on the hydro-
logical model outputs shown in Fig. 8.2. The black dots show the location of the gravity
observation points. The pink rectangle shows the reservoir layout and the pink curve shows
the position of the true water front.
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Figure 8.5: Examples of the initial realizations of the model bias for different variogram
range θ. The representative ensemble members are shown. The values are in µGal.
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8.3 Results

8.3.1 Bias-free estimates

Figure 8.6 and Fig. 8.7 show the final (after 3500 days) estimates in the bias-free case.
The estimates result from assimilation of gravimetric observations contaminated by
a 2 µGal zero-mean Gaussian noise only. Therefore, they will serve as a reference for
the results in the cases when additionally the observation, the model or both biases
enter the system.
Fig. 8.6c shows the final permeability estimate. Compared to the reference (true)
permeability (Fig. 8.6a), only the major high-permeability zone is recovered. How
the permeability estimate translates into the estimate of the reservoir mass change,
and hence into the estimate of the water-front position, is shown in Fig. 8.7. Because
only some of the main parameter features were captured, the water-front position
estimate is not perfectly aligned with the true front. Despite this the front position
RMSE is reduced significantly, from the initial value of about 300 m (see Fig. 6.11)
to about 188 m. A large added value of the gravity data can be seen in the estimates
of the cumulative water influx (Fig. 8.7b). In this case, the mean of the updated
members, which is equal to 19.4 Mm3, is very close to the reference value of 20.1 Mm3.
Furthermore, a significant reduction of the uncertainly in the total water influx can be
observed, i.e., the ensemble standard deviation is reduced from 4.6 Mm3 to 0.5 Mm3.
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Figure 8.6: The reference permeability field (a), the initial permeability field (b) and the final
estimate of the permeability field (c) in the bias-free scenario. The values are in milidarcies.
The black curve shows the reference water-front position at the final update time (3500
days).

8.3.2 Bias-blind estimates

The bias-blind estimates are shown in Fig. 8.8. In this case the presence of the bias
in observations and/or the model is ignored and the classical EnKF scheme is applied
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Figure 8.7: The estimates of the reservoir mass variation (a) and of the total water influx
(b) in the bias-free scenario. The results for the final update time (3500 days) are shown.
In Fig. 8.7a the dark pink color shows the water mass distribution. The black curve shows
the reference water-front position at that time.

(see Chapter 4 for details). Three cases are analyzed for the presence of the bias,
namely, only the observation bias, only the model bias and both biases at the same
time.
Fig. 8.8a shows the final permeability estimate in case of the first scenario. The nega-
tive observation bias, equal to −4.48 µGal, shifts the observed gravity variation map
down. For a comparison, the maximum amplitude of the true signal is about 22 µGal.
Consequently, the observed gravity variations are significantly lower than the true ones
which results in severely overshooted permeability field estimates. For instance, in
the western part of the reservoir, where most of the water influx is distributed, the
permeability field is underestimated. This is because the gas replacement by water
creates positive mass variations and, as a result, positive gravity changes. To match
the observed gravity, which is smaller than the true one, the permeability field needs
to be reduced to allow for less water influx. The opposite holds for the eastern part
of the reservoir from where most of the gas is produced. There, the gas takeout leads
to the negative mass changes and hence to the negative gravity field variations. Since
the observed gravity variation is smaller (larger in the absolute sense) than the true
one, the permeability is enhanced to allow for more mass takeout. The strongly er-
roneous permeability estimate results in an inaccurate prediction of the water-front
position with a RMSE of about 478 m (Fig. 8.8d). The destructive influence of the
observation bias is also visible in the cumulative water influx estimates (Fig. 8.8g).
The total amount of water influx is underestimated by more than 25% with respect
to the reference value.
Introduction of the model bias, which in this case is the negative gravity variation
caused by the groundwater decrease, has similar consequences. However, due to the
larger signal amplitude, reaching about −14 µGal, the influence on the estimates is
stronger. The front-position RMSE is equal to 887 m in this case and the cumu-
lative water influx estimate is underestimated by more than 50% with respect to
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the reference value. The scenario where both the observation and the model bias are
present, results in very large errors, especially in the water influx estimates (Fig. 8.8i),
underestimated by about 67% with respect to the reference value.
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Figure 8.8: The final (at 3500 days) estimates in the bias-blind scenario. The first row
shows the permeability (in milidarcies) estimates, the middle row shows the estimates of the
reservoir mass variation and the bottom row shows the cumulative water influx estimates.
In Fig. 8.8d-8.8f the dark pink color shows the water mass distribution. The black curve
shows the reference water-front position at that time.
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8.3.3 Bias-aware estimates

Fig. 8.9 shows the results of the bias-aware gravity data assimilation. The permeabil-
ity field estimates are significantly less overshooted compared to those when the biases
are completely ignored (compare Fig. 8.8a-8.8c with Fig. 8.9a-8.9c). Especially in the
case of the observation bias (Fig. 8.9a) the permeability estimate is not far from the
one in the bias-free scenario (Fig. 8.6c). In case of model bias the permeability is less
accurate. More accurate estimates in the first case are expected because the observa-
tion bias is smaller in magnitude than the model bias. Furthermore, the observation
bias is a constant number whereas the model bias is a spatially-variable signal which
is much more difficult to estimate. Despite this, the estimates of the water-front posi-
tion are significantly improved compared to the bias-blind results. The front-position
RMSE is reduced several significantly (see Tab. 8.1), i.e., from 500− 800 m to about
200 m. Also the estimates of the total water influx are significantly better compared
to the bias-blind results. The ensemble mean in all the bias-aware cases is close to the
reference value. In case of the observation bias the the ensemble standard deviation
of the total water influx is equal to 0.7 Mm3 and in case of the model bias is equal
to 1.4 Mm3. When both biases are present, as expected, the uncertainty on total
water influx is the highest and equal to 1.6 Mm3. We observed a similar relationship
between the variances of the permeability field estimates (not shown here).

Table 8.1: Summary statistics of parameter estimates. The reference cumulative water influx
is equal to 20.1 Mm3.

RMSE water front water influx est. water influx std
(m) (Mm3) (Mm3)

bias-free 188 19.4 0.5
obs. bias-blind 478 14.6 0.5
model bias-blind 887 9.6 0.4
both bias-blind 788 6.5 0.4
obs. bias-aware 208 18.6 0.7
model bias-aware 212 18.7 1.4
both bias-aware 234 19.3 1.6
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Figure 8.9: The final (at 3500 days) estimates in the bias-aware scenario. The first row
shows the permeability (in milidarcies) estimates, the middle row shows the estimates of the
reservoir mass variation and the bottom row shows the cumulative water influx estimates.
In Fig. 8.9d-8.9f the dark pink color shows the water mass distribution. The black curve
shows the reference water-front position at that time.
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8.3.4 Bias estimates

The estimates of the observation bias are shown in Fig. 8.10. This time we present the
results for all the assimilation times, i.e., 1500, 2500 and 3500 days. In all the cases
the reference observation bias is within the spread of the updated ensemble members.
Also a significant reduction of uncertainty on the bias can be observed. The standard
deviation of the initial ensemble is reduced from 2 to about 0.5 µGal.
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Figure 8.10: The observation bias estimates at different data assimilation times. In this case
only the observation bias was present.

The model bias estimates are presented in Fig. 8.11. Most of the bias features were
recovered reasonably, e.g., the location of the signal low/high values. The estimate
RMSE is reduced 2-3 times, i.e., from 6− 8 µGal (Fig. 8.4) to 2− 3 µGal.
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Figure 8.11: The model bias estimates at different data assimilation times. In this case only
the model bias was present.

The results are less accurate when both biases are present at the same time. The
updated estimates of the observation bias (Fig. 8.12) are not very different from the
initial values. In all the time steps the reference observation bias is underestimated
by about 1 − 2 µGal. The model bias estimates (Fig. 8.13) seem to preserve the
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main signal trend, e.g., the location of the signal low/high values, however they are
overshoothed. This suggests that a part of the constant observation bias was absorbed
by the model bias estimate.
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Figure 8.12: The observation bias estimates at different data assimilation times in case when
both the observation and the model bias were present
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Figure 8.13: The model bias estimates at different data assimilation times in case when both
the observation and the model bias were present

Figure 8.14 shows the x−profile at about y = 1.3 km through the gravity varia-
tion maps for all three assimilation times. The predictions from the prior ensemble
members, the reference signal and the biased signals are shown. The presence of the
observation bias, which is a random constant, leads to an offset in the observations
but they are still contained within the spread of the ensemble predictions. When the
model bias is added, the observed signal is very different not only from the refer-
ence signal, but also from the ensemble predictions. It is more spatially variable and
significantly smaller. When both biases are combined, the observed gravity is even
more outstanding. Thus, in all the cases the innovations (see Chapter 4 for more
details), i.e., the difference between the model predictions of the observations and the
actual observations, provide information about the presence of biases. The innova-
tions, however, do not distinguish the bias source. We incorporate the constraints on
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the bias source and the spatio-temporal bias characteristics through the prior infor-
mation. The bias model forecasts are used to approximate the bias error covariance
matrices which define the space where bias estimates are searched for. Thus, it is
important that the space spanned by the bias error covariances and the state error
covariances are different. This is in fact the case in the considered example. Fig-
ure 8.15 shows the model bias (hydrological noise in gravity) and the state (gravity
signal from the reservoir) normalized covariance estimates at 3500 days. One row
of the covariance matrices is displayed, and the correlation as a function of distance
is shown. Clearly, the two covariances are different. The signal (state) covariance
matrix shows high correlation at close distances and the correlation decays to zero at
about 2.8 km. Note that this is consistent with the spatial characteristics of the true
signal (Fig. 8.4c). The model bias covariance shows slightly lower correlation at close
distances but higher correlation at larger distances. This seem to be consistent with
the characteristics of the hydrological signal defining the true bias (see Fig. 8.3 and
Fig. 8.4).
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Figure 8.14: The x−profile at about y = 1.3 km through the time-lapse gravity variations:
(a-c) only the observation bias is present; (d-f) only the model bias is present; (g-i) both
biases are present.
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Figure 8.15: One row of the normalized estimate of the error covariance matrices of the state
and of the model bias. The covariance as a function of distance is shown.
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8.4 Summary

In reservoir history matching, often the assumption is made that the forward model
predictions and the observations are unbiased, i.e., that there are no systematic er-
rors. In this study we considered the case where the model and the observation errors
arise both as random as well as systematic. For this purpose, a synthetic example of
gravity data assimilation for gas field monitoring and characterization was used. Our
definitions of the observation and the model bias relate to some practical problems
in time-lapse gravimetry. The observation bias was defined as a random offset in the
observed time-lapse gravity variations. The model bias was defined as the gravity sig-
nal variations caused by the groundwater mass changes. To generate realistic model
bias realizations, a hydrological model of the real catchment area was used.
We showed that the influence either of the observation bias or the model bias on
assimilation results can be very severe and can lead to a large state/parameter un-
der/overestimation. This is because the inversion of gravimetric observations, like
inversion of other geophysical observations, is a severely ill-posed problem. A bias-
aware data assimilation methodology can be used when the model and/or observations
are likely to be biased. The information about the presence of bias can be obtained
from innovations, but to distinguish the bias source, which can be the model, the
observations, or both, additional information is needed. The constraints on the bias
origin and the bias characteristics can be incorporated through the prior information.
The bias error covariances provide the spatial bias information, and the temporal
characteristics are included in the bias-evolution models. We showed that by using a
bias-aware data assimilation methodology, the bias can be estimated separately from
the state and that the deteriorating bias influence on the assimilation results can be
to a large extent mitigated. However, the presence of bias implies more uncertain
parameter estimates (larger variance) compared to the bias-free scenario. In future
studies the applicability of bias-aware data assimilation to other model/observation
bias types, such as, e.g., errors in boundary conditions modeling, should be investi-
gated.



Chapter 9
Conclusions and recommendations

9.1 Conclusions

• Time-lapse gravimetry is a promising areal monitoring technique for reservoirs
containing fluids with high density contrasts, e.g., gas and water or oil and
steam. For large and shallow reservoirs, stronger 4D signals can be observed
as compared to small and deep reservoirs. Therefore, the monitoring of shallow
reservoirs is especially promising.

• Borehole gravimetry can be used for near well monitoring, within a few tens of
meters from the well. Time-lapse gravity gradiometry has the potential to be
useful for shallow targets.

• Hydrological variations can be the major source of noise affecting onshore time-
lapse gravimetry. Therefore, hydrological observations, in particular groundwa-
ter levels, need to be acquired along with gravity data and used to correct for
hydrological influences. Already with a single groundwater measurement the
hydrological signal can be estimated to some extent, thus reducing the hydro-
logical noise.
Soil moisture can also add a few µGal to the hydrological signal. However, cor-
recting observed gravity for the influence of soil moisture variations can be very
challenging due to soil spatial heterogeneity and its short correlation lengths.

• Gravimetric monitoring of steam injection in the shallow, heavy oil reservoir in
the North of Oman has a great potential. The heat-front evolution could be
monitored with best accuracy in the order of 140-160 m, which is comparable
to half of the reservoir depth. However, we showed also that the gravimetric
measurements can be to a large extent influenced by the hydrological signal re-
sulting from spatio-temporal groundwater variations. The front position errors
can reach 200-700 m compared to 140-160 m when the hydrological noise is not
present. Using field groundwater data we showed that by applying corrections
based on the hydrological measurements, the accuracy of gravimetric heat-front

185
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monitoring can be significantly improved. With already 36 groundwater obser-
vations (6× 6 grid) the front-position error can be reduced to about 150-250 m.
Further increasing the density of groundwater measurements to about 100-200
brings the accuracy of the estimates close to the case with only the observational
noise present in the data, i.e. to about 140-160 m.

• Time-lapse gravimetry is useful for the monitoring of spatial mass redistribution
in the reservoir. Large-scale mass variations are easier to monitor than small-
scale ones. One of the most promising and useful applications of time-lapse
gravimetry is monitoring the amount and spatial distribution of water influx
into a gas field.

• The subsurface mass redistribution induced by the water influx, and sensed by
time-lapse gravimetry, can be translated into a better knowledge about reservoir
parameters and aquifer characteristics using data assimilation. The improve-
ment in spatial parameter estimates can be expected foremost in the regions
affected by reservoir mass variations. Gravimetric observations have an added
value for the estimation of large-scale patterns (high/low zones) of permeability
and porosity fields. They can also contribute to a better understanding of the
aquifer dynamics.

• The non-uniqueness of the gravity data inversion for, e.g., permeability esti-
mates, is not only driven by the non-uniqueness of gravimetric observations,
but is additionally influenced by an intrinsic non-uniqueness of the reservoir
fluid flow.

• The non-uniqueness of the history-matching problem can be partly mitigated by
a proper problem parametrization. For instance, instead of a complex 3D aquifer
model, analytical solutions can be used, provided that they offer a reasonable
approximation of the aquifer behavior.

• Production data assimilation can provide more accurate estimates in near-well
regions compared to distant locations. Long-distance spurious correlations may
deteriorate the accuracy of estimates at large distances from the wells. The in-
fluence of spurious correlations can be reduced with the application of covariance
localization methods. Distance-based localization is not suitable for localizing
gravity data. This is because the correlation between static parameters, such
as permeability, and gravimetric observations, is not only a function of distance
but also depends on the mass flow pattern, which in fact is one of the major
uncertainties.

• Production data and time-lapse gravity observations are complementary sources
of information, which, when combined within a data assimilation framework,
can provide a considerably improved picture of reservoir permeability and a
better understanding of the subsurface mass redistribution. Furthermore, the
joint assimilation of pressure and gravity data results in improved gas and water
production forecasts and gives a more accurate reservoir reserves evaluation and
reservoir state description.
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• Higher gravity measurement random noise-levels lead to smoother parameter
estimates with a higher variance.

• In the context of gravity data inversion for hydrocarbon reservoir monitoring
and characterization, data assimilation methods, in particular the EnKF and
the ES, can be more attractive than classical inversion techniques based on
the Tikhonov regularization concept. Firstly, because in data assimilation the
prior knowledge can easily be integrated and used to regularize the solution in
a physically-based way. Secondly, because it facilitates the integration (joint
inversion) of different data types even in a non-linear case.

• The influence either of the observation bias or the model bias on assimila-
tion results can be very severe and can lead to a large state/parameter un-
der/overestimation. This is because the inversion of gravimetric observations,
like inversion of other geophysical observations, is a severely ill-posed problem.
A bias-aware data assimilation methodology can be used when the model and/or
observations are likely to be biased. We showed that by using a bias-aware data
assimilation methodology, the bias can be estimated separately from the state
and that the deteriorating bias influence on the assimilation results can be to
a large extent mitigated. However, the presence of bias implies more uncertain
parameter estimates (larger variance) compared to the bias-free scenario.
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9.2 Recommendations

• The added value of field-wide, continuous gravity measurements for reservoir
monitoring and characterization should be investigated. Gravity sensors have
been developed and low-drift (or drift-free), inexpensive gravimeters may be-
come available in the future. A grid of permanently installed gravimeters could
provide not only enhanced reservoir monitoring information but also could add
to a better understanding of environmental processes affecting gravity observa-
tions at a site, such as hydrology.

• Monitoring shallow targets, such as heavy oil reservoirs, with gravity gradiom-
etry may be feasible. Therefore, the added value of gravity gradiometry for
monitoring shallow reservoirs and a joint assimilation of gravity and gravity
gradient measurements with reservoir production data should be investigated.

• In this research geomechanical effects such as subsidence due to reservoir com-
paction or uplift due to thermal rock expansion have not been taken into ac-
count. Subsidence and gravity observations in the context of gas field monitoring
can be a source of complementary information. Gas production causes reser-
voir pressures to drop, which may induce surface/seabed subsidence, and the gas
takeout leads to negative variations in the local gravity field. On the other hand
aquifer pressure support may reduce the magnitude of subsidence and aquifer
water influx causes positive variations in the local gravity field. In this context,
integration of gravity and subsidence data has the potential to be useful for
reservoir compartments detection and inference about aquifer support.

• The added value of a joint assimilation of 4D gravity and 4D seismic data for gas
field monitoring should be investigated. Both gravity and seismic observations
are sensitive to reservoir saturation changes (i.e., gas vs water) and their joint
inversion may provide a better constrained reservoir history match.



Appendix: Parameter spatial gradient approximation

In order to approximate the parameter spatial gradient we use the 8-point approx-
imation scheme (see Fig. 9.1). For every grid cell the absolute differences in the
parameter values with respect to the parameter values in neighboring cells are deter-
mined. The gradient is taken as the maximum of these differences. Of course at the
edges the scheme is appropriately adjusted, depending on the number of neighboring
cells (Fig. 9.1b). The mathematical formulation of this scheme is shown in Eq. (9.1).
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Figure 9.1: Schematic illustration of the numerical spatial gradient calculation. The red
diamond denotes the grid cell for which the gradient is computed and the black circles
denote the grid cells which are taken into account to approximate the gradient.
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190 9 Appendix: Parameter spatial gradient approximation

∇xij =





max{|xij − xi+1,j−1|, |xij − xi+1,j |, |xij − xi+1,j+1|, |xij − xi,j+1|,
|xij − xi−1,j+1|, |xij − xi−1,j |, |xij − xi−1,j−1|, |xij − xi,j−1|}, for i < n, j < m

max{|xij − xi+1,j |, |xij − xi+1,j+1|, |xij − xi,j+1|}, for i = 1, j = 1

max{|xij − xi−1,j |, |xij − xi−1,j+1|, |xij − xi,j+1|}, for i = n, j = 1

max{|xij − xi−1,j |, |xij − xi−1,j−1|, |xij − xi,j−1|}, for i = n, j = m

max{|xij − xi+1,j |, |xij − xi,j−1|, |xij − xi+1,j−1|}, for i = 1, j = m

max{|xij − xi+1,j |, |xij − xi+1,j+1|, |xij − xi,j+1|, |xij − xi−1,j |, |xij − xi−1,j+1|},
for 1 < i < n, j = 1

max{|xij − xi+1,j |, |xij − xi+1,j−1|,
|xij − xi,j−1|, |xij − xi−1,j |, |xij − xi−1,j−1|}, for 1 < i < n, j = m

max{|xij − xi+1,j |, |xij − xi+1,j−1|,
|xij − xi,j−1|, |xij − xi,j+1|, |xij − xi+1,j+1|}, for i = 1, 1 < j < m

max{|xij − xi−1,j |, |xij − xi−1,j−1|,
|xij − xi,j−1|, |xij − xi,j+1|, |xij − xi−1,j+1|}, for i = n, 1 < j < m

(9.1)
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Summary

Reservoir monitoring is one of the key elements of closed-loop reservoir management,
which is recently receiving growing attention in the petroleum industry. Reservoir
monitoring data provide information about changes taking place in the reservoir,
which are triggered by reservoir management actions. By comparing real observa-
tions with the predictions from a numerical model of the reservoir, the uncertain
model parameters, e.g., porosity, permeability, can be adjusted such that the real and
the simulated observations match. For this purpose data assimilation methods are ap-
plied. Typically, reservoir models are updated using production measurements (e.g.,
well fluid rates, bottomhole pressures) and other data, mostly time-lapse seismic. In-
formation provided by production data, is usually only local and not representative
for the whole reservoir. Time-lapse seismics allows field-wide monitoring and makes
it possible to determine location-specific production-induced changes in the reservoir.
However, seismic data acquisition is usually expensive, may be difficult, and some-
times even prohibitive. Since gravity field variations are directly related to subsurface
mass redistribution, time-lapse gravimetry can provide complementary information
for reservoir monitoring and characterization. Despite the increasing number of ap-
plications of time-lapse gravimetry for the monitoring of hydrocarbon reservoirs, there
is little known about the added value of gravimetric observations within a context of
closed-loop reservoir management.
In this thesis the added value of gravity observations for hydrocarbon reservoir mon-
itoring and characterization is investigated. Using forward modeling of the gravity
signal, reservoir processes and reservoir types most suitable for gravimetric monitor-
ing are identified. Furthermore, a sensitivity analysis is performed to analyze the
applicability of various gravity measurement types. It is shown that surface time-
lapse gravimetry has a potential to be useful for monitoring reservoir processes with
high density contrast, such as gas and water or steam and oil. Also reservoir geo-
metric configuration (size/depth) is relevant. Small and deep reservoirs are difficult
to monitor compared to shallow and large fields. Borehole gravity measurements can
provide monitoring information on a local scale, typically several tens of meters from
the borehole.
In order to better understand the challenges of gravimetric reservoir monitoring, ma-
jor noise sources affecting time-lapse gravimetry are analyzed. Special attention is
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devoted to the analysis of hydrological influences on gravimetric observations, in par-
ticular originating from groundwater table variations. A potential contribution of
groundwater to the uncertainty budget is evaluated with forward simulations of hy-
pothetical variations of water table change. It is shown that gravity variations caused
by water table changes can mask the signal of interest, originating from the reservoir.
Therefore, there is a need to acquire groundwater observations to correct the observed
gravity. A sensitivity study is performed to investigate under which conditions the
hydrological influences on gravimetric reservoir monitoring can be minimized.
The remaining part of the thesis is devoted to the inversion of gravity and reservoir
production data. First, the inversion methods used through the thesis are presented.
We introduce the focusing inversion method, which belongs to the class of Tikhonov
regularization methods, and also the ensemble Kalman filter (EnKF) and the ensem-
ble smoother (ES), which belong to the ensemble-based data assimilation methods.
A common framework between the Tikhonov regularization concept and data as-
similation is briefly discussed, complemented by illustrative examples of application.
Subsequently, an extension of data assimilation to cases when the model and/or the
observation errors are not only random but also systematic, is introduced.
The focusing inversion method is applied to a feasibility study on gravimetric mon-
itoring of the Thermally-Assisted Gas-Oil Gravity Drainage (TA-GOGD) process at
a carbonate field in the North of Oman. The analysis includes quantification of the
predicted changes in the temporal gravity signal resulting from the reservoir mass
redistribution induced by the TA-GOGD process. The focusing inversion of the syn-
thetic gravity observations is used to analyze the achievable accuracy of heat-front
position estimates. Based on historical groundwater measurements, estimates of the
noise in gravity data related to the specific hydrological conditions are also consid-
ered. It is shown that hydrological signals can be a very significant source of noise and
can affect the gravimetric monitoring of the field. Therefore, it is investigated under
which conditions the hydrological influences can be minimized. For this purpose a
set of hypothetical scenarios is evaluated, where various densities of the water table
observation wells are simulated. We show that already with several groundwater ob-
servations the estimation error in the front position can be reduced by a factor of 2-3,
compared to the case when no hydrological signal is removed from the data.
To understand the added value of gravity data assimilation for reservoir monitor-
ing and characterization a simplified study is performed based on a 2D gas reservoir
model. Synthetic gravity measurements are assimilated with the EnKF to estimate
the reservoir permeability. The updated reservoir model is used to predict the water
front position. It is shown how the subsurface mass redistribution, induced by water
influx, and sensed by time-lapse gravity, can be translated into a better knowledge
about the reservoir permeability with the EnKF inversion. The updated permeabil-
ity can be further used to improve forecasts of the actual mass redistribution and to
decrease the uncertainty about the water front configuration. To investigate the im-
pact of gravity measurement noise and the influence of the distance from the gravity
observation network to the reservoir formation, a sensitivity analysis is performed.
The results show that with increasing gravimetric noise and/or distance, the updated
model permeability becomes smoother and its variance higher. Finally, the effect
of a combined assimilation of gravity and production data is investigated. In the
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case when only production data are used, the permeability estimates far from the
wells are erroneous, despite a very accurate history match of the data. Consequently,
very inaccurate estimates of the water front position are obtained. In the case when
production and gravity data are combined within a single data assimilation frame-
work, we obtain a considerably improved estimate of the reservoir permeability and
an improved understanding of the subsurface mass flow. These results illustrate the
added value of gravimetric observations for monitoring water influx, and they show
also that gravimetric and production observations can be a complementary source of
information.
After these initial insights into the value of assimilation of gravity data, a more realis-
tic synthetic 3D example, inspired by some of the North Sea gas fields, is considered.
The key field uncertainties addressed in this study are not only the permeability field
but also the porosity field, reservoir structural parameters and foremost the aquifer
support characteristics. We compare scenarios where only gravity, only production
and both production and gravity data are assimilated. The added value of gravity
data is evaluated in the context of various reservoir engineering aspects, such as reser-
voir characterization, reservoir state description, forecast reliability and gas reserves
estimation. For this purpose the ES method is used. The results show that history-
matching a gas field with pressure data only may provide highly non-unique solutions
because several parameter combinations can explain the reservoir pressure behavior
observed in the wells. Then, it is hardly possible to find at the same time accu-
rate estimates of aquifer support and reservoir structure or permeability. Therefore,
additional information is needed which can be provided by time-lapse gravimetry.
We demonstrate that a joint assimilation of pressure and gravity data can provide
more constrained inverse solutions and result not only in improved gas and water
production forecast, but also can give more accurate reservoir reserves evaluation and
reservoir state description.
Finally, an example of gravity data assimilation in case of systematic model or ob-
servation errors, called bias, is considered. The definitions of the observation and the
model bias used in this study relate to some practical aspects of time-lapse gravimetry.
The observation bias is defined as a random offset in the observed gravity variations,
which can occur in time-lapse gravimetry based on relative measurements. The model
bias relates to the undermodeling because, typically, a numerical model is developed
for the hydrocarbon reservoir, but such a model is rarely available for the hydrological
processes at a site. Consequently, the observed gravity variations, which contain the
hydrological signal, cannot be predicted correctly. Thus, the model predictions of the
observed data are biased. In this study the model bias is defined as the gravity signal
caused by groundwater table variations.
We show that the influence either of the observation bias or the model bias on the
assimilation results can be very severe and can lead to a large state/parameter un-
der/overestimation. A bias-aware data assimilation methodology can be used when
the model and/or observations are likely to be biased. Information about the presence
of a bias can be obtained from the mismatch between the observed and the predicted
data, but to distinguish the bias source, which can be the model, the observations
or both, additional knowledge, is needed. The constraints on the bias origin and the
bias characteristics can be incorporated through prior information. The bias error
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covariances provide the spatial bias information and the temporal characteristics are
included in the bias-evolution models. We showed that by using a bias-aware data
assimilation methodology the deteriorating bias influence on the assimilation results
can be to a large extent mitigated. However, the presence of a bias implies more
uncertain parameter estimates (larger variance) compared to the bias-free scenario.



Samenvatting

Het monitoren van reservoirs is een van de belangrijkste onderdelen van ”closed-loop
reservoir management”, een onderwerp dat de laatste jaren steeds meer aandacht
krijgt in de petroleum industrie. Meetgegevens afkomstig van reservoir monitoring
geven informatie over veranderingen in het reservoir, die samenhangen met reservoir
management acties. Door echte metingen te vergelijken met numerieke modelvoor-
spellingen van het reservoir, kunnen de met grote onzekerheid bepaalde modelpa-
rameters, zoals bijvoorbeeld porositeit en permeabiliteit, dusdanig aangepast worden,
dat de echte en gesimuleerde meetgegevens goed overeenkomen. Om dit te bew-
erkstelligen worden data assimilatie technieken gebruikt. Daarbij worden over het
algemeen reservoir modellen aangepast op basis van productiemeetgegevens (zoals
vloeistofstroming in de put, drukken onderaan de put (BHP)), maar ook door andere
gegevens, zoals in de tijd herhaalde seismische metingen. Informatie verkregen uit
productiegegevens is over het algemeen slechts lokaal en niet representatief voor het
gehele reservoir. In de tijd herhaalde seismische metingen (ofwel ”time-lapse seis-
miek”) daarentegen leveren monitoringgegevens op over het gehele veld en maken
het daarmee mogelijk om veranderingen in het reservoir veroorzaakt door productie
in specifieke gebieden te identificeren. Daar staat wel tegenover, dat het verkrijgen
van seismische gegevens over het algemeen kostbaar is, soms onder lastige condi-
ties uitgevoerd moet worden en in enkele gevallen zelfs niet mogelijk is. Aangezien
variaties in het zwaartekrachtsveld direct gerelateerd zijn aan de massaherverdel-
ing in de ondergrond , kunnen in de tijd herhaalde zwaartekrachtsmetingen (ofwel
”time-lapse zwaartekrachtsmetingen”) in principe aanvullende informatie voor reser-
voir monitoring en karakterisatie geven. Ondanks het groeiende aantal toepassingen
van time-lapse zwaartekrachtsmetingen ten behoeve van het monitoren van olie- en
gas reservoirs, is er nog steeds weinig bekend omtrent de toegevoegde waarde van
zwaartekrachtsmetingen in termen van ”closed-loop reservoir management”. In dit
proefschrift wordt deze toegevoegde waarde van zwaartekrachtsmetingen voor olie-
en gas reservoir monitoring en karakterisatie onderzocht. Door gebruik te maken
van voorwaartse modellering van het zwaartekrachtsignaal, worden juist die reservoir
processen en ook type reservoirs gedentificeerd, die het meest geschikt zijn voor dit
type monitoring. Verder wordt er een gevoeligheidsanalyse uitgevoerd om de toepas-
baarheid van verschillende type zwaartekrachtsmetingen te analyseren. Hierbij is
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aangetoond, dat time-lapse zwaartekrachtsmetingen vanaf het oppervlak potentieel
nuttig kunnen zijn voor het monitoren van reservoirprocessen, waarbij hoge dichthei-
dscontrasten aan de orde zijn, zoals het geval is bij gas en water of bij stoom en olie.
Tevens speelt hierbij de geometrische configuratie van het reservoir (grootte/diepte)
een rol. Smalle en diepliggende reservoirs zijn moeilijk te monitoren vergeleken met
ondiepe uitgestrekte velden. Zwaartekrachtsmetingen gedaan vanuit een boorgat lev-
eren meer informatie op een lokale schaal op, in het algemeen tot enkele tientallen
meters van het boorgat. Om een beter begrip te krijgen van de uitdagingen, die
gepaard gaan met reservoir monitoring middels zwaartekrachtsmetingnen, zijn de
belangrijkste bronnen van ruis onderzocht, die het time-lapse signaal benvloeden.
Hierbij is speciaal aandacht geschonken aan de analyse van hydrologische invloeden
op het zwaartekrachtsignaal, vooral wanneer veroorzaakt door veranderingen in de
grondwaterstand. De mogelijke bijdrage van grondwater op de totale onzekerheid is
gevalueerd met behulp van voorwaartse simulaties van hypothetische veranderingen
in de grondwaterspiegel. Hierbij is aangetoond, dat zwaartekrachtsvariaties veroorza-
akt door grondwaterspiegelschommelingen het gewenste meetsignaal van het reservoir
kunnen maskeren. Daarom is het dan ook noodzakelijk om grondwaterspiegelwaarne-
mingen te doen om het geobserveerde zwaartekrachtsignaal te kunnen corrigeren. Een
gevoeligheidsanalyse is uitgevoerd om te onderzoeken onder welke omstandigheden de
hydrologische invloeden op zwaartekracht reservoir monitoring geminimaliseerd kun-
nen worden. De rest van dit proefschrift is gewijd aan de inversie van zwaartekracht-
en reservoirproductie waarnemingen. Allereerst worden de in dit proefschrift ge-
bruikte inversiemethodes beschreven. We introduceren de ”focusing inversiemeth-
ode”, die tot de klasse van Tikjonov regularisatiemethodes behoort, en tevens het
”Ensemble Kalman Filter (EnKF)” en de ”Ensemble Smoother (ES)”, die tot de
ensembe gebaseerde data assimilatiemethodes behoren. De overeenkomsten tussen
het Tikhonov regularisatie concept en data assimilatie worden kort bediscussieerd,
aangevuld met illustratieve voorbeelden van toepassingen. Vervolgens wordt een uit-
breiding van data assimilatie gentroduceerd voor gevallen, waarbij modellen- en/of
observatiefouten niet alleen willekeurig zijn, maar ook systematisch. De ”focusing
inversie methode” is toegepast in een haalbaarheidsstudie naar zwaartekrachtmoni-
toring van het ”Thermally-Assisted Gas-Oil Gravity Drainage (TA-GOGD) proces”
in een carbonaatveld in het noorden van Oman. De analyse omvat een kwantificering
van de te verwachten veranderingen in het temporele zwaartekrachtsignaal ten gevolge
van de massa herverdeling in het reservoir veroorzaakt door het TA-GOGD process.
De ”focusing inversie” van de synthetische zwaartekrachtsmetingen is gebruikt om
de haalbare nauwkeurigheid van de positie van hittefronten te schatten. Gebaseerd
op bestaande meetreeksen van grondwaterstanden uit het verleden, zijn schattingen
van de ruis in de zwaartekrachtsmetingen, veroorzaakt door de specifieke hydrol-
ogische omstandigheden, meegenomen. Hiermee is aangetoond, dat hydrologische
signalen een belangrijke bron van ruis vormen, die zwaartekrachtmonitoring van het
veld behoorlijk kunnen benvloeden. Vervolgens is bepaald onder welke omstandighe-
den de hydrologische invloeden tot een minimum beperkt kunnen worden. Daartoe is
een set van hypothetische scenario’s gevalueerd, waarin verschillende aantallen obser-
vatieputten om de waterstanden te meten zijn gesimuleerd. We laten hiermee zien,
dat reeds bij een paar grondwaterobservatieputten de geschatte fout in de frontpositie
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gereduceerd kan worden met een factor 2 tot 3 in vergelijking tot het geval, waar-
bij geen enkele hydrologische signaalcorrectie wordt toegepast. Om de toegevoegde
waarde van data assimilatie met zwaartekrachtsmetingen voor reservoir monitoring
en karakterisatie beter te begrijpen, is een studie uitgevoerd gebaseerd op een 2D
gas reservoirmodel. Synthetische zwaartekrachtsmetingen zijn geassimileerd met de
EnKF om de reservoir permeabiliteit te schatten. Het aangepaste reservoir model is
vervolgens gebruikt voor de voorspelling van waterfrontposities. Hierbij wordt aange-
toond, hoe de ondergrondse massaherverdeling, veroorzaakt door de waterinstroming
en gemeten met de time-lapse zwaartekrachtsmetingen, vertaald kan worden naar
een verbeterde kennis van de reservoirpermeabiliteit middels de EnKF inversie. Het
aangepaste permeabiliteitsmodel kan verder nog gebruikt worden om voorspellingen
van de eigenlijke massaherverdeling te verbeteren en om de onzekerheid omtrent de
posities van de waterfronten te reduceren. Om de impact van ruis en van de afs-
tand tussen het meetnetwerk en het reservoir op zwaartekrachtsmetingen te bepalen,
is een gevoeligheidsanalyse uitgevoerd. Resultaten tonen aan, dat met een toename
van ruis en/of met een toename van de afstand, het aangepaste permeabiliteitsmodel
gladder wordt met een hogere variantie. Tenslotte is het effect van een gecombi-
neerde assimilatie van zwaartekrachtsmetingen en productiegegevens onderzocht. In
het geval, waarin alleen productiegegevens gebruikt zijn, blijken de permeabiliteitss-
chattingen ver van de putten foutief, ondanks een zeer goede ”history match” van de
gegevens. Dit leidt logischerwijze ook tot zeer onnauwkeurige schattingen van water-
frontposities. In het geval, waarin zowel productie- als zwaartekrachtsmeetgegevens
zijn gecombineerd in een enkel data assimilatieschema, krijgen we een aanzienlijk
verbeterde schatting van de reservoirpermeabiliteit als ook een beter begrip van de
ondergrondse massastromen. Deze resultaten laten duidelijk de toegevoegde waarde
van zwaartekrachtsmetingen voor het monitoren van water instroming in het reservoir
zien. Verder laten ze zien, dat zwaartekrachtsmetingen en productiegegevens comple-
mentaire informatie bevatten. Gestimuleerd door deze initile inzichten in de waarde
van het assimileren van zwaartekrachtsmetingen, is een realistischer, maar nog steeds
synthetisch, 3D voorbeeld gekozen, genspireerd op een set van typische Noordzee
gasvelden. De belangrijkste onzekerheden in deze velden, geadresseerd in deze studie,
zijn naast het permeabiliteitsveld ook het porositeitsveld, de structurele reservoir pa-
rameters en misschien wel het belangrijkste, de karakteristieken van de waterlaag,
waaruit water het reservoir instroomt bij productie van gas. We vergelijken wederom
scenario’s waarin alleen zwaartekrachtsmetingen, alleen productiegegevens en waarin
beiden worden geassimileerd. De toegevoegde waarde van zwaartekrachtsmetingen
wordt afgemeten aan enkele ”reservoir engineering” indicatoren, zoals de kwaliteit
van de reservoir karakterisatie, de beschrijving van de staat van het reservoir, de
betrouwbaarheid van de voorspellingen en de schatting van de gasreserves. Om dit
te bewerkstelligen is de ES methode gebruikt. Resultaten tonen aan, dat ”history
matching” van een gasveld met drukgegevens alleen, leidt tot niet-unieke oplossingen,
waarbij verschillende parametercombinaties tot hetzelfde geobserveerde drukgedrag in
de putten kunnen leiden. In zulke gevallen is het bijna onmogelijk om tegelijkertijd be-
trouwbare schattingen van de karakteristieken van de waterinstroom en van de struc-
turele reservoirvorm of permeabiliteiten te bepalen. Om dit op te lossen is additionele
informatie nodig, zoals bijvoorbeeld time-lapse zwaartekrachtsmetingen. We laten
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zien, dat een gezamenlijke assimilatie van druk- en zwaartekrachtsmetingen veel beter
afgebakende inverseoplossingen oplevert, met niet alleen een verbeterde voorspelling
van gas- en waterproductie, maar ook een nauwkeuriger reserve evaluatie en beschri-
jving van de staat van het reservoir. Tenslotte is nog gekeken naar een voorbeeld
van assimilatie van zwaartekrachtsmetingen, waarbij systematische model- of obser-
vatiefouten, ook wel ”bias” genoemd, optreden. De definities van observatiebias en
van modelbias, zoals gebruikt in deze studie, zijn gerelateerd aan een aantal praktische
aspecten van time-lapse zwaartekrachtsmetingen. De observatiebias is gedefinieerd als
een willekeurige verschuiving in de geobserveerde zwaartekrachtsmetingvariaties, die
kan optreden bij time-lapse zwaartekrachtsmetingen gebaseerd op relatieve metingen.
De modelbias is gerelateerd aan de incompleetheid van een model. Als voorbeeld, een
numeriek model wordt over het algemeen alleen gemaakt voor het olie- of gasreservoir,
een soortgelijk model is bijna nooit beschikbaar om ook de hydrologische processen
boven het veld te modelleren. Dit heeft tot gevolg, dat de geobserveerde variaties in
zwaartekrachtsmetingen, waar de hydrologische signaalinvloed in opgesloten zit, niet
correct voorspeld kunnen worden. Met andere woorden, de modelvoorspellingen van
de meetgegevens bevatten een bias. In deze studie is de modelbias gereduceerd tot
het zwaartekrachtssignaal veroorzaakt door grondwaterstandvariaties. We laten zien,
dat de invloed van zowel de observatiebias als de modelbias op de assimilatieresul-
taten aanzienlijk kan zijn en kan leiden tot een behoorlijke onder- of overschatting
van de staat van het reservoir en/of van de reservoirparameters. Een zogenaamde
bias-bewuste data assimilatiemethode zou een oplossing kunnen bieden, indien men
zich er bewust van is, dat het model en/of de observaties inderdaad een bias bevatten.
Informatie over de aanwezigheid van een bias kan afgeleid worden uit de mismatch
tussen de meetgegevens en de voorspelde gegevens, maar om de bron van de bias te
achterhalen (model, waarnemingen of beiden) zijn aanvullende gegevens noodzake-
lijk. De randvoorwaarden voor de oorzaak van de bias en voor de karakteristieken
van de bias kunnen opgelegd worden door a-priori informatie mee te nemen. De bias
foutencovarianties bevatten de ruimtelijke biasinformatie, terwijl de karakteristieken
in de tijd worden meegenomen in de bias-evolutiemodellen. We hebben aangetoond,
dat door een bias-bewuste data assimilatiebenadering, de negatieve invloed van de
bias tot een minimum beperkt gehouden kan worden. De aanwezigheid van bias leidt
echter wel tot meer onzekere parameterschattingen (grotere variantie) vergeleken met
een scenario zonder bias.
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