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Samenvatting  
The groeiende vraag naar koolwaterstofproducten heeft geresulteerd in een verbeterd 
management van olievelden met verscheidene regel- en optimalisatiestrategien. Deze 
strategieën vertrouwen sterk op de efficiency van ondergrondse apparatuur die gebruikt 
wordt voor het verkrijgen van real-time olie- and gasproductiesnelheidsmetingen met 
voldoende resolutie in plaats en tijd. Ondergronds geïnstalleerde meerfasestromingsmeters 
in het bijzonder kunnen the productie van horizontale putten verbeteren door het 
identificeren van de zones waar olie, gas en water instroomt. Bestaande 
meerfasestromingsmeters zijn echter duur, onnauwkeurig of alleen nauwkeurig binnen een 
beperkt werkgebied en daarom is een dergelijke manier van monitoren onrealistisch.  
 Om deze problemen te overwinnen kan men gebruikmaken van zogenaamde 
meerfasen soft(ware)sensoren, waarmee productiesnelheden worden afgeschat met 
conventionele meetapparatuur zoals drukmeters in combinatie met een dynamisch 
meerfasestromingsmodel. De soft-sensoren kunnen ook worden gebruikt in combinatie met 
hardware sensoren om hun prestaties te verbeteren, bijvoorbeeld door het vervangen van 
weggevallen data met outputs van de soft-sensor. Via een dergelijke constructie kunnen ze 
ook gebruikt worden voor het diagnosticeren van afwijkende situaties of een defect van een 
hardware sensor. Het onderzoek dat gepresenteerd wordt in deze thesis bediscussieert 
mogelijkheden en beperkingen van dergelijke meerfasenstromings-softsensoren.  
 Allereerst wordt er een numeriek model ontwikkeld voor het voorspellen van 
snelle overgangen in gas-vloeistofstromingen. Een drift-flux benadering wordt daartoe 
gebruikt die één-dimensionale gas-vloeistofstromingen in een horizontaal boorgat 
beschrijft. Het resulterende drift-flux model bestaat uit een continuiteitsvergelijking voor 
elke fase en een impulsvergelijking voor de gehele vloeistof-gasmengsel. Het verschil 
tussen vloeistof- en gassnelheden wordt verdisconteerd door het gebruik van een 
algebraïsche slipvergelijking. De numerieke oplossing wordt verkregen door gebruik te 
maken van een expliciet flux-splitting schema. Een speciale behandeling van de 
brontermen, die de instroming vanuit het reservoir karakteriseren, is vereist om de 
conservatieve eigenschappen van het schema te behouden. Dit wordt bewerkstelligd door 
het uitbreiden van de schema’s die zijn ontwikkeld voor niet-homogene hyperbolische 
vergelijkingen, waar als noviteit een geïntegreerde bron is geïntroduceerd die een exacte 
balans behoudt met fluxgradiënten. De resulterende nieuwe boorgatsimulator is getest aan 
de hand van een serie van generieke testcases, waarbij de verkregen simulatieresultaten zijn 
vergeleken met data gegenereerd door de commercieel verkrijgbare boorgatsimulator 
OLGA. De verkregen resultaten tonen aan dat de nieuwe simulator nauwkeurige 
voorspellingen van stromingsvariabelen genereert. 
 In een volgende stap is de invloed bestudeerd van het tijdsintegratieschema op de 
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resultaten van data assimilatie gebaseerd op het Extended Kalman Filter. Het gebruik van 
het impliciete Eulerschema, dat onvoorwaardelijk stabiel is over het gehele gebied van 
tijdstappen voor zowel de update van het model als voor de update van de covariantie, 
resulteert in minder nauwkeurige schattingen. Dit kan worden voorkomen door gebruik te 
maken van een parameterschatter gebaseerd op het expliciete Eulerschema. Dit schema 
beperkt echter in hoge mate de maximale tijdstap die kan worden gebruikt voor de 
tijdsintegratie, wat leidt tot te lange simulatietijden. Een alternatieve oplossing is gevonden 
in het gebruik van een semi-impliciete schatter waarbij het model up-to-date wordt gebracht 
met het impliciete Eulerschema terwijl de tijdspropagatie van de fout-covariantiematrix 
gebaseerd is op het expliciete Eulerschema. Deze hybride benadering combineert de 
nauwkeurigheid van het conventionele Kalman Filter met de robuustheid van het impliciete 
voorwaarts modelleren. Het voorgestelde algoritme is succesvol toegepast op het een-
dimensionale probleem van het schatten van permeabiliteit in een poreus medium voor een 
enkelfase oliestroming. 
 Tenslotte wordt een nieuwe benadering gepresenteerd voor de optimale regeling 
en real-time monitoring van horizontale putten. Deze methodologie gebruikt inverse 
modelconcepten voor het schatten van ondergrondse stromingssnelheden die niet direct 
worden gemeten.  De analyse van een dynamische drukresponsie op een snelle instroming 
vanuit het reservoir heeft aangetoond dat de beschikbare informatie niet voldoende is voor 
het simultaan schatten van snelheids- en samenstellingscomponenten omdat deze op 
verschillende tijdsschalen acteren. De voorgestelde real-time schatter gebruikt een 
dynamisch model van de meerfasenpijpstroming en informatie van conventionele 
ondergrondse sensoren. De prestatie van het voorgestelde algoritme is bestudeerd met op 
simulatie gebaseerde studies voor zowel ruisverstoorde synthetische metingen als 
kunstmatige data gegenereerd door de OLGA simulator. De verkregen resultaten duiden 
erop dat de voorgestelde model gebaseerde schatter veelbelovend is voor real-time 
productieoptimalisatie doeleinden. 
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Summary 
 The growing demand for hydrocarbon production has resulted into improved 
oilfield management with various control and optimization strategies. These strategies in 
turn strongly rely on the efficiency of downhole equipment which is used to obtain real-
time oil and gas production rates with sufficient spatial and temporal resolution. In 
particular, multiphase flowmeters installed downhole can improve the production of 
horizontal wells by allocating the zones of oil, gas and water inflow. However, existing 
multiphase meters are expensive, inaccurate or accurate only within a limited operating 
range and therefore such monitoring is unrealistic. 
 To overcome these problems one can use so-called multiphase soft-sensors, i.e. to 
estimate flow rates from conventional meters, such as downhole pressure gauges, in 
combination with a dynamic multiphase flow model. The soft-sensors can also be used 
together with hardware sensors to improve their overall performance, e.g. by substituting 
missing data of the hardware sensor with output of the soft-senor. The research presented in 
this thesis discusses possibilities and limitations of such multiphase soft-sensors. 
 First a numerical model has been developed and used to predict rapid transients in 
gas-liquid flows.  A drift-flux model which describes one-dimensional gas-liquid flows in a 
horizontal wellbore is considered in this work. This model consists of a continuity equation 
for each phase and a momentum equation written for the mixture. The difference between 
liquid and gas velocities is taken into account using an algebraic slip relation. The 
numerical solution is obtained using an explicit flux-splitting scheme. A special treatment 
of the source terms, which characterize an inflow from the reservoir, is required in order to 
preserve the conservative properties of the scheme. This is achieved extending the schemes 
developed for non-homogeneous hyperbolic equations, where an integrated source is newly 
introduced, which retains an exact balance with flux gradients. This new wellbore simulator 
has been tested on a series of generic test cases, comparing it to data generated by OLGA, a 
commercially available wellbore simulator. The obtained results show that the new 
simulator provides accurate predictions of flow variables.  
 An assessment of the time-integration scheme impact on results of data 
assimilation based on the extended Kalman filter approach is performed. The use of the 
implicit Euler scheme, which is unconditionally stable for the whole range of time steps 
both for the model and covariance update, results in a less accurate estimates, which can be 
overcome using a parameter estimator based on the explicit Euler scheme. However, the 
latter strongly limits the maximum time step, which can be used, and leads to inappropriate 
simulation time. An alternative can be found using a semi-implicit estimator, where a 
model is updated using the implicit Euler scheme, whereas the propagation of the error 
covariance matrix in time is based on the explicit time integration scheme. This hybrid 
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approach combines the accuracy of the conventional Kalman filtering with the robustness 
of the implicit forward modelling. The proposed algorithm is successfully applied for the 
solution of the one-dimensional problem of permeability estimation in a porous medium for 
a single phase oil flow. 
 Finally, a new approach for optimal control and real-time monitoring of horizontal 
wells is presented. This methodology uses inverse modelling concepts to estimate 
downhole flow rates that are not measured directly. The analysis of transient pressure 
response due to a rapid inflow from a reservoir has shown that the available information is 
not sufficient to estimate simultaneously velocity and composition components, as they act 
on the different time scales. The real-time estimator proposed uses a dynamic model of the 
multiphase pipe flow and information from conventional downhole sensors. The 
performance of the proposed algorithm has been studied for simulation based case studies 
both for noisy synthetic measurements and artificial data generated by the OLGA simulator. 
The obtained results indicate that the model based estimator proposed is promising for real-
time production optimization purposes.  
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1. Introduction 

1.1. Multiphase flow metering 

 
 A multiphase flow meter is a device for measuring the individual liquid and gas 
rates in a multiphase flow. In the petroleum engineering nomenclature multiphase refers to 
a flow which consists of some or all of the following phases: a liquid hydrocarbon phase 
(crude oil or gas condensate), a gas phase (natural gas or air), a water phase and a solid 
phase. Multiphase flow meters (MPFM) measure oil, gas and water production rates in situ, 
i.e. without separating the flow components. In contrast, conventional metering of the 
multiphase flow is carried out using two or three phase test separators (full or partial 
separation) that segregate and measure gas, oil and water flowrates at surface processing 
facilities [Williams, 1994]. Obtaining accurate measurements from a test separator requires 
relatively stable conditions within the device. A long period of steady operation may be 
required to achieve such conditions, which is inconvenient in a production facility. 
Moreover, harsh operating regimes may prevent a complete separation of phases involved: 
as a result of changing operating conditions, gas may flash out of oil or be absorbed by the 
liquid; waxes and hydrate precipitations may occur. Test separators also have difficulty 
measuring certain flow patterns, characterized by unstable or rapidly changing conditions. 
Such problematic flow regimes include slug flow, which is characterized by the discrete 
liquid slugs followed by gas bubbles with correspondingly large variations in water cuts 
and changes in fluid properties. 
 In contrast, multiphase flowmeters perform direct measurements on an 
unseparated multiphase flow in a pipeline. Information on flowrates is available to the user 
within minutes after starting the operation. Although the traditional method of separating 
the phases before measuring is still used for the fiscal metering [Theuveny et al., 2002], 
MPFM systems are now increasingly employed in various hydrocarbon production systems 
where accuracy requirements are less stringent. 
 MPFM systems can be used for continuous production monitoring since they yield 
flow rates continuously at a high sampling frequency, which is not practical using a test 
separator. Furthermore, production monitoring implies the ability to track, in real time, any 
changes in fluid composition, flow rates, pressure and temperature. Combining such 
information with historical data and static or dynamic flow models describing the physics 
of a production system helps to diagnose current problems and predict its future 
performance [Retnando et al., 2001]. Multiphase flowmeters installed downhole can 
improve the production of long horizontal wells producing oil, gas and water inflow from 
several production intervals. Downhole MPFM are best suited for “intelligent wells”, where 
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permanent monitoring and control is used to optimize production [Glandt, 2003]. Combined 
with adjustable inflow control devices, the flow distribution between the various sections 
can be optimized, for example by detecting and preventing gas coning or water 
breakthrough from specific producing sections [Leemhuis et al., 2008]. Such systems 
installed downhole provide real-time information on variations in gas and liquid flow rates, 
so that well slugging effects or other production instabilities may be detected as they occur. 
A further application of downhole flowmeters is in production from multi-lateral wells. 
Since monitoring the flow at the surface provides no information about multiphase flow in 
individual branches, downhole metering systems can be a valuable diagnostic tool, as they 
provide continuous real-time data on individual flow contributions. For the subsea 
commingled long flow lines MPFM systems may be used for monitoring of flow rates from 
individual wells or pipelines [Kragas et al., 2003]. In addition, it will eliminate the need of 
a surface test separator, which significantly reduces the footprint requirement on offshore 
platforms. It should be noted, however, that retrieving a MPFM for maintenance or repair 
may be problematic or even impossible once it has been installed downhole. Recalibrating 
the meter may be difficult and verification methods are required to ensure correct 
flowmeter operation. 
 The ability of a MPFM to respond quickly to any change in fluid composition and 
the reduced time to stabilize the flow may be used for production optimization purposes 
[Kettle and Ross, 2002]. For wells which are assisted by the gas lift technique, production 
is maximized for a certain optimum amount of injection gas. The optimization of gas lift 
requires detailed knowledge of the flow rates, bottom-hole pressure and water cut, which 
are usually obtained via a test separator by performing a multi-rate test. Since the result of 
this test may vary with changes of bottom-hole pressure and water cut the optimum gas lift 
performance point will be drifting, requiring additional testing of such wells. MPFM can 
help to find the optimal gas lift injection rate, and provide relevant data on a continuous 
basis for performing optimization [Aspelund et al., 1996]. 
 In a conventional flow measurement an extra test separator dedicated for well test 
or other purposes is used. The flowrates are measured by separating one well stream and 
directing it all the time to the test-separator. Multiphase metering performed with test 
separators requires regular intervention of qualified personnel and cannot provide 
continuous well-monitoring. If MPFM is able to perform measurements in the absence of a 
flow reference it could be used instead of the test separator as permanently installed device 
on each well or be installed in addition to an existing test separator. Such configuration is 
also preferable if it is necessary to monitor simultaneously one well and test another. The 
main advantage of the MPFM over the test separator is the reduction in time to perform a 
measurement and elimination of test lines, valves, manifolds and even slug catchers. 
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Basic Principles 
 The primary output information of any MPFM system consists of the mass flow 
rates of oil, water and gas components in the flow. Ideally, a flow meter will provide a user 
with the direct measurements of the phase rates. Unfortunately, for a three-phase flow there 
is no single measurement principle, which yields all these flowrates independently and it is 
necessary to integrate several different measuring instruments in one tool and to obtain the 
flow rates by combining the output of those primary sensors [Ribeiro, 1996; Falcone et al., 
2002; Thorn et al., 1997]. Although there are many possible solutions as well as a number 
of potential instruments to be used, this indirect method usually measures the average fluid 
velocity and cross-sectional fraction of each phase (liquid holdup or void fraction). Using 
these quantities, supplemented with knowledge of densities of the fluids, one can calculate 
phase and total flow rates.  
 To determine mass flow rates in a three phase flow, three measurements of oil, 
water and gas velocities and two volume fractions are required. Furthermore, the densities 
of the different phases must be known. It should be noted here that it may not be necessary 
to measure all these properties explicitly if information can be inferred from specific flow 
characteristics. However, in the latter case the correlation between measured parameters 
and the flow rates of the respective phases must be established. Such relationships may not 
exist, or may not be universal over the full range of operating conditions. 
 Two strategies can be used to reduce the number of required measurements: 
separation and homogenization [Hewitt et al., 1995; Hanssen and Torklidsen, 1995]. Full 
separation of a three phase flow removes the need of measuring volume fractions and mass 
flow rates are measured using conventional single-phase metering techniques. Where a 
complete separation for multiphase metering applications can still be expensive or even not 
feasible, systems based on partial separation are used [Schook and van Asperen, 2005] are 
used. For these purposes compact inline separation technology is employed [Hamoud et al., 
2008], which utilizes the centrifugal force to divide the flow into the liquid phase and a gas 
phase. Separation may not be complete in such systems, but acceptable measurement 
accuracy can be achieved in a narrow range of flow conditions.  
 Homogenization involves mixing the flow to ensure all phase velocities are 
identical. Only this single velocity and two volume fractions are required to derive phase 
mass flow rates. It can be difficult to obtain a homogeneous mixture since water does not 
mix well with oil, and gas tends to separate from liquids. This in turn may cause 
unpredictable results in calculating the properties of the obtained mixture (density, 
viscosity). Even if the components are well-mixed, there can be a substantial slip between 
heavy and light phases, which will make a single velocity assumption inapplicable. The 
typical example of an MPFM, based on a homogenization principle, is a Venturi-based 
meter (Figure 1.1). 
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 The total mass flow rate is calculated using the measured pressure drop p over 

the Venturi throat. The pressure drop between the entry and throat can be roughly 
approximated by Bernoulli’s equation. If all the three-phases are mixed well and the 
velocities of the phases are equal, the flow velocity at the throat is given by 

 
2

th

m

p
u C




                     (1.1) 

where C is a Venturi coefficient and m is the mixture density. 
 Mixture density can be measured using a attenuation method, which is based on 

the principle that a more dense material attenuates gamma rays more strongly than a lighter 
one. 

p

source

detector

Figure 1.1. Scheme of Venturi multiphase flow meter (after Atkinson et al., 2000) 
 

 For the meter configuration given in Figure 1.1., a source of gamma radiation with 
intensity of I0 is placed on one side of the Venturi throat with a detector placed on the 
opposite side. The intensity of a monochromatic beam which has passed through the oil-
gas-water mixture is given by [Petrick and Swanson, 1958]: 

 0 0exp( ( (1 ) ))o w w o w gI I d                            (1.2) 

 Here o, w, g are the linear attenuation coefficients of oil, water and gas phases, 

respectively, d is the diameter of the measuring section. In order to determine the oil and 

water volume fractions wusing this technique two independent measurements are 

required, which can be obtained using two radiation sources with different attenuation 
coefficients. This dual-energy technique [Roach et al., 1994] provides both mixture density 
and phase density information. Although gamma ray methods can be used over the 
complete range of holdups, the salinity of water phase can cause problems. Since salt has a 
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high attenuation coefficient compared to the one of water, a change in the salinity of the 
water phase will cause a significant error in the measured water fractions. The third energy 
level is then used to calculate the salinity of the water phase [Pinguet et al., 2006]. 
 Despite the advantages of the Venturi-based flow meter (non-intrusiveness, no 
moving parts), it possesses a number of difficulties.  High measurement accuracy requires 
more intense radiation sources, which affects safety aspects and mobility considerations. 
The phase fractions then will only be representative over a cross-section if the phases are 
homogeneously mixed. This in turn may be overcome by using multi-beam systems [Smith, 
1975], though it inevitably leads to more expensive design of the meter.  
 

 
Figure 1.2. Scheme of flow rate metering with Venturi meter. 

 
 At first glance one can think that the required quantities, i.e. phase fractions and 
velocities are obtained directly from the equipment used. However, data acquired with 
measurement hardware do not necessarily correspond to the information needed. For a 
Venturi meter this is illustrated in Figure 1.2. Any measurement system consists of three 
components: 
1) Measurement; 
2) Computation; 
3) User interface. 
 Though measurements are a very first action that is performed to extract any 
sensible piece of information, the computation part is generally needed either to filter 
obtained data, or to combine signals acquired from different parts of the measuring system, 
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in order to obtain quantities relevant to a user. In a Venturi meter this is done, for example, 
by employing equation (1.2) which converts pressure drop (measured) into total mass flow 
rate (computed) via a known mathematical model (Bernoulli’s equation). Since flow rates 
are calculated as a combination of the different sources of information, the propagation of a 
measurement error in the entire algorithm will greatly influence the performance of the 
meter. It clearly follows from the above that the measurement error can be decreased either 
by improving hardware performance or by using more complex flow models. For example, 
equation (1.2) can be adjusted by incorporating slip between the phases [Atkinson et al., 
2000]. This in turn may increase uncertainty in calculated parameters, as these models may 
require extensive calibration, e.g. by means of numerous experiments. 
 

Industrial MPFM solutions 
 With the variety of technological solutions available for multiphase flow metering, 
oil service companies are providing the MPFM systems for specific applications. Some of 
these developments are briefly discussed below. 
 The MPFM system introduced by Schlumberger [Pinguet et al., 2006] consists of a 
Venturi meter equipped with differentional pressure sensors, and a dual-energy spectral 
gamma ray detector paired with a single, low strength radioactive chemical source. A single 
radioactive Barium source emits gamma rays at various energy levels – 32, 81 and 356 
keV, with the dual energy spectral gamma ray detector installed opposite of it. First two 
energy levels correspond to mixture density and composition measurements, and the third 
energy level (usually 356 keV) could be used to measure salinity or any heavy component 
inside the flowing mixture. It has been reported [Theuveny et al., 2001] that the maximum 
gas volume fraction is 98%, with the relative accuracy of 3% below this limit.  
 The three phase downhole flow meter developed by Weatherford uses fiber optic 
flow measurement technology, and is based on measuring unsteady pressures associated 
with turbulent flows and naturally occurring acoustics [Kragas et al., 2002a]. The metering 
principle is based on measuring the force applied on the internal surface of the pipe by the 
pressure fluctuations. By tracking the convective velocity of the turbulent eddies and the 
propagation velocity of sound waves, the flow velocity and the speed of sound of the 
medium are calculated. One of the main advantages of this flow meter is the absence of 
complex downhole electronics and moving parts and its nonradioactive principle. The 
robustness of the meter also allows operators to perform wellbore operations with the flow 
meter installed downhole. The operating temperature is about 1600C with a maximum 
pressure of 1000 bar. The two-phase design was successfully tested on the Nimr field 
[Kragas et al., 2002b], where the flowmeters were installed in two high water cut wells. 
Compared to results from a reference flow meter, the average differences in water cuts were 
less than 2%. A three-phase meter used at Mahogany field [Kragas et al., 2003] provided 
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gas, oil and water flow rates with accuracy better than 10%, for a gas volume fraction up to 
75%. 
 The metering solutions described above are designed to work in hostile downhole 
environment that imposes special restriction on the instrumentation design standards. To 
limit the need for complex devices downhole one can use a mathematical model of a 
process. Less physical measurements are then required, improving reliability and reducing 
operational costs. 
 Wrobel [Wrobel et al., 2009] investigated a method to perform multiphase flow 
measurements in liquid-gas flows using only cheap, easily installable non-intrusive 
components. In the proposed device, pressure peaks generated in the flow are measured 
using standard accelerometers mounted on the outer surface of a pipeline. The method was 
mainly aimed to deal with intermittent flow which provides data with distinguishable 
pressure signals from which the slug frequency velocity can be derived in case of 
intermittent flow. In order to estimate phase flow rates from the obtained data semi-
empirical models are used [Oliemans, 1998]. The flow-meter has been validated on an 
experimental setup owned by TU Delft with the accuracy better than 15% for all range of 
flow conditions considered. The applicability of this method is limited to flow regimes with 
periodic structure (slugs, waves), which are characterized by any distinctive signals (i.e. 
peaks). This is an example of indirect measurement of flow properties, and the relationship 
between the distinctive signal to be detected and flow or phase velocities must be 
determined a priori, using theory or calibration experiments.  

The applicability of this method is limited to slug, stratified wavy, elongated 
bubble or annular wavy flow since only these flow regimes provide the necessary unsteady 
pressure signal. This limitation results in a narrow operating envelope compared to 
commercially available systems. Currently, the necessary empirical relationships linking 
measured properties to flow rates have only been developed for slug flow. It is not known 
whether this concept can be extended to a wider operating range. 
 Gudmundsson and Falk, (1999) introduced the pressure pulse method to measure 
flow rates in gas-liquid flows. The method is based on the combined effects of water-
hammer when a valve installed in a flow line is closed quickly and measurement of the 
speed of sound of the mixture of the pipeline. The measurement system consists of a 
remotely operated valve which is installed on the flowline upstream of the choke and two 
pressure transducers. By activating this valve a pressure wave is generated, which 
propagates in the upstream direction. The speed of sound in a gas-liquid mixture can be 
determined from the time it takes for the pressure pulse to travel the known distance 
between the pressure sensors. Using a relevant correlation for pressure acceleration and 
static pressure drop, and a slip relation if needed, the gas and liquid flow rates are 
calculated.  
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 Recently neural networks have been used in order to increase the accuracy of 
various measurement equipment, such as the conductance probe, Venturi meter and gamma 
attenuation methods. The main advantage of artificial networks is that they do not use 
predefined rules, contrary to conventional data processing techniques but rather learn from 
existing training data sets. However, these intelligent systems might fail to reproduce 
reality when working outside the range of conditions within which they were calibrated. 
 Meribout et al., (2009) presented an ultrasonic-based device for the determination 
of the flow rates of the multiphase mixture without prior separation of the gas phase. The 
use of different type of ultra-sound sensors helps to cover all the flow regimes, including 
stratified flow. Some physical mechanisms are introduced in the pattern recognizing 
system. The latter uses a dedicated multilayer neural network algorithm to overcome the 
non-linearity and uncertainty of the sensors used. The experimental results indicate an error 
of ~10% can be achieved for the gas fractions up to 90%.  
 A neural network approach has been applied to predict the flow rates of a three 
phase flow through a Venturi meter [Alimonti and Bilardo, 2001]. It has been shown that 
the use of artificial neural networks may lead to a better accuracy compared to one obtained 
with mechanistic flow models. Although the obtained results present relative errors below 
10% over all range of flow conditions considered, it was still difficult to generalise this 
application of neural networks to different fluids and different flow conditions, which are 
out of scope of the network training. 
 The multiphase flow metering solution proposed by Shell consists of using data-
driven modelling [Goh et al., 2008]. Data-driven models have the potential to act as virtual 
flow meters, relating for example pressure and temperature changes in a wellbore to well 
production rates. Such an approach provides reasonable results and may be calibrated with 
actual production data if needed. Real-time pressure and temperature data from the 
wellheads is used to estimate the flows of individual wells using data-driven models. The 
estimated well production can also be compared with measured single-phase streams at the 
outlets of test-separators or from installed multiphase flow meters. The advantage of using 
data-driven models over other methods is the relative simplicity of that approach since no 
assumptions of underlying physics of wellbore flow have to be made. 
 Virtual multiphase sensors [Van der Geest et al., 2001] combine fluid and flow 
models to simulate the physical behaviour inside each piece of equipment with actual 
measured physical flow properties. The simulated properties are compared to the physical 
measurements and the mismatch between simulated and measured variables is minimized 
using a special mathematical algorithm. A virtual sensor requires a compositional flow 
model, which describes the flow through the pieces of equipment used such as a pipe, 
choke or Venturi. Typical measured data used by the software system applied in the 
examples are pressures and temperatures, although other measured quantities can serve as 
inputs to this model. The advantage of a virtual flow metering system is its simplified 
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hardware requirements, since typically simpler sensors can be used. Contrary to data-driven 
models, which produce accurate results only for the flow conditions within which the 
model was calibrated, the model-based virtual meters can, in principle, mimic the behaviour 
of the MPFM system over the entire range of operating conditions. The physical flow 
model used in this example is based on the steady flow model developed by Barnea, (1987).  
 

Trends in multiphase flow metering  
 Development of MPFM systems is an emerging area of research within the oil and 
gas industry. Although advances in electronics and computer techniques have significantly 
improved the overall performance of such meters, there is no general solution of the 
multiphase metering problem. The main limitations, which prevent further development of 
this discipline, are as follows: 
 - Most of the existing MPFM solutions are intrusive, meaning that the meters are 
placed inside the flowing medium. If wax, asphaltene or sand are present in a production 
system, this may cause some measuring methods (for example, a wiremesh [Prasser et al., 
1998]), to fail. Moreover, the intrusive elements may significantly reduce the available flow 
area, reducing the flowrate through a pipeline or well. 
 - No single tool can perform measurements within the full range of operating 
conditions. For a given wellbore flowrates, pressures, water cuts and flow patterns can vary 
significantly. Moreover, it is generally accepted that MPFM systems are most accurate 
within moderate range of gas volume fractions (25-85%). For the high gas fractions the 
uncertainty of MPFM metering increases dramatically [Falcone et al., 2010], especially 
near the upper limit of the operating range.  
 - Diameter of MPFM installed downhole is limited by the size of the flowlines, 
though it is not the case from a technological point of view. Also the calibration and 
validation of the MPFM system are carried out using a set of multiphase flow loops 
worldwide [Falcone et al., 2008], with a predefined range of pipe diameters, meaning that 
rescaling the data points may be required. Some MPFMs must be installed vertically, some 
others horizontally due to the orientation of the wellbore.  
 - In general it is recognized that both capital and operational expenses in MPFM 
are much lower than for conventional test separators. Nevertheless the current costs of the 
market leading multiphase flow meters are quite high and range from USD 50,000-550,000 
[Hatton, 1997]. For surface applications, the lower value of meter price is around USD 
50,000, while for subsea applications it is USD 200,000.  
 - So far no international standards for MPFM accuracy requirements have been 
introduced. The common approach is that the required accuracy depends on how the 
obtained information will be used. There are many research and engineering efforts in order 
to obtain a “fiscal” level of accuracy using multiphase metering technology, though the 
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present level of technology is not sufficient to provide such low level of measurement 
uncertainty. Accuracy requirements depend on the intended application of the flow meter:  
 - Reservoir management (5-10%); 
- Production allocation (2-5%); 
- Fiscal metering (0.25-1%). 
 The motivation for installing an MPFM system is never only dictated by the 
accuracy, as single phase metering is always more accurate. For subsea installations, a 
source of real-time downhole data could be more beneficial than accurate surface 
measurements.  
 Despite the variety of multiphase metering systems used, general trends in MPFM 
development can be identified as: 

1) The ideal multiphase flow meter needs to be reasonably accurate (typically 5% of 
flowrate for each phase), non-intrusive, reliable, flow regime independent and 
suitable for use over the full range of operating conditions. Despite the large 
number of existing solutions that have been presented in recent years and being 
under development, there is no commercially available multiphase flow metering 
system which combines all the above-mentioned requirements in a singe tool 
[Thorn et al., 1997]. 

2) Multiphase flow meters installed downhole can provide an operator with 
continuous information from each producing well or producing layer in a 
reservoir. Such distributed flow information enables real-time diagnosis of a well’s 
performance, understanding and mitigating the effects of production instabilities – 
e.g. slugging, severe slugging, liquid loading, gas coning, or water coning. This 
real-time information can be integrated easily in reservoir simulators to improve 
the chosen strategy for the field development. 

3) Existing systems, which are based on rigorous physical principles and employ 
expensive hardware, are still using various mathematical models to some extent in 
order to obtain the required flow parameters. For example, by using gamma ray 
attenuation techniques, the phase fractions are not measured directly but obtained 
via equation 1.2, the same is valid for a Venturi meter (eq.1.1), which is used to 
predict the flow rate from the pressure drop using Bernoulli’s equation. 

4) Although many advantages of using an MPFM method have been mentioned, it 
has many serious drawbacks. Any complex piece of equipment, especially 
installed downhole, operates under harsh conditions, and hardware failure is not 
uncommon. Therefore, it is desirable to decrease the number of expensive 
hardware sensors, which are very costly to replace or repair, and to supplement the 
measurement system with simple model-based software sensors, which are 
generally more reliable. 
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1.2. Multiphase flows 

 
 Multiphase flow occurs in many situations during production and transportation of 
hydrocarbons. The phases can consist of liquids, solids and gases. The presence of several 
phases in a pipeline or wellbore can cause flow instabilities and may ultimately cease the 
production and damage equipment [De Henau and Raithby, 1995; Jansen et al., 1996]. 
From the point of multiphase flow metering, gas-liquid-liquid flows are an area of practical 
importance, in which the phases are natural gas, oil and water. However, in this research 
project gas-liquid flow is studied, which is probably the most common type of multiphase 
flow in industrial applications. Although the flow structure may change greatly with pipe 
inclination, we restrict ourselves to a case of purely horizontal wellbores/pipelines, a 
configuration which is most promising from production allocation perspective. The 
possibilities of using the developed techniques for the more generalized case of three-phase 
flow will be discussed later on in this thesis.   
 First studies on the transient multiphase flow were initiated by the nuclear 
industry, motivated by the emerging need to simulate the effect loss-of-coolant accidents. 
Heat can build-up very rapidly in such situations, necessitating extensive water-steam 
multiphase flow modelling, to take flashing and heat transfer into account. Most of the 
codes used for that purposes employed thermal two-fluid models leading to at least six 
partial differential equations to be solved. Well-known software in this area includes 
RELAP5 [Ransom, 1995], CATHARE [Bestion, 1986].  

Transient flow modelling has become an area of interest for the petroleum industry 
only recently. Due to the fact that hydrocarbon production involves mostly slow transients, 
the development of simulation software has mainly focused on variations in flow rates in 
long, straight pipelines with uniform inclination. The main codes developed for production 
systems were TACITE [Pauchon et al., 1994], and OLGA [Bendiksen et al., 1991]. OLGA 
is the leading simulator for transient multiphase flow used in the petroleum industry. It is 
based on an extended dynamic two-fluid model that accounts for three phase flow of gas, 
liquid film and liquid droplets. A considerable amount of effort has been spent on 
validating OLGA using actual experimental data obtained from flow loops. 
 The essential difference between single and multi-phase flows is the existence of 
flow patterns or regimes, in which the interacting phases can be distributed in complex 
ways, both spatially and temporally. The presence of interfaces between phases imposes 
major computational challenges, since the properties characterizing the flow can change 
rapidly over the interface or even become discontinuous. 
 For gas-liquid two-phase flow in horizontal pipelines the following classification 
of flow regimes is generally used [Brill and Mukherjee, 1999]: 
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Figure 1.3. Two-phase flow patterns for horizontal gas-liquid flows (after Brill and 

Mukherjee, 1999). 
 

Dispersed-bubble flow: At very high liquid flow rates, the gas is uniformly dispersed in 
the continuous liquid phase as small bubbles. These bubbles are generally of non-uniform 
size and tend to accumulate at the top of the pipe due to buoyancy, where they may merge. 
In the dispersed bubble flow regime the phases are well mixed: liquid and gas are moving 
at the same velocity and the flow can be described using simple homogeneous flow models. 
In stratified flow, which is characterized by low liquid and gas flow rates, the phases are 
completely segregated due to gravity. Liquid is flowing along the bottom of the pipe, while 
the gas is flowing along the top with a smooth distinct interface between them. With the 
increase in gas velocity, waves are generated on the interface, leading to the stratified 

wavy flow. 
Slug flow is an intermittent flow pattern, characterized by an alternating flow of gas and 
liquid. The liquid slugs, which fill the entire cross section of the pipe, are followed by gas 
pockets. The region, containing a gas bubble is moving over a thin liquid layer at the 
bottom of the pipe. The liquid slugs, which are usually aerated with the dispersed gas 
phase, are rapidly accelerated by the gas flow. These slugs can often be very large, which 
can be problematic in production systems, causing separators to overflow, or exerting large 
forces on process equipment. The elongated bubble flow has the same mechanism as the 
slug flow and it is characterized by the absence of gas entrainment in a slug body.  
Finally, at very high gas flow rates, the gas flows in the core of the stream, while liquid 
forms a thin film along the pipe wall. In this annular flow some liquid droplets may also be 
entrained in the gas core.  
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 The existence of flow patterns, the dynamics of their development and change of 
flow within a given flow regime are the main reasons why the modelling of multiphase 
flows is so difficult. The flow pattern observed in a production system depends on the 
operational parameters (gas, liquid flow rates), geometrical variables (including pipe 
diameter and inclination) and physical properties of the fluids.  Determination of the flow 
regime is an important issue in two-phase flow analysis and it is common procedure to 
define it using flow pattern maps, which plot the transition lines between different regimes 
in one graph with phase flow rates. These maps can be generated in two ways. Firstly, the 
flow map can be constructed directly from experimental observations obtained from well-
conditioned flow loops. Such flow maps are not universal, limiting their predictive value to 
systems very similar or even identical to the flow loop in which they were obtained. A lot 
of experimental work has to be performed, therefore, before flow maps are available that 
cover a wide range of set-ups and flow conditions. A further problem is caused by the fact 
that although the difference between certain flow regimes, like slug and annular, is quite 
apparent, generally there is a considerable difficulty in defining visually when a transition 
between flow regimes occurs. 
 In contrast, mechanistic flow regime maps are developed from the analysis of the 
fundamental transition mechanisms between various flow patterns. In these transition 
models, the effects of various physical parameters are incorporated, so they can be applied 
over a wide range of operating conditions. It should be noted here that empirical 
correlations are still required in such regime prediction approach for the model closure. An 
example of a flow map for horizontal air-water flow is given in Figure 1.4. 

 
Figure 1.4. Flow regime map by Mandhane et al., 1974. 
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Trends in multiphase flow modelling  
 
Multiphase flow modelling techniques can be roughly categorized as follows:  

1) Empirical modelling is based on establishing experimental relationships between 
flow variables of interest [Hagedorn and Brown, 1965; Duns and Ros, 1963]. 
Reliable empirical models require a large number of experiments accompanied 
with subsequent dimensional analysis. Correlations which are not based on 
dimensional analysis can only be applied to a limited set of flow conditions, 
similar to those for which the experimental data have been obtained. Such 
experimental approach does not require complex physical modelling; it is 
relatively simple and not demanding in computational sense, though its 
performance over a wide range of flow conditions is generally poor. 

2) In the phenomenological approach a simplified physical model describing the 
main mechanisms governing the flow is built. Within each flow pattern the 
transport processes are similar to a certain extent. Analytical models are 
developed, which predict the flow behaviour for the various flow regimes. 
Additional experimental data may be used to check the performance of the model 
and upgrade it if needed. However, contrary to the empirical approach, such 
models are more generally applicable since they are based on physical flow 
mechanisms [Ansari, 1994; Petalas and Aziz, 1996]. 

3) The formal flow governing equations characterizing multi-dimensional and time-
dependent multiphase flows, with appropriate closure laws and boundary 
conditions, can be solved numerically. Despite its obvious advantages such as 
accuracy and generality, direct numerical simulation requires an enormous 
computational effort. Depending on the nature of a problem there are different 
ways to model multiphase flow using first-principles models. It can either be 
performed via full Navier-Stokes equations [Ekambara et al., 2008] which allows 
the calculation of the detailed interfacial flow structure or by using simplified one-
dimensional conservation equations written for each phase and accounting for 
interaction between them [Wallis, 1969]. In the second case the usage of 
experimental data are needed in some way as it is necessary to balance the effect 
of model simplification by introducing additional relations and semi-empirical 
parameters for the closure of these models. 

 

Soft-sensing 
 Physical models, irrespective of the way the flow is described, predict the response 
of the system (e.g. flow properties such as pressure or flow rates) with know input. A soft-
sensor, in turn, provides the estimation of the model parameters if the measurement input is 
unknown or known only to a limited extent. A flow model therefore is an essential element 
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in connecting measured and predicted flow variables. When choosing a model for soft-
sensing purposes, several aspects are important. These not only include computational 
speed and memory capacity of the computer but also whether the model can be used in 
combination with a real-time estimation algorithm. Although most of the flow modelling 
methods can in principle be incorporated in soft-sensors, in some cases the model should be 
modified. From the data assimilation perspective additional requirements on the model 
description are imposed. The models which have to be used for monitoring and soft-sensing 
purposes are generally formulated in the following state-space form: 

 1 ( , , )k k k kx f x u w                    (1.3) 

In which xk is the state vector of the system, uk is the vector of known input, and wk is a 
vector containing model uncertainties. The operator f(.) is in general a non-linear function, 
which relates current state and input to an updated state vector. For a multiphase flow the 
state vector is given by dynamic variables (i.e. pressures, velocities, void fractions, flow 
rates) and the control input is defined by boundary conditions or predefined source terms 
(i.e. inflow from reservoir to wellbore). The model equations f(.) are defined by chosen 
physical models and a numerical strategy. 
 Experimental data alone can not be used for prediction. However, it is possible, in 
principle, to build the dynamic model from measurement data, using system identification 
methods. In the resulting black box models the physical mechanisms are only incorporated 
on the level of experimental conditions used. They inherit the disadvantage of empirical 
modelling and can be used safely only within the range experiments were taken. The 
phenomenological approach, which is based on clear physical mechanisms, is more suitable 
for data assimilation. However, it is originally formulated for a steady-state flow and a 
considerable amount of effort should be put into it in order to add time-dependency if it is 
even possible. Moreover, the phenomenological models are flow regime dependent and can 
produce inaccurate or even incorrect results at regime transition boundaries.  
 The obvious advantage of the computational fluid dynamics (CFD) models over 
other approaches is that they can be used over a wide range of flow conditions and without 
the need of any empirical calibration. However, CFD is still an emerging area of research 
and in many flows can not yet be modelled with sufficient confidence. This is especially 
true with regards to turbulence modelling [Zhou, 2010] and modelling of multiphase flows 
[Vijiapurapu and Cui, 2009]. Another important issue with respect to use of a first 
principles model is the computational robustness. The simulation time depends on a number 
of aspects as: the numerical algorithm, number of grid blocks, physical formulation. A good 
approximation of the flow field requires a very fine discretization of the simulation domain 
with a number of mesh elements of at least ~106. It is not uncommon to have a simulation 
time for days or weeks. Considering a typical time step of order of seconds with a time 
scale of production system of minutes or hours, a mathematical technique can not be used 
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to incorporate the full equations of continuum mechanics in a data assimilation procedure in 
such a way that it can be used in real-time.  
 In order to speed-up the calculations simplifying assumptions are often made, 
which decrease the computational effort significantly. These assumptions decrease the scale 
of the problem by reducing the order of the model (i.e. decreasing the number of equations 
and variables involved in the simulation). For example, considering multiphase flow in a 
long horizontal pipeline one can note that, due to enormous length/diameter aspect ratio and 
the dominating direction of the flow, a flow can be treated as one-dimensional. When the 
flow is developed and equilibrium flow regime is generated, the one dimensional equations 
are obtained from cross-sectional averaging of the Navier-Stokes equations and 
supplementing it with flow-regime dependent closure terms. The diffusion terms in such 
simplified conservation equations are neglected and the flow is assumed advection 
dominated. The following one-dimensional models, which are simple, continuous and 
differentiable, can be used for soft-sensing purposes: 
- Homogeneous Equilibrium Model; 
- No-Pressure-Wave model; 
- Drift-Flux Model; 
- Two – Fluid Model. 
 The simplest model of the flow of a multiphase mixture is referred to as the 
homogeneous equilibrium model (HEM) [Whylie and Streeter, 1993], which treats the two-
phase flow as a pseudo-single phase fluid with one velocity, pressure and temperature and 
averaged fluid properties. For the isothermal two-phase oil-gas flow the homogeneous 
model consists of two-equations: the mass and momentum balances for the mixture. In this 
formulation empirical correlation is only needed for the friction factor. Relations for 
momentum transfer and velocity slippage are not required. Unfortunately, this 
simplification leads to the main shortcomings of the model: it can neither describe the 
propagation of kinematic waves in the pipeline nor be used for flow regimes other than 
homogeneous bubbly flow [Falk and Gudmundsson, 1998]. As a closure a thermodynamic 
equation of state and a correlation for the mixture properties are used. The latter is not 
straightforward since the viscosity and density of a mixture are defined in terms volume 
fractions, which are not explicitly included in the governing equations. 
 The No-Pressure-Wave model (NPW) is based on the assumption that pressure 
waves are decoupled from the initiation and propagation of kinematic waves [Masella et al., 
1993]. As HEM does not account for propagation of phase fractions, the NPW model does 
not have acoustic waves. In the NPW model the inertia components in the momentum 
equations are neglected and a single mixture momentum equation is replaced by a local 
static force balance, which is used to calculate the steady pressure distribution. This model 
can form a good approximation of the flow, provided that the velocities of the phases are 
significantly less than the mixture speed of sound and, obviously, inertia is negligible.  
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 The multi-fluid model (which is known as a two-fluid model for oil-gas flow, 
[Stewart, 1984]) is an ultimate tool designed to deal with a one-dimensional description of 
the flow. This model treats the fluids separately as if each flows in a separate conduit within 
the pipe. Each phase has its individual velocity, temperature and pressure which leads to 
continuity, momentum and energy equations written for each phase. For two-phase 
isothermal flow, this results in six partial differential equations in total which are solved for 
six variables. The main difficulty associated with the use of the two-fluid model is related 
to substantial uncertainty and gaps in formulation of the closure relations regarding the 
interaction of the phases [Ishii, 1990]. These interaction terms have a significant impact on 
the wave propagation (both kinematic and dynamic) in the flow system, and affect greatly 
the flow dynamics in general.  
 The drift flux model is in an intermediate model between the rigorous two-fluid 
model and the simple homogeneous approach. This model treats the phases as a mixture but 
at the same time accounts for the velocity difference between gas and liquid. Thus, in this 
model the continuity equations are written for separate phases (some formulations, 
however, use a single mixture continuity equation supplemented with mass balance for each 
of the phases), while the momentum and energy equations are written for the mixture only. 
The difference between phase velocities is modeled using a so-called slip model [Zuber, 
1965], which unequivocally correlates gas velocity with liquid velocity. This formulation 
uses fewer equations as compared to the two-fluid model. The drift-flux model can also be 
used for the case when phase velocities are equal. Note that the resulting set of equations is 
different from that of homogeneous equilibrium model. The governing equations for the 
drift-flux model are presented in the next chapter. 
 The advantage of the two-fluid models is more apparent in separate flows, when 
the phases are not strongly coupled and it is most suitable for stratified and annular flow 
regimes. The drift-flux model is more appropriate for mixed flows, for which the 
discrepancy between velocities is small, such as bubble, dispersed bubble or slug patterns. 
Generally it is appealing to use different flow models according to the predicted flow 
regime. However, this is not that convenient from the point of soft-sensing, since the use of 
different models in a single filtering workflow may produce discontinuities for the 
estimated variables or even divergence of the estimator. By choosing between drift-flux and 
two fluid models for soft-sensing, one should not forget the main requirement of real-time 
operation of such flow meters. Generally, the computational performance of the drift flux 
model is slightly better that of the two-fluid one. 
 The great advantage of the drift-flux model is in the default form of the 
constitutive equations, providing exact conservation of the flow variables. For that 
formulation the direct use of the conservative numerical schemes is possible. The numerical 
solution of the equations governing two fluid models is not straightforward due to non-
conservative terms and should be evaluated in a special way.  
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Table 1.1. Qualitative comparison between drift-flux and two-fluid models. 

  
 Direct numerical simulation of multiphase flow is the most accurate method of 
analysis, which, however, results, in a very large computational effort. The one dimensional 
assumption significantly simplifies the modelling problem. These one-dimensional models 
are obtained by integrating the 3D flow equations over the cross-section of the pipe and 
replacing the diffusion terms by empirical correlations leading to a set of partial differential 
equations which are written for cross-sectional averaged velocity, pressure, phase fractions, 
etc. This can be considered a natural alternative to more complex model reduction 
techniques [Antoulas et al., 2001; Smith et al., 2005]. As a result, the numerical solution of 
the governing equations becomes straightforward and the resulting forward model 
consumes less computational time.  
 Although several formulations are available for one-dimensional flow modelling 
all of them require additional empirical closure correlations. The two-fluid model provides 
a superior description of the flow, at the cost of greater numerical complexity, while the 
drift-flux model is more robust numerically and hence more suitable for engineering 
computations, which makes it an obvious candidate for multiphase soft-sensing. However, 
the choice of a flow model is still open, since little has been researched with respect to this 
issue.  

 
 
 
 

 Drift-Flux Model Two Fluid Model 

 

 

Governing 
equations 

Continuity liquid 
Continuity gas 
Momentum mixture 

Continuity liquid 
Continuity gas 
Momentum liquid 
Momentum gas 

Closure 
relationships 

Wall friction factor 
Slip relation 

Wall friction factor 
Interfacial friction factor  

Variables 
Pressure, flow rate, liquid holdup Pressure, gas velocity, liquid velocity, liquid 

holdup 
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1.3. Smart Wells and Soft-Sensing 
 
 Traditionally, oil production may be divided into three major categories. In the 
primary recovery phase, the oil is driven out of the hydrocarbon reservoir by its natural 
pressure, which is considerably higher than the pressure in the bottom of the wellbore, 
known as bottomhole pressure. Over the lifetime of production reservoir pressure is 
reduced to a point that it provides insufficient driving force to produce hydrocarbons to the 
surface, against the effect of friction and gravity. In the secondary recovery phase, water or 
gas is injected to maintain the pressure in the reservoir at a sufficient level. Other secondary 
recovery techniques, such as gas lift, reduce the pressure drop in a vertical well, by 
effectively reducing the density of the fluid in the wellbore. Generally the recovery factor 
after primary and secondary stages can vary between 30 and 50% [Green, 2003]. Finally, 
enhanced or tertiary recovery uses a number of sophisticated processes to change the 
physical properties of the reservoir fluid, allowing additional recovery. The viscosity of the 
oil can be decreased using thermal influence or the surface tension between oil and water 
can be altered by the chemical flooding. 
 In recent years, with the extended availability of downhole measurement 
equipment and actuators the concept of intelligent (or smart) well completions has been 
introduced. The main application of the smart well technology is to actively intervene in the 
hydrocarbon production process by means of downhole flow control and sensing [Glandt, 
2003]. In particular, such intelligent completions may be used for control of the injection of 
water or gas in the well to realign the velocity of the injected fluid over heterogeneous 
layers in a reservoir [Brouwer and Jansen, 2004]. The inflow of certain fluids from different 
zones in a production well can be limited or eliminated [Aggrey, 2008], which is important 
for long horizontal, multilateral or other complex wells [Sun et al., 2006]. Intelligent 
completions are generally based on the following hardware elements: Interval control 
valves (ICV) and downhole sensors. The well, which is divided in intervals using isolation 
packers, is equipped with several ICVs which are remotely operated in order to control 
inflow from different reservoir layers or well branches. In-line separators [Kouba et al., 
2006] may be used as down-hole processing units to separate phases. Downhole separation 
can reduce the energy required to lift fluids to the surface, with the additional benefit of 
allowing downhole flow metering using single phase meters.  Many technological options 
are available for sensors. The most commonly used sensors are point-pressure and 
temperature gauges. Alternatively, fiber-optic distributed temperature sensors (DTS) are 
now widely employed to measure even minor changes in the thermal profile at one-meter 
resolution with an accuracy of 0.1oC [Brown et al., 2000]. 
 Examples of ways in which such intelligent completions may help production 
processes on a short-term are: 
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– Perform real-time monitoring of production systems and allow remote intervention in 
production, reducing the need for costly well interventions. An example of this would be 
water influx, which no longer requires a cement plug, but could be remediated by simply 
shutting an inflow control valve. 
- Ensuring optimum production or recovery from a reservoir by including optimization 
algorithms which take actions based on monitoring data. Examples are optimizing 
production from various – non-homogeneous – reservoir sections, or improving the sweep 
efficiency of water flooding by optimizing flow distribution in the reservoir. 
 On the long-term time scale the smart wells are considered as a part of a general 
intelligent production system, which requires proper management strategy. The difference 
between production measurements and the output of reservoir/wellbore models is analyzed 
and used to update the asset within the framework of closed-loop reservoir management 
(Jansen et al., 2008, Figure 1.5). 
 

 
Figure 1.5. Closed loop reservoir management after Jansen et al., 2008. 

 
 A hydrocarbon system would in principle provide an accurate prediction of the 
flow variables both in reservoir and wellbore, if that relevant models are perfect. However, 
the parameters of the system are known to a certain extent only: while the fluid properties 
of the wellbore fluid are typically accurately known, permeabilities and porosities can vary 
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greatly throughout the reservoir, but can only be directly measured near the wellbore 
location. The wellbore flow model also includes a number of unknown parameters (as drift-
flux) and the flow regime usually can not be visualized and identified at downhole 
conditions. In addition to the model parameters the input to the system is not fully defined 
with the inflow from reservoir to wellbore as a major unknown. The models, which 
obviously cannot be used alone to describe the performance of the hydrocarbon systems, 
can be updated in real-time, by estimating the uncertain model parameters and refining the 
model structure using available measurement output. In the data assimilation concept, the 
model is updated continuously, when new measurements become available providing 
estimated values of dynamic flow variables and parameters. These estimates can be used 
later, for instance, for model-based control of wellbore performance to optimize the 
production. The controlled inputs can be gas lift injection rate, surface choke settings and 
downhole flowrates. This optimization acts on a very short time scale and the wellbore 
response to input change becomes apparent within minutes or hours.  
 The measurements can be either real hardware sensors or soft-sensors, which 
obtain the production data indirectly. As the data assimilation adapts the parameters of the 
model to measured data, reliable measurement data are needed. Sensors are required which 
are designed to operate in aggressive downhole conditions. Nevertheless, faults and 
breakdowns of downhole equipment can not be completely avoided. Generally, building 
and maintaining a complex measuring system installed for a hydrocarbon reservoir is quite 
expensive and depends on the variables to be monitored and data supply frequency. It can 
be noted that capital costs for intelligent completions vary from USD 200,000 for a 
permanent downhole gauge system up to USD 2,500,000 for a fully equipped multizone 
completion with the option of remote control [Robinson, 2003]. 
 There are a number of reasons why the soft-sensors can be used in oil and gas 
applications. The generally accepted areas of application of the soft-sensing measurement 
techniques are as follows: 
1) Soft-sensors can replace expensive hardware systems, as use of software tools instead of 
hardware is always a cost reduction.  
2) Soft-sensors installed parallel to a measurement device can instantaneously diagnose 
fault or breakdown of a given piece of hardware equipment and replace it by substituting 
the missing data by the output of the soft-sensor. This, in turn, allows the use of soft-
sensors for real-time estimation for monitoring and control purposes. 
3) Validation of the hardware output under normal data conditions. 
4) Soft-sensors can be used together with the existing hardware, improving its overall 
performance. The hardware instrumentation can then operate with increased accuracy, be 
able to work over wider range of operating conditions, or provide measurement output with 
a frequency higher than defined by technological capabilities. 



                                                                             Chapter 1. Introduction 
_________________________________________________________________________   
26

5) The most promising application of soft-sensors, which is especially attractive for 
hydrocarbon production systems, is the estimation of process variables which are not 
measured directly. The soft-sensor, or real-time estimator, replaces downhole flow metering 
and obtains flow rates from conventional downhole sensors, such as pressure or 
temperature gauges, in combination with a multiphase flow model calculating the quantities 
of interest with measured data as a basis. The schematic description of soft-sensors for this 
purpose is depicted in Figure 1.6. 

 
 

Figure 1.6. Schematic representation of multiphase soft-sensors. 

  
 The performance of a multiphase soft-sensor can be described as follows. The 
hardware equipment measures some flow property, which is not usually the one of direct 
interest. Even if direct multiphase flow measurements are available downhole, their quality 
may not be sufficient as the flow meter may fail to provide accurate measurement for a 
certain flow regime or operate incorrectly over a specific range of flow conditions. 
However, we present measurements here as general sensors, providing not only flow rates, 
but also pressures, temperatures, phase fractions and water cuts. Amongst those some 
measurements are more easily obtained at the surface conditions rather than downhole, 
though the latter are generally preferred. Downhole data are usually accessible only at few 
locations.  
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 Contrary to most sensors, the model can predict the dynamic behaviour of flow 
variables over the whole simulation domain. However, models used for soft-sensing are 
usually greatly simplified for real-time operations and the quality of model predictions 
strongly depends on the empirical closure relations used. Even if the model is perfect, it 
will only provide accurate prediction of the flow field if the input is known. Given that the 
input includes the unknown flows, it is not feasible to expect satisfactory model 
performance, taking also into account other model limitations. Therefore, these two sources 
of information, model and the measurements, can not be separately used for multiphase 
flow rate prediction.  
 The soft-sensor combines model and measurement in an intelligent way, aimed at 
eliminating their drawbacks and reinforcing the strong parts. The multiphase soft-sensor 
uses the values of dynamic flow variables obtained by a simplified flow model and 
measured output of downhole equipment installed in the wellbore to provide an estimation 
of model input and unknown parameters in such a way, that the mismatch between 
predicted and measured data will be minimized. It should be noted here, that the output of 
the model and measurements can be completely different, as the soft-sensor provides model 
based predictions of both measured and unmeasured quantities. For that purposes the 
dynamic multiphase flow model of the system should be described theoretically, allowing 
unequivocal predictions of dynamic variables (system output) with a given model input. 
The best choice is to use the robust, first principle models formulated on the basis of real 
physical mechanisms, such as drift-flux, two-fluid, etc. 
 Soft-sensing is still an emerging area of research and a very few applications are 
available which are related to multiphase fluid mechanics. Lorentzen et al., (2003) 
developed a methodology of tuning of parameters of one dimensional two-phase flow 
models, in particular for a drift-flux formulation of slug and bubbly flow in vertical wells. 
The method has been validated employing both synthetic and experimental data, and 
though the model parameters were not perfectly estimated, the tuning of the model gives an 
improved performance compared to use of the standard choice of parameters. The 
estimation was done using the ensemble Kalman filter.  
 In Vefring et al., (2002) a dynamic multiphase well flow model was coupled with 
a simple transient reservoir model. Using the injections and annulus outlet rates as 
measurement and the constant bottomhole pressure as the input, the obtained coupled 
model was used to identify the reservoir permeability using the Levenberg-Marquardt 
algorithm. It was shown that the simultaneous estimation of permeability and reservoir 
pressure led to errors in the considered parameters. More recently, Vefring et al., (2006) 
upgraded the estimation technique by employing the ensemble Kalman filter to perform 
data assimilation in real time, as new measurements become available, whereas with the 
Levenberg-Marquardt optimization algorithm all the available data are matched with the 
output from the coupled model, just as in traditional history-matching.  
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 Nygaard et al., (2007) proposed an automatic methodology for control of the 
bottomhole pressure during drilling operations in gas-dominant wells. Besides the control 
component of the study, the dynamic model of the wellbore flow was calibrated in real-time 
using available process measurements. The reservoir permeability was updated using the 
unscented Kalman filter.  
 Leskens et al., (2008) considered the simultaneous estimation of downhole oil, 
water and gas flow rates from downhole pressure and temperature measurements in a single 
horizontal well by using the extended Kalman filter. It was shown that in case the 
measurements are corrupted with noise, obtaining correct estimates is not possible due to 
bad observability of the system. This allocation technique was further extended by de Kruif 
et al. (2008) to the multi-lateral well case both for the two-phase (oil and gas) and three-
phase (oil, gas and water) cases. It has been shown that for a three phase flow in addition to 
downhole wellhead measurements are required. 
 The extended Kalman filter was used as a soft-sensor for gas-lift wells by Bloemen 
et al., (2004). Via simulation based test cases it has been demonstrated that multiphase flow 
rates can be estimated using pressure measurements along the tubing. Proper estimation of 
model parameters, i.e. closure for the used drift-flux model, requires additional 
measurements of liquid flow rate. 
 Muradov and Davies, (2010) considered several soft-sensing methodologies for 
zonal rate allocation problem, which is based on use of downhole pressure and temperature 
data. It was shown that in contrast with numerical optimization algorithms, the Kalman 
filtering is more capable to deal with sufficiently noisy data.  
  Aamo et al., (2005) designed a non-linear observer (soft-sensor) for monitoring the 
states (gas mass in annulus, gas mass in tubing and oil mass in tubing) of multiphase flow 
in vertical pipes. The soft-sensors used only topside measurements – the pressure at the top 
of the tubing and either the flow through the production choke or the density at the top of 
the tubing. The use of the observer in combination with control algorithms was used to 
avoid the multiphase instabilities and increase production. 
  

Kalman filtering 
 A classical soft-sensor has three main components. First, it requires the set of 
conventional hardware sensors which are used to provide data. Secondly, a process model 
is required. In addition to a flow model, a choice has to be made regarding a data 
assimilation algorithm, which would relate model predictions with available measurements 
resulting in estimation of flow variables.  
 One can note two different approaches for incorporating measurement data into the 
dynamic model:  variational data assimilation, which is based on the minimization of a cost 
function within a certain time interval [Robertson, 1995] and sequential history matching 
methods or filtering, where the state of the system is updated every time instant new data 
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become available. One way to solve these sequential data assimilation problems is to use 
Kalman filter equations [Kalman, 1960]. In order to apply Kalman filtering it is required 
that the description of model and measurements should be of the form: 

 1 ( ) ( )k k k k k k k kx A d x B d u v                     (1.4) 

 k k k ky H x w                                            (1.5) 

Where Ak(dk) and Bk(dk) are the state transition matrices, Hk is a measurement matrix, which 
relates available observations with model states. x is a state vector, d is a vector of the 
model parameters and u is a control input (i.e. boundary conditions). Subscripts k and k+1 
denote old and new time step respectively. vk and wk are zero mean Gaussian white noise 
vectors, associated respectively with the model and measurements and characterized by 
variances Qk and Rk. Initial conditions of the filter are defined by the initial estimate x0 and 
the initial error of estimation with a known covariance P0. 
 The Kalman filter computes estimates of the state vector which are optimal in a 
least-square sense for linear system dynamics (eq.1.4). The Kalman filter is a two-stage 
recursive algorithm, which consists of a prediction step (also called the time update step or 
forecast step) and a correction step (measurement update or analysis step).  
 With the forecast step, the current filter estimate and corresponding error 
covariance matrix are used to calculate the prediction based on the model dynamics 

 1 ( ) ( )f a
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The prediction of the error covariance can be computed as 
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Once the new measurements become available, the model states and the covariance are 
corrected using this new information.  
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 The superscript f represents the (model) forecasted state of a dynamic system, and 
superscript a refers to values analyzed by means of incorporating measurement data. Here 
K is the Kalman gain, which minimizes the covariance matrix P. I is the identity matrix of 
appropriate dimension. 
 While the error covariance matrix R can in principle be defined from accuracy 
specifications of the sensors used, the definition of the model error matrix Q is more 
difficult since the process noise represents the uncertainty in the modelling process itself. It 
may include the physical simplifications, the uncertainty in numerical algorithm, 
inaccuracy in boundary conditions, etc. The model error matrix usually acts as a tuning 
parameter: if the physical model is oversimplified, more confidence in measurement data 
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can be granted by choosing a proper Qk. Moreover, a certain choice of the model error 
matrix can prevent filter divergence for some applications.  
 The important definitions in data assimilation framework are: 

1) Model parameters – these variables are usually uncertain and do not change in 
time, therefore they are also referred to as static variables. For multiphase flows 
these include fluid properties, such as density and viscosity, wall friction factor, 
and the parameters of a two-phase flow model (such as drift-flux parameters or 
interfacial friction factors). If these parameters are explicitly introduced into the 
data assimilation procedure, the estimates of those are sequentially updated in 
time, though in fact they still remain constant from the physical perspective. 

2) State variables are output solutions from the wellbore simulator, and are updated 
according to the dynamics of the flow system. Just as the model parameters, the 
dynamic variables can be poorly defined, by, for example, errors introduced by the 
numerical algorithm. Additional sources of uncertainty for state variable arise 
from the link with static parameters defined by the transient model. Model states 
can be formulated either in terms of conservative variables (phase flow rates, 
densities) or in a primitive formulation as pressures, velocities, phase fractions.  

3) Model input – these are quantities, which, just as static parameters, provide the 
updated dynamic variables. These are various source terms (mass transfer, 
pressure drop, inflow, outflow), boundary conditions and, unlike the static 
parameters, these are usually time dependent. The model input may be affected by 
the formulation of the governing equations, such as interfacial friction of a two-
fluid vanishes when the corresponding momentum equations are added. 

4) Measurements are the observable quantities, which are directly related to the state-
variables and parameters. For multiphase production system measurements the 
number of observable states is limited and includes surface flow rates, water cuts, 
down-hole pressures and temperatures. Obviously the measurement data always 
have some uncertainty associated with technology and it should be explicitly 
specified in the data assimilation approach.  

 Although using the Kalman filter equations one can, in principle, solve many data 
assimilation problems, the actual implementation for a specific application is not 
straightforward. First, with the increase of the dimension of the state vector x, the 
computational effort of the algorithm increases dramatically. The most computationally 
expensive is the model forecast step, both for model and covariance updates. While for a 
model update the computational effort is of order n2, the error covariance matrix is updated 
with n3 operations, which clearly sets a limitation for real-time operation for high-order 
models. Provided that the wellbore model chosen is robust enough, this is not a main 
difficulty associated with the use of Kalman filter in multiphase soft-sensors. The update of 
the error covariance matrix (eq. 1.7) is performed assuming that the original model 
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equations are linear. Unfortunately, this is not the case for the majority of fluid mechanical 
applications. The main sources of nonlinearity are caused by the convective transport, and 
the existence of semi-empirical closure terms.  
 For a general non-linear model process several modifications of the original 
algorithm have been proposed. The extended Kalman filter (EKF) [Jazwinski, 1970] is a 
most straightforward extension of the original algorithm to adapt the filter to a non-linear 
case. It uses the linearization of the given non-linear model around the most recent estimate 
and, after the linearization, the original Kalman filter equations can be used for forecast and 
analysis steps. This actually leads to the main shortcoming of the extended Kalman filter 
approach; its application requires the computation of a Jacobian and hence the EKF may 
lead to poor results in the case of strongly nonlinear dynamics. More important, the 
Jacobian can hardly be computed analytically and its numerical calculation greatly 
increases the computational effort of the filter. Moreover, such numerical differentiation 
induces additional numerical errors, which eventually diverges estimates from the correct 
ones. The unscented Kalman filter (UKF) deals with the problem of model non-linearity 
introducing several sampling points (sigma points) around the current estimate based on its 
covariance. Afterwards, these points are propagated through the original non-linear process, 
which provides the estimates of the state vector without complex linearization. Though 
more accurate, the UKF requires more computational effort and may be computationally 
unfeasible. The ensemble Kalman filter [Evensen, 1994], is based on a Monte Carlo 
approach, using an ensemble of possible model realizations to compute the necessary 
statistics. This method is easy to implement and it handles strong non-linearities better, than 
other known filtering techniques.  
 There is much ongoing work within different areas of research including 
petroleum engineering, where the Kalman filter techniques are used. The number of 
application to wellbore flow is, however, very limited. Therefore it is difficult to conclude 
which algorithm will perform better as a real-time estimator for a given application and for 
given flow conditions. While the computational speed is not that important for the one 
dimensional wellbore model, the quality of the estimates is essential.  
 

1.4. Discussion and Research Directions 

 Motivated by the growing demand for hydrocarbon production and increased 
availability of downhole measurement and control equipment, the oil and gas industry has 
introduced a smart wells concept. The main idea of this approach can be formulated as the 
improvement of reservoir management by means of wellbore instrumentation and use of 
various model-based control and optimization strategies. The aim is a higher output from a 
reservoir both on the short and long term time scales. 
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 Such strategies in turn strongly rely on the efficiency of downhole equipment, 
which is used to obtain real-time oil and gas production rates with sufficient spatial and 
temporal resolution. In particular, multiphase flowmeters installed downhole can improve 
the production of long horizontal wells by allocating the zones of oil, gas and water inflow. 
Development of such multiphase flow metering systems (MPFM) has been a major focus of 
oil and gas industry over the last decade. Although a number of commercially available 
industrial MPFM systems exist, each of them applies its own technology and principle 
focused on the specific application. More important, MPFM is quite sensitive to the fluid 
properties and flow regimes. Furthermore, multiphase flow meters are only accurate within 
a limited operating range making such real-time monitoring expensive.  From the 
monitoring point of view, the use of sensors which measure different quantities in several 
locations is preferred. However, because of practical and economical reasons such demands 
are unrealistic. Moreover, some sensors, like pressure gauges, provide more available 
measurements than others. 
 To overcome these problems one can use so-called multiphase soft-sensors, i.e. 
estimate flow rates from conventional meters, such as downhole pressure gauges, in 
combination with a dynamic flow model. The aim of this research project is to investigate 
the possibilities and limitations of such multiphase soft-sensors with the focus on gas-liquid 
flows in horizontal wells. In particular the problems relevant to the development of soft-
sensing techniques may be formulated as follows: 

1) Since the soft-sensors are model based tools for real-time estimation of unknown 
quantities, proper flow modelling becomes essential. Such models should be 
capable to represent the main physics of the process and at the same time should 
be capable of providing output data in real-time. Either the model should be 
significantly simplified or the model should be solved by means of robust 
numerical methods, which allows simulation in real-time or preferably even faster. 

2) The choice of the model is also dictated by the type of wellbore flow processes. 
Obviously the fully dynamic model is more preferred, as it is capable to process 
the transient signal from the sensor. However, for some formulations the use of a 
semi-steady state model might be more advantageous.   

3) It is important to decide, which set of measurements should be used as an input to 
a soft-sensor. Some of them, like pressure gauges, supply the operator with 
information about the flow at multiple locations. As an alternative, distributed 
pressure sensors can be used which provide continuous both in space and time data 
regarding pressure distribution in a wellbore. Such sensors, mainly because of 
their low price and robustness, should be considered as a basis of the real-time 
estimator. It is also important to decide, which kind of quantities are suitable for 
indirect measurement of flow rates, as these should implicitly include the 
information on the flow structure. 
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4) The soft-sensor algorithms themselves need to be adjusted to the problem 
considered. Although such methods have been widely used in meteorology 
[Houtkamer and Mitchel, 1998] and petroleum engineering [Jansen, 2008], very 
little has been researched with respect to multiphase wellbore flow. 

 

1.5. Outline 

This thesis is organized as follows. 
 Chapter 2 gives a detailed overview of the physical model of wellbore flow used. 
The concept of drift flux is briefly discussed and the closure relations for the governing 
equations are introduced. In addition, the eigenvalue analysis of the resulting system of 
equations is performed, which provides characteristics representing the wave propagation 
speeds in the simulation domain considered. These characteristics are used later to analyze 
information, which is available for indirect estimation of multiphase flows (Chapter 4). 
 Methods used to the solve model equations numerically are discussed in Chapter 3. 
It is shown that the traditional central schemes are unable to capture properly the physics of 
the flow. For the complex flow systems, which include several non-linear coupled 
differential equations, a new computation algorithm is proposed. First, a Jacobian splitting 
must be applied accounting for different directions of the propagation of information. Next, 
the two components of the Jacobian matrix, denoting the positive and negative direction of 
information propagation are discretized using conventional upwind, accounting for the sign 
of eigenvalues. Finally, the use of flux limiters is considered, which significantly improves 
the shock-capturing capabilities of a numerical scheme. Furthermore, the governing 
equations are reformulated. That allows the numerical upwinding of the source terms, 
which are included in the state vector. 
 In Chapter 4 an assessment is performed of the impact of the chosen time-
integration scheme on results of data assimilation based on the extended Kalman filter 
approach. The use of the implicit Euler scheme, which is unconditionally stable for the 
whole range of time steps both for the model and covariance update, results in a less 
accurate estimation of the permeability distribution, which can be overcome using a 
parameter estimator based on the explicit Euler scheme. However, the latter strongly limits 
the maximum time step, which can be used, and leads to inappropriate simulation times. An 
alternative can be found using a semi-implicit estimator, in which a model is updated using 
the implicit Euler scheme, whereas the propagation of the error covariance matrix in time is 
based on the explicit time integration scheme. This hybrid approach combines the accuracy 
of the conventional Kalman filtering with the robustness of the implicit forward modelling. 
The proposed algorithm is successfully applied for the solution of the one-dimensional 
problem of permeability estimation in a porous medium for a single phase oil flow. 
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 Chapter 5 starts from analysis of the transient pressure signal generated in the 
wellbore due to inflow from the reservoir. The possibilities of indirect multiphase flow 
metering are then discussed. Afterwards a real-time estimator is developed, which estimates 
the liquid fraction distribution for a two phase liquid gas flow from the variation of the 
frictional pressure drop. The method, which was limited to a rapid inflow scenario, is 
extended in Chapter 6 to a gas coning control application, in which the relevant quantities 
are estimated from multiple pressure measurements and single multiphase flow 
measurement at the outflow. The performance of both techniques proposed is evaluated 
using a series of simulation based test cases and measurements generated by the OLGA 
simulator. 
 Finally, Chapter 7 gives conclusions of the thesis and provides recommendations 
for future work. 
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2. Wellbore Flow Model 

2.1. Governing equations for a drift-flux model 

 The equations describing a two-phase one-dimensional flow can be derived from 
the conservation principles of mass and momentum applied to a control volume of a pipe. 
The conservation equations are formulated under the following assumptions: 
1) Dominant (marching) flow direction does exist. 
2) Viscous diffusion in the flow direction can be neglected. 
 The one-dimensional control volume for the gas-liquid wellbore flow is depicted 
in Figure 2.1. Both liquids are considered as flowing in separate parts of the pipeline with 
variable cross-sectional area occupied by each fluid. The ratio of the pipe cross-section 
occupied by the liquid Al to the whole area A is defined by the liquid holdup: 
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Figure 2.1. Control volume for multiphase flow in pipelines. 

 
The continuity equation for the liquid is derived from the mass conservation principles for a 
control volume depicted in Figure 2.1. For a constant cross-sectional area A these 
conservation principles are formulated as 
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 Where  is the phase volume fraction,  is the density, u is the velocity, t denotes 

time and s denotes the coordinate along the length of the pipe. Vk is the mass inflow 

source per unit volume representing the inflow from a reservoir to the wellbore (Figure 
2.2). These sources are normally time dependent. The subscript k denotes the relationship to 
a given phase and in subsequent equations it will have index either l (liquid) or g (gas). The 
term mki represents the interfacial mass flow from each of the other phases into a phase k. 

 
Figure 2.2. Schematic representation of horizontal well with inflow from reservoir. 

 
 For the case without phase transfer, the continuity equation (2.3) applied for the 
liquid and gas phases is given by 
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The momentum conservation written for each phase 
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 Here p is the pressure, the term wk stands for wall shear stress and ki represents 

interfacial interaction.  is the pipe inclination angle and Sk is the wetted pipe perimeter. 
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 The general momentum balance for a mixture is obtained by adding the 
momentum equations for the gas and liquid phases.  

 
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 The equation obtained contains no information on phase interaction. The force 
balance includes pressure, gravity and frictional components. In the momentum equation 
for the mixture, the complex interfacial terms are cancelled out. 
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 Here an appropriate model for the frictional pressure losses Sfr is introduced 
instead of wall shear stress. Equation (2.8) uses a single pressure p for all phases. For 
different formulations, i.e. multi-fluid models, the use of the same pressure in all phases 
may cause the model to lose its hyperbolicity [Ransom and Hicks, 1984], which in turn may 
lead to numerical instabilities. The final form of the momentum equation for the oil-gas 
mixture is 

 2 2( ) ( )
l l l g g g l l l g g g fr

p
u u u u S

t s s
       

  
     

  
                     (2.9) 

It is necessary to provide a model for the frictional pressure losses Sfr in the momentum 
equation. A frequently used expression for dispersed type of flows is based on a single 
phase correlation, with flow variables related to mixture conditions. For detailed description 
of other flow regimes, for instance slug flow, more complex submodels can be used 
[Bendiksen, 1996].  

 2

2
fr m m

f
S u

d
                   (2.10) 

Here d is the pipe diameter and f is the friction factor, which is a function of pipe roughness 
k and the Reynolds number 

 Re
m m

m

m

u d


                         (2.11) 

With the mixture velocity um defined as  

 m l l g gu u u                                          (2.12) 

And the average mixture density  

 m l l g g                                 (2.13) 

 While the density of a mixture can be defined as a linear function of phase 
fractions, this is not the case for the viscosity. The viscosity of a dispersion is proportional 
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to the viscosity of the continuous phase and depends also on the volume fraction of the 
dispersed phase and the specific size of the dispersed droplets. For very low gas fraction the 
Einstein correlation is valid 

  1 2.5m l g                                                (2.14) 

For computational purposes the mixture viscosity can be approximated as the viscosity of 
one of a continuous phase [Brauner, 1998], e.g. 

 m l                                          (2.15) 

 The friction factor for a mixture can be expressed as a function of the mixture 
Reynolds number, using an empirical correlation for a single-phase fluid. The use and 
comparison of different friction factor correlations for steady wellbore flow has been given 
by Ouyang and Aziz, (1996). The friction factor should also be modified for different flow 
regimes. 
For smooth pipes and 2000<Rem<105 the Blasius correlation can be used 

 0.250.316 Remf                                     (2.16) 

If roughness k is taken into account the friction factor is defined by the Colebrook-White 

equation 
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2 log
3.71Re
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df f
  

 
 
 

                                (2.17) 

Formula (2.17) gives f implicitly, therefore iterations are needed to obtain the solution. 
Alternatively, the Techo formula [Techo et al., 1965] is used, where f is given explicitly as 
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
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              (2.18) 

 The use of steady flow friction factors in unsteady problems is adequate only for 
very slow transients, which may not be valid for certain oil-gas applications. Various 
transient friction models are available, which split the friction factor in two terms. The first 
term is calculated using the steady flow friction factor correlation and the second accounts 
for transient variation of the flow velocities. Transient friction factor is generally 
represented as  

 , , , ..tr

u u
f f f t u

t s

 
 

 
 
 
 

                      (2.19) 

 With the first term in the right-hand side of (2.19) representing steady flow friction 
factor and the second term is the correction for transient flow. The model for unsteady 
friction introduced by Brunone et al., (1991) has become the most widely used in 
applications with fast transients [Ghidaoui et al., 1992]. Though efficient for single-phase 
flow, the transient friction factor model applied to multiphase flow is not always 
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sufficiently accurate. For some applications [Pierre, 2009] transient friction models do not 
improve model performance predictions compared to the use of only the steady state 
friction factor correlation.  
 The given set of governing equations is insufficient to fully describe the flow. As 
there are more unknowns than equations, additional relations are required. The simple 
thermodynamic closure law prescribes a constant liquid compressibility, while the relation 
between pressure and gas density is obtained assuming the ideal gas law: 

 0g gp R T                  (2.20) 

Where Rg is the specific gas constant for the given gas, and T0 is the gas temperature at 
reference flow conditions. The acoustic speed of sound at adiabatic conditions is defined as 
[Lighthill, 1978].  

 0g gc R T                             (2.21) 

Where is the gas adiabatic index. 

 

2.2. Algebraic Slip Model 

 The use of a single momentum equation instead of separating momentum 
equations in the multi-fluid approach results in certain difficulties.  Since it is usual for the 
two-phase flow to have some relative motion between liquid and gas, a proper flow 
description should be in a multi-velocity formulation. As the number of available equations 
is less than the number of unknown variables, the additional closure correlation is needed to 
obtain the full velocity field. In a drift-flux approach, as it was proposed by Zuber and 
Findlay, (1965), the missing information in the momentum equation is given by algebraic 
constitutive relationship between the velocities of the phases.  
 The drift velocity of the gas phase is defined as the slip velocity between the gas 
and the mixture 

 drift g mu u u                   (2.22) 

The weighted mean drift velocity is defined by averaging the local slip velocity over the 
channel cross section [Ishii, 1975]: 

 
g drift g g g m

g g g

u u u  

  
                 (2.23) 

With <> denoting the averaging operator, defined as 

 
1

A

dA
A

                               (2.24) 

Introducing the superficial gas velocity <usg>=<g ug>, equation 2.23 is reformulated as 
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sg g m g drift

m

g g m g

u u u
u

u

 

  
                          (2.25) 

 The distribution parameter C0 and mean drift velocity ub are defined according to 
equations (2.26) and (2.27) as 

 0

g m

g m

u
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u




                            (2.26) 

And 

 
g drift

b

g

u
u




                         (2.27) 

And the final form of the algebraic slip model is given by 

 0g m bu C u u                                       (2.28) 

 With the drift-flux model defined as in equation (2.28) the governing equations are 

solved for the primitive set of variables, namely ug, g, l. Other variables of interest can be 

unequivocally expressed as combination of these. 

 
Figure 2.3. Profile and local slip mechanisms in the drift-flux model 

 
 The obtained analytical slip equation which correlates ul and ug can be replaced by 
more rigorous models. For example, a more realistic correlation for the slip velocity 
between two phases can be obtained using the static force balance accounting for different 
flow regimes. Equation (2.28) sets the gas velocity as a function of the mixture velocity. In 
order to obtain correct predictions with this model two parameters, namely distribution 
coefficient C0 and gas drift velocity ub, should be specified properly. Generally these 
parameters depend on the orientation of the pipeline and on the flow regime.  

du
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 The traditional drift-flux model is formulated for vertical pipelines with dispersed 
bubble flow. However, the relationship between gas and mixture velocities in the form of 
equation (2.28) has been confirmed empirically for other flow regimes and other pipe 
inclinations. 
 The following drift velocity model can be used for slug flow in a vertical pipeline 
[Davies and Taylor, 1950]: 

 
 

0.35
l g
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l

gd
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


                                (2.29) 

The bubble rise velocity for a bubble flow regime is given by Harmatty, (1960). 
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                        (2.30) 

 While for a vertical flow the drift velocity is caused by the difference between 
buoyancy and drag forces, in the horizontal flow it is defined by the local axial pressure 
gradient. The drift velocity was obtained experimentally by Bendiksen, (1984) for various 
Reynolds numbers in a 2.42 cm diameter pipeline. Franca and Lahey, (1992) obtained the 
data set on bubble drift-velocity for plug, slug, wavy-stratified and annular flow regimes. A 
negative value of a drift-velocity for a slug flow was observed. This result was confirmed 
by Bonizzi, (2003), who, by means of establishing a force balance between pressure and 
drag forces, has obtained an analytical expression for the slip velocity for horizontal slug 
flow. 
 In a homogeneous bubbly flow the distribution coefficient C0 is 1 by definition. 
For other flow regimes the distribution coefficient ranges from 1.0 to 1.25. Various models 
for C0 have been proposed for different flow conditions. The simple correlation, introduced 

by Ishii, (1977) C0=1.2-0.2.(g/l)
0.5 accounts for inertia effects and is valid for a wide 

range of Reynolds numbers. The limiting case with equal densities, corresponding to 
homogeneously distributed fluids, leads to the distribution parameter of unity. For low gas 
concentrations, the distribution coefficient should have a near-one value. This is taken into 
account by introducing the void fraction into the existing correlation. Equation 2.31 

describes the development of two phase flow for gas fraction g<0.25. Beyond this range 

C0 is equal to its standard value for the developed flow. The influence of the void fraction 
on the distribution parameter was also studied by Clark et al., (1990) 

  0
( 18 )1.2 0.2 1 e
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 
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 

                        (2.31) 

 The Collins correlation [Collins, 1978], which was obtained for slug flow in 
vertical pipelines, includes the effect of flow homogenization at high Reynolds numbers. 
As the velocity and concentration profiles become uniform the value of Co approaches 1.0. 
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                        (2.32) 

 A more recent drift-flux model [Shi et al., 2003] defines the distribution for a 
certain range of void fractions in slug and bubbly flow, which approaches 1 as the void 
fraction exceeds some threshold value B 
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.                          (2.33) 

 Here A is the constant value of C0 for a given flow regime and  is the term 

depending on g  
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                           (2.34) 

 More drift-flux correlations exist for different applications. A review and 
assessment of the predictive capabilities of the most commonly used models is given in 
Coddington and Macian, (2001).  
 The use of these correlations leads to continuous and differentiable models which 
can be directly used for multiphase flow simulation. However, from a computational point 
of view, the use of constant drift flux parameters seems to be more reasonable.  Based on 
equation (2.31) the standard value 1.2 for C0 can be used for bubbly flow if the density 
corrections are ignored and the multiphase flow is developed. For a horizontal stratified 
flow the value of C0 is close to 1, while it is about 1.15 for the slug flow regime. 
Experimental data [Chen, 2001] can be used to update existing values for drift-flux 
parameters or to obtain those for other flow patterns or pipe inclination angles.  
 

2.3. Matrix form of conservation equations 

The system of partial differential equations (2.4), (2.5) and (2.9) can be written in a 
compact form as  
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Q
t s

 
 

 
                     (2.35) 

Where U is a vector representing the unknown conservative variables, F is the vector of 
fluxes and Q is a vector of source terms. For equations (2.4), (2.5) and (2.9) these variables 
are defined according to 
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Equation (2.35) can be equivalently represented in a quasi-linear form using the Jacobian 
matrix A=∂F/∂U 

 
U U

A Q
t s

 
 

 
                    (2.37) 

 The additional equation for the gas velocity is taken from the algebraic slip 
relation (2.28). 
 Obtaining the Jacobian is not a straightforward task as it is difficult to compute the 
derivatives of the flux components with respect to variables. Obviously, the choice of the 
conservative variables U is not a convenient one due to different aspects. First, the closure 
equations for the drift-flux model are formulated in terms of the primitive variables (i.e. 
density, velocity, liquid holdup) and, therefore, the numerical solution based on a 
conservative variable set needs extra iterations to perform a conversion for the primitive 
variables for each time step. More important, the output of the sensors is usually expressed 
as a function of the primitive variables (see chapter 1). In order to match both the model 
and measurement predictions additional mathematical operations are needed. This may 
decrease the accuracy of the existing prediction, as the error in estimation propagates 
through the computation algorithm. An alternative formulation of the model can be written 
in terms of primitive variables. The following set of primitive variables is suggested.  

  T

g g lW u                                (2.38) 

 This choice of variables is not unique and one can, in principle, use pressure 
instead of gas density, liquid velocity instead of gas velocity and void fraction instead of 
liquid holdup. In addition to the choice of the variables, special attention should be given to  

the liming case of single phase gas flow, since equation (2.28) has a discontinuity at l=0. 

 Using (2.38) the matrix form of the governing equation is converted to 
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                        (2.39) 

Or 
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 
                        (2.40) 

Where AU=∂U/∂W and AF=∂F/∂W  

The product of 1

UA  and FA  is the actual Jacobian of the system, written in terms of the 

primitive variables 

 
W W

A Q
t s

 
 

 
  ;                (2.41) 

Where  

 1

U FA A A                                 (2.42) 
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 1

UQ A Q                                      (2.43) 

Transformation from the conservative to the primitive variables is defined by the Au 
transition matrix. Equation (2.41) can be rewritten using the definition of Au as 

 1 1

U U U

W W
A AA A Q

t s
 

 
 

 
;                     (2.44) 

 Therefore, the transition between the model Jacobian expressed in terms of the 
conservative and primitive variables is given by 

 1

U UA A A A                           (2.45) 

 The model (2.43) is considered to be well-posed if it appropriately reflects the 
physics of the flow. Equally, the eigenvalues of the Jacobian should be real and distinct 
[Ishii and Song, 2000].  The eigenvalues are obtained from solution of the following system 

 det[ ] 0A I                         (2.46) 

 Substitution of matrix (2.42) into (2.46) gives a cubic polynomial equation for the 

eigenvalues , which provides three solutions. Eigenvalue analysis of the drift-flux model 

has been performed by Theron, (1989) and Gavage, (1991) under the assumption that the 
liquid phase was incompressible.  

The eigenvalues of A  matrix are given as follow 

 1 gu                                  (2.47) 
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                        (2.48) 

Equation (2.48) can be reformulated as follows 

 2 ,3 2l phu u                    (2.49) 

Where u2ph is a speed of sound in the gas-liquid mixture. 
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              (2.50) 

 The obtained eigenvalues of the jacobian A  or characteristic speed define the 
physical behaviour of the multiphase system. Since all the three eigenvectors are real and 
distinct, the system of the equations for transient two-phase flow is hyperbolic. On a 
physical basis eigenvalues represent speeds with which information is propagated in the 
domain. Two characteristics are running in the flow direction and one in opposite if the 
liquid velocity ul is less than a speed of sound in the gas-liquid mixture u2ph. In general the 
information may propagate in as many directions as there are eigenvalues obtained. 
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 Expressions similar to (2.48)-(2.50) can be derived for homogeneous flow with a 
single velocity, where the liquid compressibility is taken into account 
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                (2.51) 

The speed of sound in the liquid phase is 
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Using the similar analysis as for the drift-flux model the following expression is obtained. 
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                         (2.53) 

 Equation (2.53) represents the velocity of sound in a homogeneous two-component 
mixture, and it was first introduced by Wood, (1941). It can also be obtained as the limiting 
case of equation (2.50) with C0=1 if liquid is incompressible. In addition to Wood’s 
formula several attempts have been made to establish multiphase speed of sound for more 
general flow cases.  Nguyen et al., (1980) developed a similar model to predict the sonic 
velocity for stratified and slug flow regimes. For a case in which the gas and liquid 
velocities are different Henry, (1970) introduced a corrected formula using a slip 
relationship. On the other hand, the propagation properties are affected by the mathematical 
formulation of the flow model and the speed of sound is extracted from eigenvalues of the 
formulated system. Theoretical predictions of the phase sonic velocities in the two-phase 
mixture from the eigenvalues analysis have been given by Lee et al., (1998) for the two-
fluid model. It should be noted that only closure equations in differential form affect the 
characteristics of the system [Evje and Flatten, 2007].   
 Any input to the system, such as variation in a liquid holdup or velocity is 
transmitted through the pipeline with a certain speed, which is defined by the eigenvalues 
of the mathematical model. Wave attenuation is another source of uncertainty that 
influences the dynamics of the two-phase flow. The main mechanism for pressure wave 
attenuation in pipelines is diffusion, which for the one-dimensional approach is 
approximated by a friction factor (steady or unsteady) [Pierre and Gundmundsson, 2009]. 
The main attenuation mechanisms for liquid-gas flows have been analyzed by Falk, (1999).  
  The number of characteristics or eigenvalues or waves is different for various 
model formulations and defined by the number of dynamic equations used. That may range 
from two eigenvalues for the simple isothermal pseudo single-phase model to six for a 1D 
thermal two-fluid formulation. If the dynamic behaviour of certain variables is disregarded, 
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the corresponding equation is replaced by an algebraic relation, which decreases the 
number of characteristics. 
 For gas-liquid flows in pipelines it is possible to define two classes of physical 
phenomena, namely convective transport and pressure wave propagation. Fluid convection 
is characterized by the first eigenvalue and characterized by the local velocity of the gas 
phase. The second and third eigenvalues correspond to pressure wave propagation both in 
the direction coinciding with flow and counterflow (if ul<u2ph). In a typical two-phase flow 
problem, the characteristic time scale is of the order of 10-3s for dynamic waves and 10-1s 
for convective waves. The latter, however, is not the fastest phenomena as phase transitions 
(evaporation, boiling), which are omitted here, occur on the time scale of 10-5s [Stewart and 
Wendroff, 1984]. Normally these pressure waves are not influenced by kinematic wave 
propagation, as was pointed out by Falk, (1999) and Boure, (1997). The speed of sound in 
the two-phase mixture is much smaller than both single phase liquid or gas flows. Plotting 
mixture speed of sound as a function of the liquid holdup for typical values of flow 
parameters will result in the following graph (Figure 2.4). 

 
Figure 2.4. Speed of sound of a two-phase mixture as a function of liquid holdup for a 

homogeneous air-water mixture at 1, 10 and 100 bar. 
 
  Although the mixture speed of sound is considerably smaller than the speed of 
sound in one of the pure components over a wide range of flow conditions, it increases 
dramatically for the liquid holdup values of 1 (pure liquid) and 0 (pure gas), producing 
strong nonlinearities. 
 As for majority of flow applications u2ph>>ul, ug the influence of convective 
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transport on the pressure wave propagation can be neglected. This, in turn allows to leave 
out the acceleration terms in the mixture momentum equation. For the case in which the 
convective acceleration is neglected, the transformation matrices of the system AF and AU 
are formulated as follows 
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and 
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                          (2.55) 

With corresponding eigenvalues of 1

U FA A A  given as follows 

 1 gu                    (2.56) 

 2 ,3 2 Phu                    (2.57) 

Where u2ph is the expression for the speed of sound of the two phase mixture which is 
defined by an expression similar to equation (2.50). 
 

2.4. Summary 
 The model for the simulation of the liquid-gas flows in horizontal wellbores has 
been formulated. The main advantage of the drift-flux approach is that the governing 
equations are given in conservative form, which makes them easy to solve using 
conservation numerical methods. The mathematical model given by (2.37) is hyperbolic for 
a wide range of flow parameters with three real and distinct eigenvalues. Two of these 
characteristics represent high-speed pressure waves propagating both in upstream and 
downstream direction of the flow. One characteristic corresponds to void fraction waves 
and coincides with the velocity of the gas phase. 
 The following assumptions are suggested in order simplify the proposed model: 
- Liquid is treated as incompressible, whereas the gas density is related to a single fluid 
pressure using the equation of state for the ideal gas. 
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- It is reasonable to neglect acceleration terms from the mixture momentum equation as 
these do not have a significant influence on the flow phenomena over range of flow 
conditions of interest. 
- Despite the variety of drift-flux models available, the simplest one should be used as a 
prototype of a soft-sensor.  Here the model with constant distribution coefficient C0 and 
bubble drift velocity is used. 
- The sources representing the inflow from reservoir to wellbore (Figure 2.2) are assumed 
to be independent from the dynamic flow variables. However, they can be transient and act 
as the external input to the system. 
- Despite the variety of correlations available for wall frictional losses, both steady-state 
and transient, the one proposed by Techo is used. 
 The system of partial differential equations describing the flow has to be 
supplemented with initial and boundary conditions. For the hyperbolic problems the choice 
and formulation of boundary conditions depends on the directions of the characteristics at 
the boundary. Therefore it will be discussed in more detail in the next chapter.  
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3. Numerical Methods 

3.1. Introduction 

 With the governing system of equations formulated in terms of the partial 
differential equations (2.4), (2.5) and (2.9), the relevant state variables are formulated as a 
function of continuous axial coordinate s and time variable t. To enable the use of a Kalman 
filter or other data assimilation algorithm, the model should be converted in a discrete state-
space form, in which the output of the model is defined as a function of the current system 
state and the input. This formulation can be obtained by establishing a forward solution 
algorithm. As the analytical solution is not available due to complexity of the drift flux 
model, the equations governing the flow are solved numerically. Despite the variety of 
numerical schemes available all of them imply the spatial discretization of the simulation 
domain into a finite number of grid blocks or control volumes and subsequent integration of 
the governing equation over these grid blocks. The resulting discrete state variable has the 
form of a state vector 

 1 2[ .. ]k k k Nk

Tx x x x                   (3.1) 

Where xik is the state variable defined in the grid block i and evaluated at the time level k. 
After the discretization of the computational domain the following system of ordinary 
differential equations is obtained: 

  ,
t

t t

dx
F x u

dt
                              (3.2) 

The general solution of equation (3.2) for one time step is given by 

 
1

1 ( , )
k

k k t t

k

x x F x u dt


                          (3.3) 

 The mathematical method to be used for the soft-sensing is formulated in the 
following state-space form 

 1 ( , )k k kx f x u                               (3.4) 

 Where the operator f(.) represents a general solution of the ordinary differential 
equation. This operator is usually not available in a direct form as it depends on the 
numerical algorithm used.  
 Although during the last decades an enormous amount of robust, efficient and 
accurate solvers have been developed for one-dimensional modelling of single-phase 
compressible flow, the achievements for its multiphase counterpart have been less 
impressive. Due to the difficulties related to modelling of multiphase flows, such as 
presence of non-conservative terms, flow regime dependency, etc., the development of the 
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multiphase numerical algorithms is generally more intricate and complex. The numerical 
methods currently used for multiphase flow modelling are recognized to possess certain 
drawbacks to accurately predict flow performance. 
 Depending on the problem, the required accuracy, and the availability of the 
computational resources, one can choose among a range of well-establishing techniques to 
obtain the numerical solution. In Godunov-type methods [LeVeque, 2002] the exact 
solution for the local Riemann problem is obtained at each grid interface. The usage of this 
technique requires the algebraic expression of the physical flux F, which may not be 
available due to the complexity of submodels used in the drift-flux formulation [Baudin et 
al, 2005a]. However, several attempts have been made in order to build the solver by using 
extensions of the original algorithm. A scheme introduced by Romate, (1998) uses a 
numerical approximation of the physical flux, while its analytical expression for a specific 
formulation of an algebraic slip model is given by Faille and Heintze, (1999) and Flatten 
and Munkejord, (2006). In contrast, central schemes [Toro and Bilett, 2000; Chen and 
Toro, 2004] do not explicitly account for the direction in which information is propagated, 
and its usage is convenient for incorporating additional closure equations. In a flux-splitting 
approach [Evje and Fjelde, 2002], the convective terms are divided into parts corresponding 
to positive and negative eigenvalues. This method will be discussed in detail later on in this 
chapter and implemented in a flow simulator. 
 Unfortunately, there are no direct recommendations available for the choice of the 
relevant numerical scheme for multiphase soft-sensing. It is appealing, however, to use the 
flux splitting methods as they are usually simpler to implement. Generally the aspects, 
which are important for selecting the appropriate numerical method for wellbore flow, are 
directly related to the terms in general conservation equation (2.37), namely, transient, 
convective and source. 
 1) For the transient term a choice has to be made between explicit and implicit 
schemes. The use of implicit schemes is normally beneficial from numerical stability 
considerations, as it imposes no numerical stability restriction on the value of the time step 
used. However, the use of the very large time steps can disregard the flow phenomena 
acting on a very small time scale and smear out discontinuities [Toumi, 1996]. For the cases 
in which the pressure wave propagation is less important than convective transport, the 
semi-implicit time integration is introduced [Baudin et al., 2005b]. It treats the dynamic 
waves implicitly, whereas the treatment of mass transport, which defines the maximum 
allowed time step, is explicit. The influence of the time integration scheme on the results of 
data assimilation is studied in detail in the next chapter.  
 2) Another important issue is related to the representation of the convective terms. 
Depending on how the numerical flux function is defined, one can distinguish between 
central and upwind schemes. The first category produces numerical oscillations in the 
vicinity of a wave front, while the second generates numerical diffusion which smears out 
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step gradients. The development of the computational techniques tends to reduce the 
unphysical oscillations and numerical diffusion and increase the accuracy of the scheme. 
Multi-step schemes [Liska and Wendroff, 1999] consist of time step based on a second 
order schemes followed by time step of a first order. The use of these compositional 
schemes reduces both numerical instabilities and numerical diffusion. These schemes, 
which are quite easy to implement in forward modelling, are generally not recommended to 
use for data assimilation purposes, as they tend to increase the size of the state vector, 
which should be augmented with these intermediate time steps [Madsen and Canizares, 
1999]. Recent developments in the shock capturing schemes, which do not produce 
unphysical behaviour at the front of the wave propagation and allow to obtain accurate 
results with a reduced number of grid blocks, seem to be promising from the soft-sensing 
perspective.   
 3) The existing numerical algorithms to be used with convection dominating 
problems were initially developed for homogeneous equations. This is not the case for 
multiphase models, as the sources will always be present in a drift-flux formulation. 
Numerical difficulties associated with incorrect source term treatment, especially with 
regards to obtaining a correct solution, have been reported by several authors [LeVeque, 
1998; Koren, 1993]. A commonly used solution for non-homogeneous governing equations 
is based on the fractional step splitting where first a homogeneous problem is solved and 
then a correction step is applied in order to add the influence of the source [Toro, 1999]. 
This approach, however, may easily fail if the transient term is small compared to 
convective and source term contributions, that corresponds to a solution close to a steady-
state [LeVeque, 1998]. Numerical schemes based on the flux splitting, which lead to 
accurate solutions of non-homogeneous conservation equations, have been proposed. In 
[Hubbard and Garcia-Navarro, 2000] a discretization scheme which balances the source 
terms with convective fluxes, was introduced. This balance was achieved by Bermudez and 
Vazquez, (1994) and Chacón Rebolo et al., (2002) by reformulating the set of governing 
equations and numerical upwinding of the source terms. In Gascon and Coberan, (2001) the 
non-homogeneous equations have been transformed into homogeneous by introducing a 
new flux vector.  
 The purpose of this chapter is to provide a brief description of basic numerical 
algorithms used for the multiphase flow simulations. First, a brief overview of the 
numerical schemes used for convection dominated problems is given. After that, the 
problem of proper source term treatment is introduced and a special correction algorithm is 
proposed. The last section deals with validation of the chosen numerical strategy. The 
wellbore simulator is validated against benchmark cases and data generated by the well-
established commercial simulator OLGA. Finally, the chapter ends with conclusions.  
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3.2. Discretization of the flow equations 

General formulation 
 The drift flux model defined in the preceding chapter is described by a system of 
conservative equations: 

 
  

( )
( )

Source

termTransient Convective

term term

U F U
Q U

t s

 
 

 
                             (3.5) 

 Where U is a vector of conservative variables, F is a vector of flux variables and Q 
is a vector of source terms, which is represented by algebraic functions of conservative 
variables.  
 The quasi-linear form of the equation (3.5) is given by 

  U U
A U Q

t s

 
 

 
                                  (3.6) 

 

Basic principles 
 The first step in formulating a numerical method to solve the system in the form of 
equations (3.5) or (3.6) consists of discretization of the simulation domain (Figure 3.1). The 

mesh is composed of grid blocks with si=0.5(si+1/2+si-1/2) the cell centers and si=si+1/2-si-1/2 

the grid block length. The discrete values of dynamic variables are located at the centers of 
these gridblock, so Ui=U(si) is the value of conservative variable associated with ith grid 
block. 
 

s

is

1/ 2is 

 
Figure 3.1. Discretization with notations. 
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 With the uniform grid spacing and the use of a fully explicit time integration 
scheme, the system of non-linear algebraic equation is obtained, which represents the 
conservation properties of dynamic variables in control volume. For a system written in 
conservative form, the discrete equation for a grid block is 

  1
1 / 2 1 / 2

k k k k k
i i i i i

t
U U F F t Q

s


 


     


                                       (3.7) 

 Where t is the time step, s is the grid block length, F is the numerical flux 

which represents the physical flux defined at the cell interface, subscript i represents the 
cell index. An expression for the interface flux F is required, which is determined by the 
particular choice of a numerical scheme.  This can be performed using standard schemes 
(first or second order upwind or central difference) or employing more rigorous high-
resolution algorithms. 
 The mathematical fundamentals for solving equation (3.7) have been first obtained 
from the analysis of scalar hyperbolic conservation laws. Although the extension of the 
scalar scheme to its vector counterpart may not be straightforward, it is convenient to 
formulate basic expressions of the numerical flux F for the simplest flow model. For 
example, the one dimensional, linear advection equation without a source term is given by 

 0
u u

a
t s

 
 

 
                   (3.8) 

Equation (3.8) describes the propagation of a wave u with a constant speed a. 
The discrete form of (3.8), similar to (3.7) is written as 

  1
1 / 2 1 / 2

k k k k
i i i i

t
u u a u u

s


 


  


                 (3.9) 

 
Numerical solution of linear advection equation 
 Equation (3.8) is hyperbolic: the solution in a given location should only depend 
on the information upstream that point. Formulations, which do not take into account the 
flow direction are either unstable or require compensational terms. The upwind scheme 
accounts for the direction in which information is propagated by evaluating the interface 
value of u at its upstream neighboring grid value  

 1 / 2i iu u                                  (3.10) 

 The use of the upwind discretization leads to a numerical scheme which is first-
order accurate in space. The main disadvantage of the upwind type of scheme is numerical 
diffusion which tends to smear out wave phenomena. The value of the numerical diffusion 
is proportional to the size of a grid block and it may be a severe limitation of the use of the 
upwind schemes. The error caused by the first order accuracy of the upwind scheme can be 
minimized by extending the discretization to a higher order. These schemes use more grid 
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points to calculate the intercell flux and are therefore more accurate. Some examples of the 
widely used high-order schemes are second order upwind  

  1 / 2 1

1

2
i i i iu u u u                                                       (3.11) 

And the third order upwind scheme, which is also referred to as QUICK scheme [Leonard, 
1979] 

    1 / 2 1 1 1 1

1 1
2

4 8
i i i i i i iu u u u u u u                                                 (3.12) 

 The three chosen numerical schemes are assessed for the following test case where 
a block wave of 0.5m length is transmitted through the simulation domain with a constant 
velocity a=0.1 m/s. The pipe length is 1m and it is discretized with a 100 gridblocks of a 
constant length. The comparison of the results obtained by three upwind based schemes 
with the analytical solution is depicted in Figure 3.2 at t=5s and in Figure 3.3 at t=7.5s. All 
the employed schemes used a constant time step value of 0.01s. 
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Figure 3.2. Results for linear advection 

problem, t=5.0 s, N=100 cells. 
Figure 3.3. Results for linear advection 

problem, t=7.5 s, N=100 cells. 
  
 It can be noted that though the upwind scheme predicts the general behaviour of 
the flow correctly, the front of the wave is smeared out. As the wave propagates into the 
simulation domain, the artificial diffusion further smoothens the discontinuity. This is also 
illustrated in Figure 3.3, where the slopes of fore and rear fronts of the block wave are 
different. The use of the schemes of higher order resolves the rapid varying regions of the 
flow much better. However, the regions of discontinuity are corrupted by wiggles, which 
overshoot and undershoot the exact solution. It is more apparent for the case of second 
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order upwind scheme, where the initial profile oscillates in the vicinity of the discontinuity. 
The third order scheme is much better in this respect: though it resolves the shock interface 
with moderate smearing, on the other hand it shows more monotonic behavior compared to 
its second order counter part. In both cases, the solution exceeds the values set by initial 
bounds, where in some locations near the wave front it becomes negative. If the dependent 
variable u cannot be negative from physical considerations, the use of high-order schemes 
is not recommended.  
 It seems logical to combine the monotonic properties of first order upwind scheme 
and accuracy of the high-order discretization and suppress at the same time the induced 
numerical oscillations. In particular, high resolution schemes may be considered as a 
natural extension of the mentioned approach, which increases the performance of numerical 
scheme.  

 
High-resolution scheme 
 One can obtain a high resolution scheme by combining a standard scheme of the 
first order with a high order scheme and introducing special functions which limit 
numerical oscillations to physical values. It is generally accepted that high-resolution 
scheme should possess the following properties [Hirsch, 1990]: 

1) Provide 2nd order (or higher than second order) accuracy in resolving interfaces, 
shocks and discontinuities. 

2) The amount of grid points can be reduced dramatically maintaining at the same 
time the same level of accuracy. 

3) Prevent numerically induced oscillations. 
 The general expression for a high resolution numerical flux is given by [Sweby, 
1984]. 

   1 / 2 ( )HR LO LO HO
i i i i iF F r F F                                                       (3.13) 

 Where FLO is a flux defined by low order scheme, FHO is a flux defined by high 

order scheme. And  is the flux limiter, which sets the ratio between different schemes 

depending on the gradients near a particular grid block ri. For a positive flow direction ri is 
defined by the following expression 
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
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
                                                            (3.14) 

Three flux limiting functions have been studied: MinMod, SuperBee and Van Leer. The 
mathematical expressions of these flux limiters [Wesseling, 2001] are given in Table 3.1. 
 The use of flux limiting is illustrated in Figures 3.4-3.5. The same initial data as in 
the previous case have been used. As it follows from the figures the use of flux limiters 
introduces a significant improvement in the numerical solution. Two observations can be 
made. First, the solution is monotone, i.e. no unphysical behaviour is observed in any 
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location of simulation domain. Secondly, the accuracy of the front tracking is much better 
than for all schemes considered so far. 
 

 Table 3.1. Flux limiting functions for the case study 

Flux Limiter Equation 

MinMod max[0, min(1, )]r   

SuperBee max[0, min(1, 2 ), min( , 2)]r r   

Van Leer ( ) /(1 )r r r     

 
 For that particular problem the SuperBee limiter seems to work in a superior way. 
It should be noted that the use of the explicit time integration scheme simplifies greatly the 
programming issues related to the implementation of flux limiters. For an implicit 
formulation, the solution of a system of non-linear equations is required.  
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Figure 3.4. Results for linear advection 

problem, t=5.0 s, N=100 cells. 
Figure 3.5. Results for linear advection 

problem, t=7.5 s, N=100 cells. 

 
Flux splitting scheme 
 It has been shown that with the use of the upwind scheme the relevant physical 
phenomena are automatically incorporated into the discrete equations. Although 
straightforward in the scalar case, the upwinding becomes different when more than one 
equation is used. The adaptation of the upwind scheme to a system of equations describing 
the multiphase flow may be achieved with the least effort by using the flux splitting 
approach.  
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 In the flux splitting approach the non-conservative form of the governing 
equations is considered. For the sake of clarity, the source term is assumed to be zero. 

 0
U U

A
t s

 
 

 
                                                             (3.15) 

 For the case of general conservation laws with multiple eigenvalues it is appealing 
to use the knowledge of the direction in which information is propagated. Upwind scheme 
can then be used for the processes described by the positive eigenvalues and downwind for 
the negative. In the numerical methods that concept may be realized by splitting the 
Jacobian matrix in two parts, with one having positive eigenvalues and another having 
negative ones. The Jacobian matrix A can be represented as 

   1A T T                                                     (3.16) 

Where [] is the diagonal matrix formed by the eigenvalues of A, namely 

  
1

..

N









 
 
 
  

                                (3.17) 

Then [] may be split as 

        
 

                              (3.18) 

And a natural splitting of A results in 

    1 1A A A T T T T                                  (3.19) 

Now the quasi-linear form of the model equation is given by 
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   
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                                (3.20) 

And the formulation in terms of primitive variables is 

 
W W W

A A Q
t s s

   
 

  
   ;               (3.21) 

In equation (3.21) /A U s   corresponds to a flux in the direction coinciding 

with the flow, which is defined by the positive eigenvalues of the system. Therefore the 

terms /A U s   and /A W s    should be approximated by the upwind scheme, as the 

information to a grid block i is coming only from upstream direction. Similarly, the terms 
associated with the negative eigenvalues should be treated with downwind scheme.   

 
1 1i i i i

i
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A A Q

t s s

   
  

 
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 
                               (3.22) 

The discretization of other formulations is performed in a similar way. The expression for 
the intercell flux, which has two flux contributions from neighbouring cells, reads then 
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    1 / 2 1 1i i i i if f U f U 
                                              (3.23) 

These fluxes should be defined in terms of components of the discrete equation (3.22), as 
the operations of splitting and introducing the quasi-linear form do not commute, i.e. 
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Figure 3.6. Definition of the numerical flux in flux splitting approach. 
 

 With the obtained discrete equation for the numerical flux the corresponding high 
resolution scheme can be constructed. The main difference from the scalar case is in 
introducing the additional flux limiting function for the counterflow direction. The 
expression of the downwind high resolution numerical flux is similar to its upwind 
counterpart.  
 

Time step size 
 With the numerical fluxes evaluated on the old time level the stability of the 
numerical scheme is prescribed by the CFL (Courant-Friedrichs-Levy) condition 

 
1 2max( , .. )N

s
t CFL

  


                                            (3.25) 

 Where the CFL limiting value should not exceed 1. The denominator of (3.25) is 
the largest speed of sound of the model and for drift-flux flow it is defined by dynamic 
wave propagation. 
 

Boundary conditions 
 For a hyperbolic system of equation it is important to account for information 
which leaves and enters the computational domain through characteristics. The 

characteristics represented by 1 and 2 transmit information in positive direction. These 

characteristics leave the information from the simulation domain at the outlet. The wave, 

represented by the 3 travels in the negative direction and takes the information out of the 

simulation domain at the inlet. These outgoing characteristics give additional information 
which is used in formulating the boundary conditions.  
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Figure 3.7. Determination of boundary conditions. Left – inlet boundary cell, right outlet 

boundary cell. 
 

 Alternatively, the missing information can be obtained from various numerical 
boundary conditions, where dynamic variables of interest are extrapolated in a special way 
near the boundary. This technique may not produce as accurate results as with direct 
calculation of states at the boundary, though it is much simpler to implement.  

 

3.3. Numerical Example. Need for source term correction 
 In order to evaluate the numerical tools the following test case is considered. A gas 
liquid mixture is flowing in a horizontal pipeline of 100m length. After a certain period of 
time additional fluids starts entering or leaving the pipeline at multiple locations. This 
problem is illustrated schematically in Figure 3.8 with the initial data given in Table 3.2. 
 

Table 3.2. Initial data for numerical example 

Quantity Value 
Pipe diameter, m 0.05 
Pipe length, m 100 

Mixture speed of sound, m/s 100 
Mixture viscosity, Pa.s 0.001 

Mixture reference density, kg/m3 11.93 
Gas viscosity, Pa.s 1.82.10-5 

Inlet flow rate uS, kg/s 0.10 
Pipe roughness, m 0.0 

 
 The objective of this simple case is to evaluate the abilities of the chosen 
numerical algorithm to deal with the inflow from the reservoir. The influence of the 

reservoir on the wellbore dynamics is represented by the inflow sources l and g. For the 
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homogeneous no-slip model, in which the continuity equations are added up, a single 

inflow source  is introduced. The total amount of fluid entering the wellbore is alternated 

by the same amount which leaves it. It is assumed that the absolute value of the inflow 
source is comprised of 0.1 kg/s of liquid and gas. These sources are disabled in the initial 
stage of simulation process and activated after 5 seconds of flow. 
 

l gF F





,t s

0.1

5

 
Figure 3.8. Sketch of the simulation domain with sources. 

 
 Although the numerical techniques developed are mainly designed for transient 
multiphase flow simulation, it is also important to check the stability of the steady flow 
solution. For the sake of simplicity a simple flux splitting scheme without flux limiters has 
been employed. The steady flow distribution of the gas density obtained after 20 s of 
simulation is depicted in Figure 3.9. 
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Figure 3.9. Simulated gas density for homogeneous equilibrium model. 
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 It can be noted that the obtained density profile is far from physically correct. One 
can observe multiple local variation of the solution, where the inflow/outflow source is 
present. These numerical artefacts have a purely numerical origin and they have been 
generated via the discretization error in the treatment of the source term. Moreover, this 
density variation corresponds to a steady flow solution of the system, and it is apparent 
from the figure that it is not influenced by the dynamics of the flow. In order to evaluate the 
capabilities of the existing numerical scheme to handle the source terms and estimate 
quantitatively the error induced by the numerical scheme an analysis is performed. Here a 
simple steady equilibrium model with negligible friction and transient terms is considered. 
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Or in a compact form 
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 The subscript m refers to the variables evaluated at the mixture conditions. In 
subsequent analysis this index is omitted. The simulation domain is sketched in Figure 
3.10. We are seeking the numerical solution in the vicinity of the inflow source. The 
discrete grid has the following structure (Figure 3.11). 

inletF

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i

 
Figure 3.10. Simulation domain for 

introductory test case. 
Figure 3.11. Situation near source for 

introductory test case. 
   
 Using the same approach as for the transient problem, a finite-difference scheme is 
formulated in terms of split fluxes. The discrete equation for grid node i is 
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 It can be shown that for a homogeneous flow model defined by equations (3.29-
3.30) two eigenvalues exist, with the absolute value equal to the local speed of sound of the 
mixture, c. As there is no continuity equation for the separate phases, c should be 
prescribed as input variable. The correspondent matrices A+ and A- are calculated using 
(3.19) and given by 
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 The steady flow solution is given in Figures 3.12 and 3.13. These graphs show the 
qualitative behaviour of the mixture density and specific flow rate.  
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Figure 3.12. Steady-flow mixture density 
distribution 

Figure 3.13. Steady-flow specific flow rate 

distribution u 

 
An adjustment in specific flow rate due to the source term is 
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Then a discrete equations for grid block i are written as follows 
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The first equation from (3.34) can be expanded as 

S


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Finally, resolving equation (3.35) for the mixture density in grid node i  
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And with the use of (3.33) the following expression is obtained 
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 The graphical representation of (3.37) is given in Figure 3.14. Thus, instead of the 
uniform density field, at one point a non-physical heterogeneity is present, which is caused 
by the second term in the right hand side of equation 3.37. This term has a purely numerical 
nature. It arises from the fact, that while the convective term was evaluated using a flux 
splitting technique, no additional operations have been performed to deal with the 
volumetric source term. It is interesting to note that the term associated with a numerical 
error is a function of both physical properties (mixture speed of sound) and geometry of the 

wellbore (cross-sectional). The grid block size s is not included in the equation (3.37) and 
therefore the use of a finer mesh will not reduce the magnitude of the induced numerical 
oscillations. For other flow models, with different set of dynamic variables, the same 
analysis can be performed. It is expected, however, that the final equation for the density 

distribution will be independent of s in any case, as the transition matrix given by 
equation (2.42) is based on the combinations of dynamic variables only. 
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Figure 3.14. True and obtained solutions of the proposed test case.  

 
The governing equation written in the form (3.29) can be formulated equivalently as 
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 Equation (3.38) gives an idea of how the source term should be included into the 
solution procedure in order to get an accurate solution. So instead of solving (3.29) we 
solve 
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Where the integrated source term Q is introduced as 
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The inverted Jacobian A-1 is calculated for this particular case as follows 
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And the finite difference equation has the form 
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The first equation is written as 
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 In order to expand it and solve for the mixture density, the integrated source 
should first be computed. In order to do so the following representation is needed. 

 
Figure 3.15. Obtaining the integral form of the source term. 
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The general expression for (3.43) is therefore given by 
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In this particular case the integrated source term would be defined as (see Figure 3.15) 
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Substituting (3.46)-(3.48) into (3.44) leads to 
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This finally yields  
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Using equation (3.33) provides the following expression for the density in a grid block 
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 The use of the obtained formula provides a homogeneous solution for the mixture 
density which is correct from physical point of view. The main conclusion of this simple 
numerical example is as follows: in order to obtain a physically correct solution a change of 
variables (in the form of (3.39) is required. This transformation in general converts a non-
homogeneous set of equation into a homogeneous one, which allows using the flux splitting 
algorithm without any limitations. It should be noted that the formulation of this numerical 
methods is different for various sets of flow variables.  
 Figure 3.16 illustrates the superior capabilities of the proposed algorithm in 
handling the source terms. Although the performed analysis dealt only with the accuracy of 
the calculation of the density distribution the same problems arise when the flow rate 
distribution is considered. In that case, the source term in the momentum equation 
representing the friction is present in every grid block of the simulation domain. The 
numerical instabilities similar to those in Figure 3.9 also arise, though they are not that 
apparent due to continuous nature of the friction source term. It can also be shown that the 
numerical error associated with standard discretization of the continuous source term tends 
to zero with the decreasing size of grid block. Therefore a standard flux splitting scheme 
with a fine mesh may be an alternative for source term balancing provided that the 
influence of the inflow from the reservoir is minor.  
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 The developed technique is generic and can be applied to any mathematical model 
described by hyperbolic equations, solved with a flux splitting technique. This is especially 
important as it guarantees the balance between the flux and source terms and then the 
correct steady flow solution is obtained. Nevertheless, the use of such schemes may 
complicate the state-space form of the governing equations.  
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Figure 3.16. Computed gas density for homogeneous no-slip model with flux correctors. 

3.4. Numerical examples 

Two-phase shock tube 
 A horizontal pipeline is separated in two equal parts with a membrane. Each part 
of the pipeline is of equal length and contains a mixture of water and air. The frictional 
effects are neglected and inflow sources are not present so the problem of special handling 
of source terms is avoided in that case. For all cases, a 100m long horizontal pipe with a 
membrane location at 50 m is considered. The parameters of the algebraic slip model (2.28) 
used for the first test case are given as C0=1.1 and ub=0. The initial data for the considered 
case are given by 

 Left: 0.55g  ; 10.37 /lu m s ; 80450p Pa  

 Right: 0.55g  ; 0.561 /lu m s ; 24282p Pa  

 It should be noted that the used values of these variables do not represent any 
physical scenario, these have only been chosen in order to provide certain discontinuities in 
the solution in order to check the performance of a numerical scheme. For the numerical 

simulations a uniform grid with s=1m and t=0.001s has been used. The main objective 
of this study is to evaluate the ability of the model to calculate the propagation of the 
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waves. Figure 3.17 shows the distribution the gas fraction at t=1.0s for different mesh 
refinements. The propagation of the liquid velocity is depicted in Figure 3.18. As can be 
seen, the obtained results are non-oscillatory, though the shocks are poorly resolved on a 

standard mesh (s=1m). The use of the refined mesh (s=0.5m) improves shock resolution. 
Employing the standard grid with MinMod flux limiter gives a better approximation of the 
solution discontinuities, which is even better than for refined mesh case. This can further be 
improved by introducing superior flux limiters (SuperBee, van Leer), however for that 
particular case, the use other types of limiters than MinMod resulted into local oscillations 
near the contact discontinuity. 
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Figure 3.17. Simulated gas fraction at t=1s.  

  
 A similar test case has been used by [Fjelde and Karlsen, 2002] and [Evje and 
Fjelde, 2002] with a slightly different set of initial data. Gas volume fraction is quite 
accurately predicted by the proposed numerical method, though there is a slight mismatch 
in the determination of the shock position. That can be explained from the difference in 
formulation of the governing equations used to obtain the reference solution [Fjelde and 
Karlsen, 2002]. Without acceleration terms taken into account, the local speed of sound is 
defined by equation (2.50). Therefore the velocity of the flow is larger in the positive 
direction while it is slower in the direction opposite to the flow. This is only the case when 
the magnitude of the liquid velocity is comparable to the mixture speed of sound. Similar 
behaviour is observed for the liquid velocity in Figure 3.20. However, the velocity waves 
are induced with different magnitude. This problem arises from the fact that the reference 
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simulations were performed with more complex slip model with a non-zero bubble drift 
velocity. 
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Figure 3.18. Simulated liquid velocity at t=1s. 

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 10 20 30 40 50 60 70 80 90 100

s, [m]

a
g
, [

-]

100cells+flux limiter

Reference

 
Figure 3.19. Simulated gas fraction at t=1s on a 100 cell grid using MinMod limiter 

compared with reference solution (Fjelde and Karlsen, 2002) 
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Figure 3.20. Simulated liquid velocity at t=1s on a 100 cell grid using MinMod limiter 

compared with reference solution (Fjelde and Karlsen, 2002). 
 
Pipe flow with inflow 
 The second test case assesses the capabilities of the mathematical model to 
describe correctly the propagation of a convective wave. Proper simulation of the mass 
transport is a critical issue in many aspects of multiphase flow modelling and might be 
crucial for a multiphase soft-sensor. A problem of particular interest is related to the 
propagation of a holdup wave initiated by the rapid injection of gas or liquid phase from the 
reservoir. In addition, the developed numerical algorithm should be able to handle properly 
the generation and transport of dynamic waves and its propagation in both directions from 
the inflow point. Moreover, it is interesting to evaluate the ability of the scheme to handle 
frictional effects. 
 The following test case is considered. Initially, the mixture of liquid and gas is 
flowing in a pipeline at steady conditions. After 60 seconds of production the gas is rapidly 
injected at s=50m located from the wellbore inlet (see Figure 3.21 for details). The value of 
the gas inflow source is 0.045 kg/s. As a result a liquid holdup wave is generated, which is 
propagates downstream the flow with the local velocity of the gas phase. The operating 
conditions used in this simulation correspond to a slug flow regime, and a simple drift flux 
model with constant C0 and zero bubble drift velocity ub is used. A standard set of boundary 

conditions is used, in which the liquid holdup g and gas velocity ug are defined at the inlet 
of the simulation domain, and the gas density is prescribed at the outlet. 
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 The simulations are performed on a mesh composed of 100 grid blocks with a time 
step of 0.001 s. A standard first-order flux splitting algorithm is used. The source terms, 

both g and Sfr were incorporated into a flux vector using the procedure defined in section 
3.3. The friction factor is calculated according equation (2.18).  
 

Table 3.3. Initial data for the test case 2 

Quantity Value 
Pipe diameter, m 0.05 
Pipe length, m 100 

Liquid density, kg/m3 1000 
Liquid viscosity, Pa.s 0.001 

Gas reference density, kg/m3 11.9 
Gas viscosity, Pa.s 1.82.10-5 

Inflow holdup 0.4 
Inflow gas velocity 3.1 

Distribution coefficient C0 1.2 
Bubble drift-velocity ub 0 

Pipe roughness, m 0.0 
 

l gF F

, /g kg s

g
,t s

0.045

60
50m

100m

 
Figure 3.21. Schematic representation of the test case 2. 

 
 The obtained results have been verified employing data obtained using the 
commercially available wellbore simulator OLGA [Bendiksen, 1991], using the same flow 
setup (Figure 3.21) to generate the reference data. Figure 3.22 shows the predicted gas 
velocity distribution at 61s and 62s, which represent the flow field after activation of the 
inflow source term. As expected, two waves travelling in the flow and counter flow 
direction are generated after the gas is injected in the simulation domain. The obtained 
results show that the developed wellbore simulator calculates flow dynamics, 

corresponding to fast characteristics (2 and 3) with reasonable accuracy.  
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Figure 3.22. Distribution of the gas velocity after gas injection at s=50m at 61s and 62 s. 

The grid block size s=1m. 
 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100

L, m

H
, [

-]

OLGA, t=61s

OLGA, t=62s

OLGA, t=65s

OLGA, t=70s.

1st order, t=61s.

1st order, t=62s.

1st order, t=65s

1st order, t=70s

 
Figure 3.23. Distribution of the liquid fraction at t=61s, 62s, 65s and 70s after gas 

injection at s=50m. The grid block size s=1m. 
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 The predicted liquid holdup is depicted in Figure 3.23 for several time instants up 
to a steady flow solution. The convective wave propagates with the gas velocity and is 

characterized by the first eigenvalue 1=ug which gives an estimation of the holdup front 
position with the use of Figure 3.21. The provided results are in quite reasonable agreement 
with the reference solution. One can note that the use of a single velocity in a drift-flux 
formulation instead of the separate phase velocities in the two fluid model used by OLGA 
does not affect the dynamic response of the model related to convective transport. One can 
further note that the convective profiles are heavily smeared out due to numerical diffusion 
both for OLGA and for the developed wellbore simulator.  
 Figure 3.24 represent the calculated liquid holdup for a case in which the pipeline 
is discretized with 50 grid blocks. In order to minimize the effect of numerical diffusion the 
scheme was modified to a second order scheme using MinMod flux limiter. The liquid 
holdup obtained using a high resolution scheme on the coarser mesh is as close to reference 

solution as the results on a standard grid with s=1m. These results are promising from the 
soft-sensing perspective as it allows performing simulations with a reduced number of grid 
blocks maintaining at the same time good accuracy capabilities. The number of grid blocks 
can further be decreased by implementing more rigorous numerical algorithms and flux 
limiters. This in turn allows to reduce the size of the state vector and perform data 
assimilation faster.  
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Figure 3.24. Simulated liquid holdup on coarse mesh s=2m with MinMod flux limiter. 
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3.5. Summary 

 The numerical method for solving the two-phase gas liquid flow described by the 
drift-flux model has been formulated in this chapter. This method uses the splitting of the 
flux components according the model eigenvalues and explicitly accounts for the direction 
in which information is propagated. The performance of the flux splitting scheme may be 
improved by extending upwind schemes to high-resolution by introducing flux limiters.  
 The difficulty associated with the structure of the equation, with source terms both 
in the continuity and momentum equations, causes incorrect representation of the steady-
flow solution. In particular, the inflow source in the continuity equation generates 
oscillations in the density profile, which can not be suppressed using a refined mesh. The 
conservative properties of the numerical solution are maintained by introducing the 
integrated source as part of the flux term, which retains an exact balance with flux 
gradients. 
 The developed schemes have been applied to find the solution of an inviscid two-
phase shock tube, in which the importance of flux limiters has been demonstrated. In the 
second test case the performance of the developed wellbore model has been validated 
employing the well-established wellbore simulator OLGA. The developed numerical 
algorithm provides a realistic approximation of the reference solution.  
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4. A Semi-Implicit Extended Kalman Filter 

4.1. Introduction 

 Complex industrial processes can often be described by sets of non-linear partial 
differential equations. Such equations, which are also known as first principle models, 
represent conservation of mass, momentum and energy within the system. Supplemented 
with constitutive relations and equations of state as well as appropriate boundary and initial 
conditions these describe the performance of the system in a continuous form. Such 
rigorous models can very accurately predict process behaviour, provided that adequate 
closure equations are available.  
 There are many industrial processes in which the model parameters should be 
adjusted as these parameters are poorly known [Bloemen et al., 2004; Lorentzen et al., 
2003]. In particular, reservoir engineering requires the knowledge of the properties of a 
porous medium. In this case the value of permeability and that of porosity of the medium 
determine the pressure and velocity distribution in the reservoir and, consequently, the 
accuracy of the prediction of the oilfield performance [Ertekin et al., 2001; Aziz, 1979].  
However, due to high costs related to a direct measurement of the reservoir properties, 
combined with significant geological heterogeneity, there is an uncertainty in reservoir 
characterization. This, in turn, may result in poor performance of forward reservoir 
simulators and a corresponding decrease of oil production.  
 This problem can be overcome by using data assimilation techniques (which are 
also referred to as history-matching or soft-sensing in petroleum engineering nomenclature) 
[Jansen et al., 2008]. In this approach, the poorly known unmeasured parameters are 
estimated by means of combining all the available observations with a dynamic model of 
the system. Whereas the forward problem consists of computing the distribution of 
pressures/velocities in the oilfield, the inverse problem consists of determining the 
unknown parameters from known (measured) dynamic variables. These measurements are 
usually quite sparse for hydrocarbon production systems, as the number of locations for 
sensors is very limited and available only in wells. The best estimate of the reservoir 
properties is obtained by minimizing the mismatch between the model prediction and the 
measurements. Here one can note two different approaches. Variational data assimilation, 
which is based on the minimization of a cost function within a certain time interval 
[Rommelse, 2010] and sequential history matching methods or filtering, in which the state 
of the system is updated every time instant new data become available. The latter updates 
reservoir properties in real-time, as new measurements are introduced in the assimilation 
process. For these purposes the sequential algorithms continuously update an initial 
estimate based on ongoing measurements.  
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 One way to solve these sequential data assimilation problems is to use Kalman 
filtering [Kalman, 1960], which was originally developed for linear models. The Kalman 
filter is the optimal state estimator in the least square sense for linear models with both 
model and measurement error described by a Gaussian distribution. This algorithm has a 
predictor-corrector structure. First the state variables are calculated using a given process 
model, which are afterwards updated when the new set of measurements becomes 
available.  
 The problem of model non-linearity can be solved using one of the available 
extensions of the original algorithm to non-linear models: The extended Kalman filter 
(EKF) [Jazwinski, 1970], the ensemble Kalman filter (EnKF) [Evensen, 1994], and the 
unscented Kalman filter (UKF) [Julier et al., 2000; Wan et al., 2000].  
 The EKF is the most straightforward extension to non-linear systems. It uses the 
linearization of the original non-linear process model around the previous estimate to 
update the error covariance matrix according to the standard linear Kalman filter equations. 
The usage of this linearization actually leads to the main shortcoming of the EKF approach; 
its application requires the computation of a Jacobian and hence the EKF may lead to poor 
estimates, which are far from optimal, in the case of strongly nonlinear dynamics [Evensen, 
1992].  
 Although several special types of the EKF have been proposed [Pham et al., 1998; 
Verlaan and Heemink, 1979] in order to deal with high-order numerical models, little 
attention has been given to its performance from the point of model stability. In fact, the 
Kalman filter algorithm uses a space-state form of a process model, which is derived from 
the partial differential equations (PDE) model using appropriate numerical techniques 
[Crassidis and Junkins, 2004]. The use of the numerical methods implies spatial and 
temporal discretization and subsequent conversion of the original PDE into a system of 
algebraic equations [Ferziger and Peric, 2002]. Among the variety of time integration 
schemes used, one can distinguish between the implicit Euler scheme, which is 
unconditionally stable for the whole range of time steps, and the explicit one, which 
strongly defines the maximum value of the allowed time step.  On the other hand, during 
recent years, more and more sensors are being deployed for monitoring pressure, 
temperature or flow rates in wellbores, with a very high data output frequency. It is 
important to incorporate the data as soon as these are available so that the reservoir model 
is always up-to-date and therefore the proper choice of time step, which is capable to 
perform stable simulations, is crucial for filter performance. The stability and convergence 
properties of EKF approach will definitely depend on the type of time integration, since the 
stability of the whole algorithm is related to the stability of the forward model.  
 In this work attention is paid to the influence of the time integration scheme on the 
stability of both model propagation and error covariance matrix update during the forecast 
step of the EKF algorithm. Advantages and limitations of both implicit and explicit 
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schemes are discussed. Moreover, a new type of EKF is proposed. With this new filter, the 
original non-linear state-space model, which is derived via the implicit time integration, is 
used for model integration in time (during the model forecast step for the Kalman filter 
approach), whereas the error covariance matrix is updated using the linearized model 
derived from the explicit Euler scheme. Using a series of generic test cases it will be shown 
that the proposed semi-implicit extended Kalman filter can partially diminish the time step 
limitation of the explicit Euler scheme, at the same time maintaining its superior 
capabilities in estimation accuracy. 
 This chapter is organized as follows. First, the basic inverse problem considered 
here is presented. Then, issues are discussed related to the integration of the process model, 
in particular with respect to the explicit and implicit integration of this model. Then, the 
new semi-implicit EKF proposed here is outlined. This is followed by a discussion of the 
simulation based test cases to demonstrate the good properties of this algorithm. The 
chapter is summarized with the conclusions. 

4.2. Formulation of the inverse problem 

 A hypothetical case in which the flow from a saturated rock formation to a single 
oil producing well is considered (Figure 4.1). For the sake of simplicity the oil properties 
are kept constant. The basic equations for the radial flow of a single phase slightly 
compressible fluid in a heterogeneous porous media are given by Darcy’s law [Dake, 
1978]: 

 
( )k r

w p
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  
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                     (4.1) 

And the continuity equation: 
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 Where  - porosity; p - pressure - density; k - permeability (which is a function 
of the radial coordinate for a heterogeneous reservoir), µ - oil viscosity and w - oil velocity. 
 Oil is treated as a low-compressible fluid, which results in the following equation 
for the constant fluid compressibility 
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 The closure for the problem is given by the following initial and boundary 
conditions 
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 Here q is the oil production flow rate and pres is the reservoir pressure, h is the 
reservoir thickness. The computational domain is sketched in Figure 4.1. 

dk resk
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Figure 4.1.  Computational domain for the radial inflow of oil into a vertical well from a 

heterogeneous reservoir. 
 
 A radial inflow case to a single wellbore is considered with the reservoir including 
two separate zones with different values of permeability. 
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 Combining (4.1)-(4.3) the pressure equation can be obtained 
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 The inverse problem considered here is that of estimating the permeabilites k from 
known values of the reservoir pressure pres and well pressure pwell using the model equations 
(4.4) – (4.6). For that purpose, the governing equations are transformed into a nonlinear 
state-space model as described in section 4.3, with pressures p as state variables and pres and 
pwell as measured output variables. The state vector of this model is then augmented with 
the permeabilities k, as also described in section 4.3. Note that, as a consequence of this 
augmentation, the actual inverse problem is to estimate the values of the augmented state 
vector 
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  T
X p k                       (4.7) 

rather than only the permeabilities, from measurements of  

 [ ]T

well res
y p p                     (4.8) 

4.3. State-space form of model equations 

 To enable the usage of the PDE flow model equations form within an EKF 
approach, it is necessary to convert these into a state-space form. This model can be derived 
from a PDE formulation using different numerical techniques such as finite elements, finite 
differences or control volumes. All these methods involve spatial discretization of the 
simulation domain, which is divided into a finite number of non-overlapping control 
volumes. The given differential equation is then integrated over each control volume. In 
order to evaluate these integrals, the variation of state variables and model parameters 
between grid nodes is required. As a result, the discretization equation obtained in such 
manner expresses the conservation properties for the state variables for a finite control 
volume. 
 The discretized simulation domain is given in Figure 4.2. The pressures are 
defined at discrete locations at the centers of the control volumes. Due to issues related to 
the numerical implementation permeabilities are needed at the interfaces of the control 
volumes. The interface value of permeability is obtained using the harmonic interpolation 
between adjacent grid nodes. 

 
Figure 4.2.  Discretized simulation domain with model states and parameters. The state 
variables are defined in the centers of grid blocks and the parameters at the interface. 
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  With a process equation written as (4.6), generally two possibilities are available: 
one can either integrate equations in time using an explicit Euler scheme, or obtain the 
state-space form using an implicit scheme. Although both of these methods are of the same 
order of accuracy, the implicit scheme is unconditionally stable, meaning that there is no 
restriction on the value of time step used in the simulation. In contrast, the explicit Euler 
scheme provides a converging solution only if the time step is below a certain value 
obtained from a stability criterion, defined by the Courant number [Ferziger and Peric, 
2002]. This makes this method inapplicable for highly transient problems; however, the 
explicit scheme is easier in numerical implementation.  
 Omitting the derivation, the explicit scheme results, for the reservoir model 
considered here, in the following state-space form of the model equation  

  
1

,
k k k k

x f x d u

                    (4.9) 

For the implicit scheme this has the form 

  
1 1
,

k k k k
g x d x u

 
                   (4.10) 

Where x is a vector of pressures in the grid blocks,  

  1 2 ....
T

Nx p p p                     (4.11) 

d is a parameter vector of the permeabilities at the grid blocks interfaces 

  1.5 2.5 0.5....
T

Nd k k k                                     (4.12) 

and u is a control input (i.e. boundary conditions). Subscripts k and k+1 denote quantities at 
an old and new time step.  
 A comparison between equations (4.9) and (4.10) leads to the essential difference 
between the explicit and implicit Euler scheme: with the explicit scheme, the values of 
pressures and permeabilities form a nonlinear function on the old time level k, whereas for 
the implicit scheme these parameters are evaluated on the new time level k+1. 
 

4.4. Data assimilation concepts 

The extended Kalman filter 
 One way to solve parameter estimation problems via the sequential data 
assimilation algorithm is by using the Kalman filter equations. The Kalman filter is a 
stochastic recursive estimator, which estimates the values of model states and unknown 
parameters by integrating available measurements in a mathematical model. Due to its 
straightforward numerical implementation and recursive nature, the Kalman filter algorithm 
is very adapted to real-time estimation. 
 The Kalman filter was initially developed for linear dynamic systems. In case of 
non-linear systems, it can be modified by means of linearization around some reference 
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value. In the EKF approach this linearization is performed around the most recent estimate. 
 In case of nonlinear systems, the state vector x and the measurements vector y are 
respectively represented by the following relations: 

  
1

,
k k k k k

x f x d u v

                                  (4.13)   

 
k k k k
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 Where f is a nonlinear operator. vk and wk are zero mean Gaussian white noise 
vectors, associated respectively with the model and measurements and characterized by 
variances Qk and Rk. Hk is the measurement matrix. 
 The variables to be estimated are not always included in the state vector xk+1. In 
order to include parameters dk in the data assimilation process a simple and effective 
method is to augment the state vector with the parameters in the following way: 

 
 1

1

,
k k k k k

k k

x f x d u v

d d





  







                           (4.15) 

With an EKF the augmented state vector is estimated through the following two steps: 
1) A time update or forecast step, which consists of the model forecast at tk+1 and 
corresponding update of the error covariance matrix associated with this prediction 
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Here, Φk
aug,exp  is the linearized state transition matrix derived in the Appendix A. 
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2) A measurement update or correction step where the augmented state vector and the error 
covariance matrix are corrected using the measurements at tk+1: 
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Here I represents the identity matrix and K is the Kalman gain. 
 

Implicit extended Kalman filtering 
 The EKF approach described in the previous sub-section can directly be applied 
when using an explicit Euler integration scheme. Note that then, for obtaining stable and 
accurate EKF estimates, the time integration step for the model must be chosen sufficiently 
small and that this time step limitation may make the EKF computationally slow. To 
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overcome this problem, an implicit Euler scheme (4.10) can be used for solving the model 
equations as this allows for larger time steps without causing instability and, thereby, a 
faster EKF. When doing so, the EKF approach can be used directly with the notable 
exception that the time update step is now performed according to  

  1 1
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k k k k
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 Equations (4.23) – (4.24) here follow straightforwardly from deriving a linearized 
model of equation (4.10) in standard form (i.e. with the state transition matrix (4.24) on the 
right side of the equality sign of the system equation) and applying the standard linear 
Kalman filter equations for propagation of the error covariance matrix through a linear 
system, assuming an additional white noise term vk with variance Qk. 
 Contrary to the fully explicit Kalman filter, proposed in the previous section, the 
estimator based on a fully implicit model integration apparently does not exhibit stability 
problems for the model update step (4.22). However, the derivation of the tangent model in 
that case differs from the original Kalman filter algorithm, since the state-space form of the 
model equation (4.10) contains the non-linear function of model parameters on the new 
time level, while in the original Kalman filter approach it can be found on the old time 
level.  
 

Semi-Implicit extended Kalman filtering 
 As an alternative to the two above mentioned approaches a semi-implicit EKF is 
proposed. Here the implicit scheme is used to obtain the state-space form of the model 
equation, while the linearized state transition matrix is built based on the explicit time 
integration scheme. 
 The semi-implicit EKF proposed here uses the same measurement update 
equations as the explicit and implicit EKF but uses a different set of time update equations: 

  1 1
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k k k k
g x d x u
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                               (4.25) 
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 Hence, its main characteristic is to solve the model equations in an implicit way 
while the new error covariance matrix is computed in an explicit manner.  The flow chart of 
a semi-implicit extended Kalman filter is given in Figure 4.3. 
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Figure 4.3. Semi-Implicit KF flow chart. The covariance is updated using explicit time 

integration scheme, while the model is updated using implicit scheme. 
  

4.5. Results and discussions 

Soft-sensing below the critical time step 
 A generic test case is selected to deal with estimation of a permeability field for a 
single-phase oil flow in a heterogeneous porous medium. A radial inflow case to a single 
wellbore is considered with the reservoir including two separate zones with different values 
of permeability. The sketch of the simulation domain is given in Figure 4.1. The details of 
the initial data used in the simulation are given in Table 4.1. Note that the permeabilities are 
given only as a reference since they are unknown and have to be estimated via the proposed 
data assimilation procedure. 
 Due to a lack of experimental data, a twin experiment concept is used. The same 
mathematical model is used both for generating measurements with a predefined 
permeability distribution, and the inverse modelling, when missing dynamic variables and 
parameters are estimated by means of the EKF algorithm. 
 Here the first series of simulations is performed with the time step size below the 
critical value. The stability criterion is satisfied for all proposed estimators (implicit, 
explicit, and semi-explicit). Since the initial values of the state vector components are 
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required, one should specify the initial pressure distribution and the guessed permeability 
field. 
 The reservoir pressure was used to initiate the pressure part of the augmented state 
vector, while for the permeability the value in the near wellbore region, which is known 
from the core sampling [Dake, 1978], can be used. Therefore the initial augmented state 
vector can be written as 

  .... ....
Taug

init res res well well
X p p k k                             (4.27) 

 
Table 4.1. Initial data for numerical experiments 

Quantity Value 

Wellbore radius, rw 0.1 m 

Damaged zone radius, rd 1.0 m 

Reservoir radius 10.0 m 

Oil density,  900 kg/m3 

Oil viscosity,  0.01 Pa.s 

Reservoir pressure, pres 10.106 Pa 

Oil production rate, q 4.5.10-4 kg/(m.s) 

Porosity,  0.2 

Oil compressibility,  1.10-9 Pa-1 

Reservoir permeability, kres 4.10-15 m2 

Permeability near wellbore, kd 1.10-15 m2 

Critical time step, tcr 3 s. 

  
 Figure 4.4 shows the estimated permeability field after 6000s of simulation. It is 
not quite accurate, though it is converging to a true value. 
 The accuracy of estimating the permeability is strongly related to the propagation 
of the pressure in the reservoir, meaning that the position of the pressure front defines the 
area where the permeability can be accurately estimated. The final estimate of the 
permeability field (see Figure 4.5), which corresponds to a steady-state pressure distribution 
in the reservoir, is quite accurate for all proposed estimators. 
 The difference between estimated and true permeability fields is caused by using a 
model error matrix Qk  for propagation of the error covariance matrix Pf given by equations 
(4.17), (4.23) and (4.26). The use of the model error has a significant impact on the 
convergence properties of the all estimators used and the performance of the filter can be 
tuned by choosing a proper Qk matrix. It has been assumed for all the estimators used that 
the model error is related to the uncertainty in estimated model parameters. However, due 
to stability considerations, the elements of the Qk matrix were different for these three real-
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time estimators studied. The optimal choice of a model error matrix is out of scope of this 
research and a subject to a future work. 
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 Figure 4.4.  True and estimated permeability distribution at t=6000s. 
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Figure 4.5.  True and estimated permeability distribution at t=48000s. 
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Incorrect permeability initialization 
 The second test case deals with the estimation of the permeability field where the 
parameter part of the augmented state vector is initialized with permeability values, which 
are different from the near-wellbore region. Here the initial value of the permeability is 
only 20% higher than in the vicinity of the wellbore. Results of the estimated permeability 
field, which correspond to the steady-state pressure distribution, are given in Figure 4.6. 
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Figure 4.6.  True and estimated permeability distribution at t=48000s. The initial 

permeability field is different from near-wellbore value kd. 

 
 Application of the explicit and semi-implicit soft-sensors still provides a fair 
estimate of the permeability distribution. A soft-sensor based on the implicit scheme is 
diverging, resulting in unphysical permeability distribution. This problem may be caused by 
the implicit treatment of the estimated permeabilities which may not be processed properly 
in a high-gradient flow region in the vicinity of the wellbore. 
 The figure clearly shows that the potential advantage of using a larger integration 
time step with the implicit EKF, and thereby obtaining a faster soft-sensor, is reduced by its 
sensitivity towards an error in the initial estimate.  
 This sensitivity can be reduced by choosing a smaller integration time step (see 
Figure 4.7). The latter increases the computation time of the implicit EKF and thereby, 
diminishes its main advantage over its explicit counterpart.   
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Figure 4.7. Permeability distribution at t=48000 s. Implicit versus implicit with 5 times 

reduced integration time step. 
 

Soft-sensing above critical time step 
 The final test case considered here aims to show that with the proposed semi-
implicit EKF a larger integration time step can be obtained than with the explicit EKF while 
retaining the same estimation accuracy. 
 The simulations were performed for the following values of the time step: 

t=1.05tcr, t=4.0tcr and t=10.0tcr (see Figure 4.8-4.10) with tcr the critical time step 

above which the explicit EKF becomes unstable (for that reason the results with this EKF 
are not depicted in these figures). 

 It can be seen that even up to an integration time step of t=4.0tcr the semi-

implicit EKF is still convergent and accurate estimates can be obtained. Figure 4.10, 
however, shows that the semi-implicit EKF also exhibits the shortcoming of the explicit 
scheme: for time steps considerably larger than the critical one, the semi-implicit estimator 
diverges. 
 It is still unclear, to which extent the semi-implicit EKF can be used, as there are 
no exact mathematical criteria which describe its stability properties. The divergence of 
EKF type of estimator may be caused by the numerical errors induced by the linearization, 
which prevail for larger time steps. It has been observed that a certain choice of the error 
covariance matrix Qk may pull back the loss of stability of a semi-implicit approach.  
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Figure 4.8.  Permeability field distribution at t=48000s. t=1.05tcr. 
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Figure 4.9.  Permeability field distribution at t=48000s. t=4tcr. 
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Figure 4.10.  True and estimated permeability field distribution, t=10tcr. 

 

4.6. Summary and conclusions 

 The question of stability of the real-time parameter estimation based on the 
extended Kalman filter has been discussed. Starting with a model of the single phase oil 
flow in a porous medium given in the PDE form three types of estimators were derived: 
implicit, explicit and semi-implicit. 
 The fully implicit soft-sensor uses an implicit Euler scheme to obtain both the 
state-space form of the model equation and the Jacobian, which is used for the computation 
of the error covariance matrix. This scheme is unconditionally stable and no limitations on 
the time step size are imposed to update the model in time. Via a series of test cases, it has 
been shown that the choice of initial conditions (the initial permeability distribution) is 
crucial to provide satisfactory performance of a fully-implicit soft-sensor: when chosen too 
far from real permeability field, the filter diverges.  For the cases where good initial 
conditions are not available, the problem of divergence may be overcome by imposing 
small values of the time step. This, however, diminishes the main advantage of the implicit 
approach – the capability to run the simulations with large time steps. 
 In contrast, the fully explicit soft-sensor provides the state-space form of the 
process such that the EKF algorithm can be directly implemented. However, due to the fact 
that the explicit Euler scheme is both used for model and covariance update, the selected 
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time step should not exceed the value prescribed by the stability criterion. However, this 
estimator seems to provide quite reliable and accurate results regardless the initial guess of 
the model states and parameters. 
 The semi-implicit soft-sensor, which is proposed in this chapter, combines the two 
above mentioned algorithms to a certain extent, trying to eliminate their disadvantages and 
reinforce the strong parts. In this approach the implicit Euler scheme is used for the model 
integration and derivation of the state-space model, which is unconditionally stable, while 
the linearized model matrix, obtained via the explicit Euler scheme, is used for covariance 
propagation. The latter allows the use of the original concept of the EKF and therefore the 
calculation of better estimates of dynamic variables and unmeasured parameters. Via 
simulation based test cases it has been demonstrated that this new estimator is slightly 
affected by initial conditions and can be used for an extended range of time steps. 
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5. Inverse Modelling of the Inflow Distribution for the 
Liquid/Gas Flow in Horizontal Pipelines  

5.1. Introduction 

 Transmission and reflection of dynamic waves in pipelines filled with fluids are 
governed by the elastic properties of the propagation medium. The acoustic properties are 
influenced by changes in fluid composition, fluid density and pipeline geometry or its 
material properties. It seems, therefore, promising to use the transient information from 
these waves in order to analyze the flow structure. Rapid pressure transients in wells and 
flowlines may be caused by quickly operated inflow control valves, flow rate variations, 
flow regime instabilities, leakages or induced by the reservoir dynamics, such as gas or 
water breakthrough phenomena. In particular, rapid increase of gas or liquid phase in a 
given location of the wellbore is followed by an instantaneous increase in pressure due to 
the flow acceleration. The generated pressure pulse will propagate with a speed of sound in 
the directions upstream and downstream the inflow point and can be detected with the 
measurement instruments placed along the well.  
 Several attempts have been made over the last decade to use propagation of 
acoustic waves in order to perform flow analysis both for single and multiphase flows. The 
investigations were performed for various applications of pipeline monitoring including 
leak detection and flow metering problems. A methodology to detect the pipe break in 
water transport pipelines was proposed by Misiunas et al., (2005). The pipe break produces 
a pressure wave, which travels forward and reflects from the boundary of a pipe. The 
measurements of the pressure signal at one location along the pipeline were used to 
determine both position and the magnitude of the leak. Wang et al., (2002) processed 
transient pressure signal with a Fourier analysis to detect and identify leakages in water 
pipelines. The leak detection technique is based on the principle of the difference in Fourier 
components for leak damping, where the magnitude of the damping indicates the size of the 
leak, while different dumping ratios of the various Fourier components specify its location. 
A leak detector combined with a gas-composition tracking system, based on a simple 
transient multiphase flow model, is presented by Erickson and Twaite, (1996). The 
monitoring system predicts the outflow rate and compares it to a measured value. Scott and 
Yi, (1998) presented a leak detection technique which is based on standard production data, 
namely, inlet and outlet pressure and outlet flow rate. The method accounts for the 
momentum balance and detects changes in pipeline frictional losses caused by a leakage. 
 The application of the flow transient analysis for production monitoring purposes 
has multiple examples. A pressure pulse method introduced by Gundmundsson, (1999) is 
based on the generation of pressure waves by quickly closing and opening a valve installed 
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on a flow line. This pulse is registered at two pressure transducers installed upstream the 
valve. The relevant flow parameters are then extracted from the sensor readings in order to 
calculate the flow rates. The multiphase flow meter introduced by Piantanida et al., (1998) 
uses an acoustic sensor, which records noise generated by flow over a choke valve. The 
developed instrument employs digital signal processing algorithm and neural network 
models in order to extract multiphase flow rates from the acoustic signal. 
 All the pressure signal processing techniques combine continuous monitoring of 
measured parameters and rigorous mathematical modelling to a certain extent. A typical set 
of measurements includes flow rate meters and pressure sensors installed in one or several 
locations in the pipeline. Although the mathematical techniques used for transient pressure 
analysis considered were initially developed and implemented to deal with a single phase 
water flow, their benefits in usage within oil and gas industry are apparent. Within a smart 
wells approach it is common practice to perform a very large investment in wellbore 
instrumentation. Consequently, since more measurements can be assimilated to process the 
transient flow signal, one can expect the improved performance of the equipment installed. 
 With the increasing usage of multiphase flow meters worldwide, petroleum 
companies are looking for robust methods, which offer sufficiently accurate solutions for 
production optimization and provide a balance between costs and performance capabilities. 
For long horizontal pipelines with multiple inflow points the following aspects are 
important with respect to flow date processing. First, once should measure or estimate the 
multiphase flow rates in real-time during the transient flow in horizontal wells, which is 
caused by various production instabilities. Secondly, for the case where inflow of liquid or 
gas phase from a reservoir takes place, it is required to identify the amount of fluid entering 
the well and specify its composition in real time.  
 The improvement in multiphase flow metering can be achieved only if the 
parameters relevant for the flow estimation are included explicitly in a physical model of 
multiphase wellbore flow. In particular, proper description of wave propagation phenomena 
may be used together with measurement data. The quantities of interest may then be 
estimated using any data assimilation technique. For the multiphase flow allocation the 
following issues are important. First, the sensitivity of the method (which corresponds to 
the inflow, found via a suitable algorithm) as well as the time required for the algorithm to 
do a proper inversion need to be specified. Secondly, the accuracy of the technique is 
important, which refers to its ability to estimate the relevant flow parameters, while the 
input measurements are corrupted with a certain measurement noise. Finally, one should 
define a necessary and sufficient set of measurements which provides a reasonable balance 
between operational costs and predictive capabilities of the method. The goal of this 
chapter is to perform a feasibility study which assesses the performance and possibilities of 
combined usage of flow models with data assimilation techniques.  
 This chapter is organized as follows. First the general analysis of the pressure 
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pulse generated due to multiphase inflow is performed. Secondly, a simplified setup for 
flow rate estimation is considered. The next section deals with the description of the used 
soft-sensing algorithm. Finally, the inflow detection procedure is considered, which is 
verified using an artificial set of measurement data. At the end of the chapter, the 
conclusions are given. 

5.2. Qualitative analysis of pressure transients 

Dynamic wave propagation in horizontal wells 
 A dynamic wellbore flow simulation can be accurately performed with a drift-flux 
model, introduced in Chapter 2. In order to test the performance of the flow estimator, in 
case of rapid gas or liquid inflow variation, a set of artificial measurement data is used. 
These data are generated using either the same mathematical model or using another 
wellbore simulator with a similar mathematical model and same estimation setup. Such 
approach can guarantee that the proposed estimation algorithm is capable to perform the 
inversion properly, disregarding the type of mathematical model used in the simulations. 
 Despite the variety of application of pressure transient interpretation for flow 
assurance, the majority of studies are related to single phase flows. In multiphase flow the 
transient pressure signal, which is accompanied by a variation in fluid composition, 
behaves in a different way. Therefore, first preliminary simulations are performed in order 
to get a qualitative description of transient pressure analysis and evaluate the possibilities 
for multiphase metering. Here the main question addressed is if the information, which is 
transported with a generated pressure wave, is sufficient for the estimation of the 
multiphase rates. It is also important to specify other applications which might be useful 
from the analysis of available data. 
 For the purpose of qualitative pressure analysis, the following test case is 
considered. The simulations are performed for flow of a gas-liquid mixture in a 1000m 
horizontal pipeline of 0.05m diameter. For simplicity, the gas and liquid are assumed to 
flow with the same velocity. After simulation of several seconds of the flow, sufficient for 
obtaining steady-state distribution of the flow parameters, the inflow source is introduced. 
This source is a single phase gas (test case 1) or a single phase liquid (test case 2). The gas 
density is equal to 100 kg/m3 and the liquid density is 1000kg/m3. The inflow gas and liquid 
flow rates are equal to 5 kg/s and 0.5 kg/s respectively. These values will result in the same 
increase in the local velocity (Figure 5.3). The computational setup of these test cases is 
depicted in Figure 5.1 and 5.2. The inflow source is located approximately in the middle of 
the simulation domain, so it takes about equal time for a generated pressure pulse to travel 
in both upstream and downstream directions.  
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Figure 5.1. Forward simulation of 

pressure wave generated by gas inflow.  
Figure 5.2. Forward simulation of pressure 

wave generated by liquid inflow. 
 
 Due to the inflow generated, pressure wave propagates with a velocity equal to the 
mixture speed of sound. The simulated pressure distribution for two time instants is 
depicted in Figure 5.4. It should be noted that due to the direct relation between gas density 
and pressure used in the simulations (equation 2.20), the plot obtained can be easily 
rescaled for a different density of the gas phase. It can be observed from the figures, that the 
different inflow scenarios, i.e. pure liquid and pure gas, produce similar pressure and 
velocity responses. The obtained result is not surprising as there is no direct influence of the 
source composition on the propagation of the pressure/velocity waves.  
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Figure 5.3. Simulated flow velocity plotted at t=60.2 s time. The inflow source activated at 

t=60 s. Both cases with liquid and gas inflow are considered. The velocity response is 
similar for both sources. 



Chapter 5. Inverse modelling of the inflow distribution 
for the liquid/gas flow in horizontal pipelines 

95 

1.05E+07

1.10E+07

1.15E+07

1.20E+07

1.25E+07

1.30E+07

1.35E+07

0 200 400 600 800 1000

L, m

 P
, P

a

reference

oil inflow, t1

gas inflow, t1

oil inflow, t2

gas inflow, t2

 
Figure 5.4. Simulated pressure. The pressure (density) waves are plotted at two time 

instants with time instants of 60.2s. and 61s. after the injection. 
 

 As it has been pointed out in Chapter 2, the propagation of the dynamic waves is 
not affected by the kinematic ones. In other words, the speed of sound which governs the 
propagation of pressure and velocity pulses, is defined by the properties of the undisturbed 
medium, as it is a function of liquid holdup mainly, which develops much slower than 
pressure and velocity. For the considered case, the mixture speed of sound is ~230 m/s, 
while the holdup wave travel with an average velocity of 4 m/s (see Figure 5.3). Once the 
pressure wave is generated it rapidly moves away from the inflow point, while the holdup 
moves only a small distance downstream the inflow location. At the time instant t2=61s, the 
pressure wave is approximately 230 meters away from the inflow point though the 
composition change due to inflow occurs only at a 4 meters length interval. 
 The relevant information regarding inflow composition can only be extracted if the 
pressure wave is transmitted over a flow region which is covered by the convective wave, 
which is not possible considering the same source which produces the pressure pulse. Here 
the solution may be in inducing additional pulsations in the vicinity of the inflow source, by 
means of manipulating the flow with internally installed valves or actuators. The 
disadvantage of this is again related to a relatively high discrepancy between mixture speed 
of sound and flow velocity: since a pressure signal is rapidly propagating in the wellbore, it 
is expected to use a high number of pressure sensors over a short wellbore interval, which 
should be placed with very high spatial density. That might not be possible from the 
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economic point of view. The proposed approach is illustrated in Figure 5.5. 
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Figure 5.5. Measurements layout for inflow holdup estimation. 

 
 However, a transient pressure signal may still be useful, as it contains the 
information relevant to the flow velocity. With any disturbance generated in the pipeline, 
the dynamic phenomena related to fast waves occur on two time scales. First, one can 
consider acceleration effects due to sudden variation in flow velocity. By using a proper 
correlation for a pressure increase due to acceleration (i.e. the Joukowski-water hammer 
equation), one can in principle estimate the velocity component. However, this information 
is available only on a short term time scale, as the dynamic effects are rapidly diminished 
by frictional attenuation. The rate of attenuation is dictated by the roughness of the pipeline, 
its geometry and flow velocity, and flow composition. With the given correlation for 
frictional pressure drop and the mixture velocity obtained from processing of a dynamic 
pressure pulse, one can estimate the flow composition. One should note however, that the 
estimation of the liquid fraction is performed in a “semi-steady” state regime, as it 
corresponds to a frictional pressure distribution in wellbore.  
 Therefore one can note two steps in the estimation procedure. First the fully 
transient information is processed in order to extract the data relevant to the flow velocity. 
The information about the magnitude of the inflow source is then transferred to the operator 
in the time scale of seconds.  Secondly, these data are used to provide an estimation of the 
liquid holdup using frictional effects. The latter may be performed on any time scale which 
is relevant to a user. One can also conclude that the transient information is more useful on 
the short-term time (and length) scale, and therefore the transient effects should be 
considered locally, for example as an integrated part of wellbore instrumentation. On the 
other hand, the steady frictional effects are acting on a long length scale and are more 
suitable for usage in management of a production system. 
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Measurement of the mixture speed of sound 
 The liquid holdup can be estimated directly by means of incorporating its values 
into the state vector. Alternatively, one can estimate the liquid fraction implicitly, by 
accounting its influence on the propagation of speed of sound. This is reasonable, since the 
speed of sound defines the dynamics of pressure wave propagation, which is available via 
measurements. In general case speed of sound also depends on flow regime and details of 
the droplet and bubble size. 
For the case of homogeneous flow equation (2.50) can be modified as follows 
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 As the convective acceleration is neglected, the obtained mixture speed of sound is 
a function only of the local liquid holdup H, provided that the variation of gas and liquid 
density is insignificant. Therefore proper interpretation of the pressure pulses, induced on 
the domain with holdup value of H together with estimation of velocity as discussed earlier 
would result in the estimated values of multiphase rates. However, solving equation (5.1) 
for liquid holdup will provide two different solutions. This is illustrated in Figure 5.6. This 
graph may be more complicated if one accounts for the heat transfer phenomena. 
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Figure 5.6. Mixture speed of sound defined using equation 5.1 and possible inverse 

solution. The possibility of multiple solutions is demonstrated. 
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 Non uniqueness of the holdup solution leads to an uncertainty in flow velocity 
determination. This can be overcome by introducing additional measurements: the missing 
information can be extracted from acceleration pressure drop or the true liquid velocity can 
be specified using multiphase flow meter installed on surface. The latter seems to be a more 
reasonable option, as the acceleration pressure drop rapidly attenuates and is hardly 
detectable by sequential assimilation algorithms due to its abrupt behaviour. 
 Another difficulty associated with a direct prediction of liquid fraction from the 
mixture speed of sound is related to possible uncertainty of speed of sound measurements. 
If the estimation results are not sufficiently accurate, the resulting value of liquid fraction 
can significantly deviate from the true one. The error associated with liquid fraction 
prediction depends on the mixture properties: it is minimal at low and high liquid fractions, 
and maximized when the liquid and gas hold up are of similar magnitude, which is part of 
the working range of flow parameters. 
 It is mentioned here, that the proposed technique may not work for stratified flows. 
In particular, the acoustic wave will propagate through the gas with a velocity of sound of a 
gas phase [Legius, 1997]. 
 Therefore, a conclusion can be drawn that due to decoupling of the dynamic waves 
from kinematic ones, the information incorporated into pressure pulse due to rapid inflow 
can not be used for direct estimation of the corresponding composition. 

5.3. Formulation of the inverse problem 

 The information regarding inflow composition is introduced in the system as the 
inflow takes place. However, as it propagates much slower, it is detectable much longer 
than the dynamic response. Therefore, the measurements and estimations of liquid holdup 
should be performed for a quite developed kinematic wave. In principle, the holdup wave 
starts to affect wellbore dynamics after the pressure and velocity have reached their steady-
state values. Note, that these steady-state values are related to a fluid composition before 
the inflow takes place. Later, as the effect of gas or liquid inflow on flow distribution 
becomes apparent, the liquid holdup variation along the pipe and corresponding variation of 
mixture density changes locally the frictional pressure drop. Since this is occurring on 
much slower time scale than dynamic wave propagation, it is promising to use it for the 
development of a flow allocator. Therefore the estimation procedure is organized in two-
steps. First, the estimation of both liquid and gas velocities are obtained. That can be 
performed using transient pressure measurements or, which is simpler, by using a static 
pressure drop and the value of liquid fraction of the undisturbed flow (i.e. the initial 
distribution of liquid holdup is needed). Second, with the development of the convective 
wave, it is possible to provide the estimation of the liquid holdup, based on the transient 
pressure measurements, using an a priori defined velocity field. 
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 The estimation of the inflow profile with the proposed semi-transient technique is 
possible under the following assumptions: 
1) u2ph> ug,ul , which guaranties that the dynamic waves do not affect the propagation of the 
convective waves. 
2) The inflow is instantaneous, which allows to obtain the initial estimation of the velocity 
field. 
 

No pressure wave (NPW) dynamic model 
 For the proposed simplified setup a comprehensive wellbore simulation is not 
required. Although one can directly use the proposed simulator based on the drift-flux 
model, the outlined simplification may be used. In particular, since the pressure and 
velocity transients are not important, the corresponding transients can be left out from the 

computation procedure. That is possible by setting the corresponding eigenvalues 2 and 3 

to infinity. The continuity equations corresponding to the so called no-pressure-wave model 
(NPW) are the same as for a standard drift flux model and given by 
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The momentum equation for the oil-gas mixture is formulated in a steady form 
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The model is complemented by algebraic slip law, where the gas velocity is given by

 0 ( )g l g bl gu C u u u                                (5.5) 

The frictional loss Sfr is calculated using relation (2.10). 
 Considering the fact that the dynamic waves are decoupled from the kinematic 
waves and the holdup wave propagates only in the direction coinciding with the flow, the 
numerical strategies in this case are much simpler. In particular, it is possible to use implicit 
central scheme for pressure and velocity and explicit upwind scheme for the hyperbolic 
equation which governs the propagation of holdup wave in the system.  
 For the discretization of the simulation domain a staggered grid approach has been 
used, meaning that a different grid for the continuity and momentum equation has been 
employed. The flux related variables are defined at the interface of a grid block and others 
are specified at the centers of grid blocks (Figure 5.7). Pressure and liquid fraction are 
defined in the centers of a gridblock, while the velocity (liquid or gas) are calculated at the 
grid interfaces. 
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Figure 5.7. Staggered grid and definition of the state-variables. Momentum and continuity 
equations are discretized on different grids. 

 
 The mass conservation equations are formulated for the gridblock with boundaries 
[si-1/2, si+1/2]. Therefore, the discrete liquid continuity equation is given by 
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Where the interface values of the fluxes are evaluated using a simple upwind scheme of the 
first order. 
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The momentum conservation equation is discretized on the displaced grid [si, si+1] with 
centers located on the interfaces  
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The total number of variables for that formulation is composed of N pressures, N holdups 
and N-1 velocities with N number of grid blocks. Therefore the coupled solver may require 
substantial amount of mathematical operations. The solution however may be simplified 
dramatically, if one instead of solving all the equations simultaneously chose for a 
segregated approach. With a given holdup one can calculate the velocity from the 
continuity equation, and then update the holdup distribution, which is used in turn to 
calculate the pressure gradient implicitly from eq. 5.8. That is feasible also due to the 
physics of the process. Once the velocity field is established due to inflow it is hardly 
influenced by the propagating holdup wave. The development of a robust segregated solver 
also requires the assumption of a weak relation between gas density and pressure. Gas 
density variations may be computed iteratively using the obtained pressure field.  
 The explicit treatment of the convective terms in the continuity equations is driven 
by the following facts. First, it allows to attach flux limiters (Chapter 3). Secondly, though 
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the solution can be obtained with a reduced number of time steps, this is not always needed 
from the point of availability of measurements. Secondly, as the implicit schemes are 
generally more diffusive, the quality of estimation might be reduced. 
 

Extended Kalman filtering 
 One way to solve estimation problems via the sequential data assimilation 
algorithm is by using the Kalman filter equations. The Kalman filter is a stochastic 
recursive estimator, which estimates the values of model states and unknown input by 
combining measurement data in a mathematical model in real-time. Due to its 
straightforward numerical implementation and recursive nature, the Kalman filter algorithm 
is very well adapted to online model calibration. 
 Kalman filtering was initially developed for linear dynamic systems. Although the 
ensemble Kalman filter (EnKF) is widely used nowadays to handle model non-linearity, in 
this work the extended Kalman filter (EKF) is implemented [Jazwinski, 1970].  The 
difference between these two algorithms is in the way the error covariance matrix is 
calculated. It is represented by the ensemble of possible model realization in the EnKF 
algorithm, and the EKF calculates the approximation of the covariance matrix using a 
linearized process model. For the estimator developed in this chapter the EKF demonstrated 
good performance, which indicates that the error induced due to the linearization is minor.  
 With respect to computation time, the performance of the EKF depends on the 
number of states Nst (the size of the augmented state vector X), while the EnKF 
performance is based on the chosen ensemble size denoted here as Nens. More specific, the 
EKF computation time is typically of the order of Nst model simulations, and the EnKF 
computation time is approximately of the order of Nens model simulations. Therefore, the 
size of the ensemble is a crucial issue with the use of the EnKF. Based on the experience of 
data assimilation for large-scale atmospheric models [Houtekamer and Mitchel, 1998], at 
least 100 ensemble members should be chosen for the ensemble Kalman filtering. The 
optimal size of the ensemble for inflow estimation is, however, not known and it is a 
subject for future research. As a result, the EKF is normally faster than the EnKF for low 
order systems (Nst<100), which is the case for the majority of the soft-sensing applications 
for wellbore flow.  
 The discrete equations obtained with the use of NPW model can be reformulated 
in the following state-space notation. 
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Where x is a vector of pressures and liquid holdups in the grid blocks,  

  1 2 1 2.... ....
T

N l l l Nx p p p                             (5.10) 

u is an input vector which includes boundary conditions and values of the velocity at the 
interfaces. Although it is usual to consider the velocity as one of the components of the 
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state vector, it is more convenient to reformulate it in this case differently and treat the 
velocity as the model input. This is governed by the fact, that with the use of NPW model, 
the velocity field is calculated just in the beginning of the simulation and kept static during 
all the time steps.   

 is the input vector which represents the inflow from reservoir to wellbore, and 

for two phase gas liquid flow it is represented by the two following components l g]. 

The model equation (5.9) formulated with the added model noise and measurement 
equation which relates observed states and available measurements is given by 
  

1
,

k k k k k
x f x u v


                                  (5.11)   

 
k k k k

y H x w                   (5.12) 

 Where f is a nonlinear operator. vk and wk are zero mean Gaussian white noise 
vectors, associated respectively with the model and with measurements and characterized 
by variances Qk and Rk. Hk is the measurement matrix which relates the states with the 
measurements available. 
 Since the variables to be estimated, i.e. the components of the model input, are not 
included in the state vector x, it should be modified using the similar approach as in the 

previous chapter. The state vector is then augmented with the inflow  and the augmented 

state vector X=[x ]T is further used within the data assimilation framework 
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With an EKF the augmented state vector is estimated through the two steps, which are 
outlined in Chapter 4 (eqs. (4.16)-(4.21)). 
 The use of the explicit time integration scheme becomes apparent, as it allows to 
use the traditional Kalman filter equation without limitation (only the time step limitation 
does exist). The attractive idea of using a semi-implicit KF, which was introduced in a 
previous chapter, for that particular problem may fail as there is a substantial model 
difference between explicit and implicit schemes, which requires fine tuning of model error 
matrix. 

5.4. Results and discussions 

Test Case 1. Holdup estimation under measurement error 
 To examine and evaluate the proposed estimation methodology for multiphase 
inflow estimation, the inflow in a segment of a horizontal well is considered. The 
simulations are performed in a 100m well of 0.05m diameter where the simulation domain 
is represented by a uniform grid of 50 internal gridblocks. The parameters of interest are the 
inflow sources, which are instantaneously introduced in the simulation domain. These 
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sources, result in a change in the liquid holdup and consequently in the pressure gradient. 
The purpose of this study is to estimate the obtained holdup field in real-time using various 
estimation scenarios. The input to the estimation problem is defined by the pressure 
measurements. For the base simulation case, the number of pressure sensors installed is 
equal to the number of grid blocks. The sampling time was constant for most test cases and 
equal to 0.1s, unless otherwise stated. 
 The first test considered deals with the estimation of the holdup distribution in a 
horizontal well where only gas enter the wellbore in the radial direction. Two inflow 
scenarios are considered. First a single source located close to the wellbore inflow point is 
estimated using the proposed algorithm. Secondly, the method is extended to a more 
complex case with multiple gas inflow points. The simulation layouts are sketched in 
Figure 5.8 and 5.9.  
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Figure 5.8. Computational setup for 

estimation of single gas inflow.  
Figure 5.9. Computational setup for 

estimation of multiple gas inflow. 
 
 The locations of the inflow points and other data relevant to the simulation are 
given in table 5.1.  
 The speed of sound of the two phase mixture, which corresponds to the initial data, 
is approximately equal to 90 m/s which is considerably higher than the gas velocity. Such 
value of the mixture acoustic velocity guaranties that the transients relevant to dynamic 
waves occur on a much faster time scale, which makes the use of the NPW model feasible.  
 The results of the simulations for the single inflow source are depicted in Figure 
5.10. It is obvious that in the absence of measurement error the proposed algorithm is very 
well capable to estimate the propagation of the liquid holdup. The influence of the 
measurement error on the quality of the estimates is illustrated on the next figure, where the 
input pressure measurements are corrupted with a certain noise. The standard deviation of 
the pressure measurements errors was only 50 Pa (for an outlet pressure of 106 Pa). Such 
low measurement noise for the pressure leads to a standard deviation in the liquid fraction 
in the order of 0.01. 
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Table 5.1. Initial data for the numerical experiments 

Quantity Values for case 1 Values for case 2 
Pipe diameter, m 0.05 
Pipe length, m 100 

Liquid density, kg/m3 1000 
Liquid viscosity, Pa.s 0.001 

Gas reference density, kg/m3 11.93 
Gas viscosity, Pa.s 1.82.10-5 

Inflow holdup H, [-] 0.8 
Inflow gas velocity ug, m/s 2.1876 

Outlet pressure, Pa 106 
Absolute roughness, m 0 

Distribution parameter, [-] 1.2 
Bubble drift velocity, m/s 0 

x1, m 7 7 
x2, m - 39 
x3, m - 69 
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Figure 5.10. True and estimated liquid 

holdup with noise free data.  
Figure 5.11. True and estimated liquid 
holdup with low measurement noise. 

  
 The analysis of the simulations performed leads to the conclusion that for a given 
simplified semi-implicit formulation, an estimate of the holdups can be obtained in real-
time and the necessary actions can be taken in order to improve production. In particular, 
the estimated liquid holdup, which is depicted in Figure 5.11, propagates with the local gas 
velocity which is ~3.0 m/s (the results of the estimation of the gas velocity which are static 
are not depicted in this results section). Therefore it can take ~ 30 seconds for a holdup 
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wave to reach the outlet cross-section of the well, where it can be detected using standard 
instruments. The real-time estimator, in contrast, allows the operator to act proactively and 
therefore obtain better management of the production system.   
 The performance of the estimator is also satisfactory for a more complex case of 
multiple inflow points. The simulation results are depicted for a flow field at t=5s (Figure 
5.12) and t =15s (Figure 5.13) with the same level of measurement uncertainty as for the 
previous test case. The noisy data which are also plotted on these graphs are the values for 
the liquid fraction, which corresponds to the liquid holdup as if it is obtained without data 
assimilation directly from the given pressure distribution. In order to improve the 
convergence properties of the estimator a model error is added to a component of the state 
vector which represents the unknown input (inflow). 
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Figure 5.12. Estimated liquid holdup for a 

scenario of multiple inflow at t=5s. 
Figure 5.13. Estimated liquid holdup with 

low measurement noise at t=15s. 
 
 It follows from the obtained results that downhole pressure measurements are 
absolutely necessary for the inflow estimator considered in order to obtain the composition 
distribution. One can argue if any composition measurements are needed for that type of 
estimation setup, though it is definitely required to have some knowledge on the liquid 
holdup in order to make a prediction of flow velocity.  

 
Test Case 2. Estimation of both liquid and gas sources 
 The following estimation setup studies the simultaneous estimation of liquid and 
gas sources. In the first test case the liquid inflow is introduced close to the inlet of the 
wellbore at x=21m, with the gas source located downstream at x=19m. An additional pair 
of liquid and gas sources is introduced in the second test case. The general description of 
the simulation layout is given in Figures 5.14 and 5.15. 
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 The initial data are the same as for the previous test case, with the geometrical 
location of the sources given in Table 5.2. 
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Figure 5.14.  Computational setup for 

estimation of single gas inflow. 
Figure 5.15.  Computational setup for 

estimation of multiple gas inflow. 
 

 Table 5.2. Location of inflow sources for a second test case. 

Location Values for case 1 Values for case 2 
x1, m 19 19 
x2, m 59 39 
x3, m - 59 
x4, m - 79 
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Figure 5.16. Estimated liquid holdup with 

noisy data.  
Figure 5.17. Estimated liquid holdup with 

low measurement noise. Steady flow profile. 
  

The estimation results depicted in Figure 5.16 and 5.17 clearly indicate that the 
impact of both liquid and gas sources can be accounted for the estimator in real-time. The 
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speed of the holdup front corresponding to the gas inflow is faster than for the liquid inflow 
due to additional velocity increase downstream the source. The steady flow solution for the 
liquid holdup distrubution is presented in Figure 5.17. Similar results obtained for a case 
with more than two inflow points are depicted in Figure 5.18.  Here the holdup wave 
induced by the last gas inflow source reaches the outlet cross section much faster as it 
travels with a cumulative velocity due to other sources. 
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Figure 5.18. True and estimated liquid holdup for a second inflow case with low 

measurement noise.  
  

The impact of the measurement noise has also been studied for a test case where 
the different values of measurement uncertainty have been used. In particular the pressure 
measurements were corrupted with noise with a standard deviation of 0.25mbar and 
0.5mbar. The simulation results are depicted in Figure 5.19. It follows from the obtained 
simulation, that a relatively low measurement noise in the absence of data assimilation 
produces senseless results. The impact of model noise is not apparent on the pressure 
profile, depicted in Figure 5.20.  
  In particular, the standard deviation of the liquid holdup at x=5m is equal to 0.2. 
However, with the help of Kalman filtering it is very well possible to filter out the noisy 
data and obtain reasonable estimates with the uncertainty: ~0.015 at the same location at the 
end of simulation time. 
 With the higher level of measurement noise, the estimator is still able to provide 
reasonable performance (Figure 5.21). The standard deviation of liquid holdup before data 
assimilation is 0.4 which significantly exceeds its variation due to inflow. From the 
estimated results it is possible to identify the gas inflow zone fairly well though the 
estimates in the vicinity of the gas source are smeared out. The quality of the estimates 
may, in principle, further improve for larger values of the inflow sources, as they produce a 
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larger response on the detectors. It has been found that successful data assimilation for the 
cases with high measurement noise requires fine tuning performed with the model error 
matrix. However, at this moment it is not completely clear which values of model error lead 
to a most accurate estimation of liquid fractions. 
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Figure 5.19. Estimated liquid holdup for 

the data with low noise rate. 
Figure 5.20. True and noisy pressure 

distribution. Low noise rate. 
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Figure 5.21. Estimated liquid holdup for 

the data with high noise rate. 
Figure 5.22. True and noisy pressure 

distribution. Higher noise rate. 
  

The obtained results indicate that even in the simplified semi-steady state approach 
the quality of estimates is highly dependent on the noise level of available measurements. 
In particular, a high uncertainty in the absolute pressure measurements leads to an increased 
value in pressure drop, which is used for estimation of local holdup. One can also think of 
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using sets of differential pressure measurements instead of absolute ones. The level of 
measurement noise also affects the minimal inflow source to be detected and in case of 
large noise to signal ratio, it defines extra sources inflow sources, which are of non-physical 
origin. The inflow sources, which are not detected in the very beginning of the estimation 
procedure, can be identified later, when the transient response is strong enough. In general 
the problem of large measurement noise may be overcome by using future measurements, 
i.e. by smoothing of the pressure signal. 

 
Test Case 3. Influence of the spatial and temporal resolution of measurements 
 In addition to the measurement noise other limiting factors come into 
consideration when one assesses the quality of estimates. In particular the availability of 
pressure measurements in terms of spatial and temporal resolution plays an important role. 
This study is intended to provide quantitative information on the availability of pressure 
measurements on the quality of the estimates. Here two aspects have been considered. As 
the basis, a simulation test case from the previous section was taken. First, the number of 
pressure sensors has been considered. Additionally, the impact of measurement frequency 
is studied in a second test case. 
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Figure 5.23. Estimated liquid holdup for a 
reduced set of pressure measurements. The 

pressure sensor is located in every third  
grid block. 

Figure 5.24. Estimated liquid holdup for a 
reduced set of pressure measurements. The 

pressure sensor is located in every sixth 
grid block. 

  
First, the simulations are performed with a reduced amount of pressure sensors. 

The pressure measurements are then located in every third and every sixth gridblock. The 
obtained results are depicted in Figure 5.23 and 5.24. Although the first measurement 
layout still provides reasonable estimation of the flow field, it fails to reproduce the correct 
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holdup distribution if the number of measurement points is further reduced. For that sparse 
scenario, where the pressure sensors are located in every sixth grid block, the results are far 
from the true ones, although for that particular case this is mostly governed by the sensor 
location. Although the pressure measurement is available just downstream of the gas 
inflow, the relevant information is missing for a corresponding location after the liquid 
inflow. That suggests the following required measurement layout to estimate the inflow. It 
is required to have at least two pressure measurements downstream the inflow sources, with 
one preferably installed close to the source. The pressure sensor located upstream the 
inflow is needed for two purposes – first, it provides the initial estimates of flow velocity, 
secondly, its value is used to calculate holdup upstream the inflow. 
 The impact of sampling time is illustrated in Figures 5.25-5.26. First the 
simulations are performed with a time step of 0.25s, which is close to the upper limit 
defined by the stability considerations of the forward simulator which generates the true 
data. That leads to a reduced number of measurements assimilated in the model and 
consequently poor estimates as depicted in Figure 5.25. The better estimates may be 
observed at the later stage of data assimilation, though it might not be convenient from the 
real-time point of view. The sampling time was also reduced five times with a reference to 
a basic test case. The estimation layout was taken from the test case with multiple gas and 
liquid inflow sources. The result of increased quality of estimates with the increase of 
sampling time is not surprising as for that more measurements are taken into account. 
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Figure 5.25. Estimated liquid holdup for a 

reduced set of available measurements. 
Sampling time is 0.25s 

Figure 5.26. Estimated liquid holdup for a 
reduced set of available measurements. 

Sampling time is 0.02s 
 All the simulations are performed under the assumption of instantaneous inflow 
from the reservoir to wellbore. To simulate a complete system, a reservoir simulator, which 
describes the flow in the near wellbore region, should be coupled to a dynamic wellbore 
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model. However one can expect that in the latter case it is very difficult to get a rapid 
inflow scenario at the time scale of seconds, as it is unusual to have such dynamics imposed 
by the reservoir rates. In particular, rapid transients, which have been considered in this 
chapter, are caused by inflow sources with a much lower magnitude and therefore their 
estimation from corresponding transient response may be problematic.  

 
Test Case 4. Estimation of liquid holdup with the OLGA data 
 All the simulation based cases considered so far have been using artificial 
measurement data generated using the same flow simulator. In order to evaluate the 
performance of the proposed technique against “real-life” data, synthetic measurements 
generated by OLGA simulator are used. In this case, the generated measurements and 
output of the soft-sensor are not only different due to unknown inflow sources, but also due 
to difference in mathematical formulations in OLGA. The computational setup for holdup 
estimation with OLGA data is given in Figure 5.27. A gas source of 0.5kg/s is introduced in 
the middle of a simulation domain of 100 meters, which is activated after 60 seconds of the 
flow.  

l gF F

0.5 kg/s

Gas

 
Figure 5.27. Computational setup for the OLGA simulations. 

  
 Due to differences between the flow model used in OLGA simulator and the 
estimator developed, one can point at the following sources of the model error: 
- Friction factor correlation; 
- Fluid properties; 
- Simulation grid; 
- Mathematical model. 
 The inflow parameters corresponding to the present problem are depicted in Table 
5.3. It should be noted that this set of input data corresponds to the bubbly flow regime in 
OLGA, which in principle will result in equal velocity of gas and liquid. The estimations 
therefore are performed with the homogeneous flow model with C0=1. The simulation 
domain has been discretized with 100 control volumes both for generating OLGA 
measurements and for the inverse modelling. 
 Although a quantitative description of the model error is absent, this test case 
allows to verify the proposed algorithm against “real” data. An additional advantage of 
using another simulator in generating the data is that it always provides the sets of true 
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reference profiles which are used for soft-sensing validation of an algorithm.  
 

Table 5.3. Input data for OLGA test case 

Quantity Values for case 1 Values for case 2 
Pipe diameter, m 0.05 
Pipe length, m 100 

Liquid density, kg/m3 1000 
Liquid viscosity, Pa.s 0.001 

Gas viscosity, Pa.s 1.82.10-5 
Inflow holdup H, [-] 0.700 

Inflow gas velocity ug, m/s 6.80 
Outlet pressure, Pa 107 

Outlet gas density, kg/m3 118.41 
   
 The calculated speed of sound based on the initial data is ~250m/s, which allows 
to neglect the dynamic transients. The true gas velocity profiles, evaluated at 61s and 63 s, 
are depicted in Figure 5.28. The corresponding distribution of liquid holdup is given in 
Figure 5.29. 
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Figure 5.28. True velocity distribution 

from the OLGA simulator. 
Figure 5.29. True holdup distribution from 

the OLGA simulator. 
  
 The velocity field may be considered a steady state already one second after of 
inflow source is introduced, though the convective wave travels approximately 9 meters 
from the inflow point at this time. Therefore it is feasible to use a semi-steady state 
estimator only after 61seconds of the flow and the obtained results will still be useful from 
the monitoring point of view, as the holdup wave still travels downhole.  
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 The obtained estimation results for two time instants are depicted in Figure 5.30 
with the holdup distribution plotted at 62 and 63 seconds. It has been found that the main 
criterion for the successful estimation is defined by the proper description of the frictional 
pressure gradient. In that particular case, the Techo correlation (2.18) was able to provide 
the most reasonable results. The predictions of this correlation were first evaluated using 
open-loop runs with known inflow distribution, in order to match OLGA data. One can note 
a satisfactory estimation of the holdup field, despite certain model error introduced by 
OLGA. In the first part of the pipe, the estimated values overpredict OLGA data. Such 
behaviour might be caused either by constant gas density assumption used in the real-time 
estimator, or by a wrong choice of friction correlation tuning parameters. 
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Figure 5.30. Estimated liquid holdup for OLGA data. 

 
 One can note a discontinuity in the estimated holdup profiles in the vicinity of the 
inflow source. Although we are not completely sure, this may be related to the fact that 
different grids are used in OLGA and in the real-time estimator, which leads to an 
inconsistency in the variables determination at the interface. 
 Despite the positive preliminary results using artificial OLGA measurements, 
which clearly indicate the potential of using the proposed technique against “real-life” data, 
its applicability is still limited to an accurate prediction of multiphase friction factor. In 
particular, for a flow regime different from a considered homogeneous one, the frictional 
losses may be calculated incorrectly even if the complex slip models are used. 

5.5. Conclusions 

 An analysis of the possibilities of using transient pressure data processing has been 
performed. The inflow of certain liquids from the reservoir to the wellbore produces a 
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transient response characterized by dynamic and kinematic waves. In particular, a pressure 
wave is generated which propagates in the direction both upstream and downstream the 
flow with the local speed of sound of the mixture. This speed of sound can be estimated 
from the transient pressure measurement. However, the information regarding inflow 
composition is missing. The propagation of the holdup wave, which defines the acoustic 
properties of the medium and hence the speed of sound, is much slower than the dynamic 
one. Therefore for a given inflow source, due to a delay in holdup wave propagation, it is 
impossible to extract the holdup information from the advancing pressure signal generated 
by the same inflow point. 
 The estimation of the inflow composition may be performed by affecting the flow 
upstream the inflow point and providing dynamic waves, which move through the 
simulation domain over a given inflow point. The use of fully transient pressure 
information for flow rate estimation requires the processing of rapidly propagating wave 
signals that act on a very short time scale with a sufficient time resolution of the 
measurement. On the short term length scale the transient pressure information may be used 
to estimate the local inflow velocity. Alternatively, the inflow composition may be 
estimated using a simplified engineering approach from the pressure drop variation in the 
zone with the affected holdup. The performance of this technique is highly dependent on 
the value of the two-phase acoustic velocity, which should be high enough to provide very 
fast transients of pressure and velocity. 
 The proposed semi-transient approach to a liquid holdup estimation has been 
tested on a series of simulation based test cases, which show the accuracy and reliability of 
the proposed algorithm. It has also been found that the efficiency of the Kalman filter 
depends on the prescribed model error matrix which is used as a tuning parameter. Even 
when the observations are heavily biased with model/measurement error, the estimator can 
efficiently correct the wrong model states. Unfortunately, in real applications the true error 
description is never completely available, and, hence, it is quite important to choose a 
proper error statistics which provide robustness of the filter. 
 The results above are promising, though there is still some considerable work to be 
done before the real-time estimator can be implemented in practice. In particular, both 
small-scale laboratory experiments and field testing should be performed. It should be 
noted that for real applications, the influence of water phase should be taken into account 
and therefore water cut measurements are required. 
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6. Estimation of the Multiphase Inflow for Gas 
Breakthrough Control 

6.1. Introduction 

 With the research methodologies and technologies emerging in oil and gas 
industry, production from complex reservoirs can be obtained.  The increasing availability 
of sensors and actuators brings new possibilities for short-term production optimization. In 
particular, the implementation of the dynamic control strategies can maximize the output 
from the reservoir on the short term time scale by mitigating negative effects of various 
production instabilities in order increase the ultimate recovery. Such modern control 
systems combine data from different sources and require realistic physical modelling of the 
system performance.  
 The production from long horizontal wells drilled in thin oil rims can be affected 
by gas coning, the phenomenon where the gas-oil contact of a reservoir moves towards a 
producing well (see Figure 6.1). At a certain moment the gas-oil contact will reach the well 
and gas breakthrough can happen causing a large gas inflow. Consequently, due to a rapid 
increase in gas rate, the gas phase starts to dominate production. In order to handle or 
prevent this, several strategies are available. Traditionally, the gas coning is avoided by 
limiting the pressure difference between wellbore and a reservoir to a certain value, which 
prevents the gas-oil contact to reach the well. This pressure drop corresponds to a certain 
production rate, which should not be exceeded in order to keep the production stable. The 
relevant quantities can be computed analytically [Guo et al., 1992; Ansari et al., 2006] or 
numerically [Benamara and Tiab, 2001]. Leemhuis et al., (2008) has implemented a 
feedback controller, which keeps the gas fraction below a certain value by continuously 
updating the settings of the wellhead choke. The analysis of different feedback control 
strategies using a coupled wellbore-reservoir dynamic simulator, performed by Nennie et 
al., (2009), has shown certain advantages of the fully controlled production over the 
intermittent one. 
 Wells equipped with permanently installed sensors and actuators (surface chokes 
or inflow control valves) can be controlled via active control techniques. Jansen et al., 
(2002) suggested to influence the drawdown profile along the well through controlling the 
inflow. Another method, which was also considered in a paper by Leemhuis et al., (2008) 
considers direct downhole control by means of the inflow control valves. In this approach 
the inflow from reservoir to wellbore can be continuously adjusted in real-time. In case 
breakthrough occurs the gas producing zones of the wellbore can be simply isolated by 
means of inflow control valves (ICV). Due to the gravity the oil-gas contact will move 
away from the closed wellbore segment, which allows to continue the production. The 
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important assumption used in this approach is that the flow rates can be measured 
downhole, though it is not always possible in real field applications. 
 The down-hole gas fractions/velocities can be obtained from installation of down-
hole equipment which provides real-time oil and gas production rates with sufficient spatial 
and temporal resolution. In particular, several multiphase flowmeters installed downhole 
can supply relevant information for ICV operation as they are capable of allocating the 
zones of oil, gas and water inflow in long horizontal wells. If these meters are too 
expensive or inaccurate, alternative solutions are needed. One can use the soft-sensing 
principles, i.e. to estimate gas fractions or other flow parameters from “traditional” meters, 
combined with relevant process model. The purpose of a soft-sensor or real-time estimator 
is to provide the operator with information of the downhole flow rate distribution in order 
to decide where breakthrough is occurring. The relevant ICV can then be closed. 
 

 
Figure. 6.1. Schematic view of a horizontal well with a gas cone 

(from Leemhuis et al., 2008). 
 
 On the one hand, it is attractive to use the same technique, which was developed in 
Chapter 5 in order to estimate the multiphase rates in real-time. However, for that particular 
case that method may be inappropriate due to the following issues: 
1) The gas coning is considered as a relatively fast-transient phenomenon from the point of 
the reservoir dynamics with the gas breakthrough time of order of hours. However, most of 
the wellbore related transient phenomena are acting on a completely different time scale, 
where the dynamics is defined by the value of corresponding eigenvalues. In addition, the 
technological limitations of ICV do not allow them to be closed much faster, it can take up 
to several hours to perform corresponding choke adjustments. Therefore, distinct transient 
signals in the wellbore, which are required for the soft-sensing algorithm, are missing in 
this case. 
2) The stability issues of a fully explicit time integration scheme, which is usually used 
with wellbore flow simulators, require the time step to be chosen based on dynamic wave 

Gas cone
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propagation. At the same time, it makes it impossible to resolve the reservoir-induced 
transients fast enough. 
3) Although it has been reported by Nennie et al., (2007) that the dynamic wellbore 
reservoir interaction has a certain impact on the optimal production point and the dynamic 
behaviour of a gas cone, it is still attractive to use a steady wellbore model for estimation 
purposes as it corresponds to the observed flow behaviour in a well during the gas 
breakthrough. 

 
Figure. 6.2. Sketch of a horizontal  smart well, equipped with inflow control valves (ICVs) 

which control the inflow from the reservoir. 
 

 A dynamic multiphase simulator has obvious advantages for analysis of certain 
wellbore production instabilities such as severe slugging, wellbore shut-in and wellbore-
reservoir interaction (see Sagen et al., 2007 and Belfroid et al., 2005). The dynamic flow 
models are especially useful for production optimization purposes, as they can incorporate 
the dynamic effects in a closed-loop framework. The production instabilities can arise 
either from interaction between wellbore and reservoir (coning), occur as natural dynamic 
phenomena (slugging) or be relevant to the production process (shut-in, gas lift). Increased 
transport of the gas fraction in a wellbore due to gas breakthrough is characterized by the 

convective wave 1 on the time scale of the wellbore, which is usually negligible compared 

to the characteristic time of the reservoir. These times scales are, however, comparable for 
flows in long wells with low flow velocity. As these transients are induced by the reservoir, 
it is quite important to concentrate on transient behaviour of the reservoir, as accounting 
dynamic wellbore effects gives none or little additional information on the gas 
breakthrough description on the time scale of hours which is generic to gas coning.  
 In this chapter the estimates of downhole flow rates in a horizontal well are 
obtained using a simplified engineering technique which is based on steady multiphase 
flow model. The method provides a quantitative estimation of the inflow from a reservoir 
and a wellbore and it is feasible to use over a wide range of production conditions. The 
relevant information for the estimation is obtained from general conservation laws. The 
error associated with uncertainty both in model and the measurements is minimized using 
the ensemble Kalman filter. The method is tested using different soft-sensing scenarios 
where the influence of the model error was incorporated from measurements generated by 
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the OLGA simulator. At the end, the conclusions are given and recommendations for the 
future work are proposed.  

6.2. Formulation of the estimation problem 

 The mathematical model to describe the flow, which is used to estimate the flow 
rates for gas coning control, originates from the transient drift-flux model described in 
Chapter 2. Just as in the previous chapter, some simplifying assumptions are made. Here, 
for simplicity, the influence of the wellbore transient phenomena is completely neglected 
and the dynamic effects are incorporated from the transient inflow. This leads to a set of 
simple differential equations providing simple mass and momentum balances. The transient 

input from the reservoir, represented by the inflow sources Vl and Vg, defines values of 

the states variables on the current time level. The flow model accounts for fluid acceleration 
and provides the necessary information regarding phase velocities using an algebraic slip 
law in the form of (2.28), where the flow regime impact is taken into account via variable 
drift-flux parameters. The gas density is calculated using the ideal gas law (2.20). 
The physical model can be formulated in the following state-space notation: 

  1 1
,

k k k
x f x u

 
                     (6.1) 

 Here u is the model input representing the inflow from reservoir to wellbore. x is 
the state vector evaluated on the previous time step. Using the primitive set of variables, the 
state vector can be written as 

  T

g
x p u H                     (6.2) 

Here p, ug and H are the vectors, representing pressure, velocity and liquid volume holdup 
related to the spatial grid. With the velocity of the gas phase known, the velocity of the 
liquid can be derived from the slip model (2.28). For that reason the liquid velocity ul is not 
included into the state vector.  
 The estimation technique uses the information available from the measurements in 
order to calculate the approximated state vector components. For that particular problem the 
state vector consists of two parts. First, it includes the discrete values of the dynamic flow 
variables. In addition, the state vector includes unknown model input, which is defined by 
the inflow from the reservoir. The augmented form of the state vector is given by 

 
T

i g i i Vg i Vl i
X p u H                           (6.3) 

 Here i indicates the number of the cell defined by the numerical discretization. The 
measurements can be either defined at the surface (flow rate) or downhole (pressure). The 
measurements vector is therefore given by 

 
Tdown surf

j j
y y y                       (6.4) 
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Here j is the number of variables to be measured. 
 The computational setup for the inverse problem is shown in Figure 6.3.  It should 
be noted, that only the horizontal part of the well is being modelled, and the outflow 
measurements are assumed to be available directly at the outflow cross-section of the 
horizontal part.  

 

Figure 6.3. Scheme of the computational setup for soft-sensing. 
 
 Finally, the data assimilation problem can be formulated as follows: with the 
measurements (6.4) and the flow model the components of the augmented state vector (6.3) 
must be estimated. 

 The EnKF [Evensen, 1994] was used as soft-sensor. As mentioned above, this was 
done because of its (relative) ease of implementation while also being computationally fast 
enough. The ensemble size that was used was equal to Nens = 100. 
 

Notes on the uniqueness of the estimation problem 
 The use of the slow transients, generic to the gas coning process, and the 
subsequent assumption of slow wellbore dynamics has significantly simplified the forward 
modelling process. On the other hand, the transient signal carries information which is 
essential for the flow estimation. As the calculation of the multiphase flow rate requires the 
knowledge of three flow parameters, namely, fluid velocity, fluid density and volume 
fraction, three independent measurements are needed in order to obtain a unique result. 
Excluding the transient terms from the governing equations leaves out information on the 
wave propagation in the system, and makes the estimation problem ill-posed. In other 
words, due to the absence of transient data, which is implicitly incorporated in the 
governing equations, the estimator may easily fail to produce satisfactory results.  In 
particular, for the case with a large number of grid blocks, multiple combinations of 
inflow/outflow of gas and liquid will result in a very large number of possible flow 
variables approximations, which satisfy the available measurements. One can try, in 

Inflow from reservoir 
(liquid or gas) 

liquid/gas mixture

   ,l gt t 

surface measurements 

downhole measurements  
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principle, to reduce the uncertainty by incorporating additional measurement information, 
but very little can be measured additionally in order to keep the estimation technique cheap. 
In particular, the multiphase measurements taken on the surface may improve the data 
assimilation results by establishing a reference point for total inflow/outflow. Further 
improvement may be achieved by measuring certain flow parameters downhole (i.e. gas 
fractions, total flow rate) though it inevitably will increase the hardware costs of the 
estimator developed. If only pressure measurements are used, then special attention should 
be given to a pressure gradient between measurement points. For the case when one fluid is 
entering the grid block and other is leaving, the steady pressure signal is not sufficient for a 
data assimilation procedure. The number of possible solutions can be reduced if one 
imposes certain constraints together to be used with flow estimation algorithms. Although 
this theoretically will always provide a non-zero gradient between two measurement 
locations, additional data are still needed to make the formulation complete. More 
important, in many sequential data assimilation algorithms, such as Kalman filtering, the 
physical constraints can not be taken into account.  
 The following engineering approach is proposed for the flow rate estimation of gas 
coning. In order to keep a non-zero gradient between sensors used for measuring the 
pressure, the inflow from the reservoir is prescribed by splitting the sources, which can be 
either liquid or gas. In addition, the amount of gas entering the wellbore per time step, 
expressed in terms of mass flow rate, is considerably less than the inflow corresponding to 

the liquid phase. This holds for a reasonable range of fluid properties, where g<l. 

Assuming that multiple pressure measurements are available in order to provide gradient 
information, the total amount of fluid (liquid and gas), which is entering the wellbore 
through the radial inflow can be estimated using the proposed data assimilation technique. 
On the other hand, the flowrate measurements at the outflow cross-section of the well 
provide an increment in liquid and gas flows on each time step considered. As the mass 
balance should be fulfilled, one can identify the inflow sources, and hence the distributions 
of liquid fraction and phase velocities along the length of the wellbore.   
 At first sight, the analysis of the proposed scenario does not need to use any data 
assimilation algorithm limited as the amount of parameters to be estimated corresponds to 
the number of measurements available. However, the quality of the estimates should be 
improved as the measurement data are usually quite noisy and uncertain. Furthermore, the 
mathematical model to be used with the estimator needs a proper treatment of the model 
error in order to perform the estimation properly. The model error is associated with inflow 
sources to be estimated and errors related to the mismatch between the simple flow model 
used and real wellbore flow. In both cases a two-step procedure is needed, where first the 
preliminary values of inflow sources are obtained from the measurements, which are later 
corrected with the flow model used. This implies the implementation of the sequential data 
assimilation algorithm, where the dynamic data from noisy measurements are matched with 
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the predictions from the flow model. In principle the model used can be replaced or 
upgraded according to the user’s requests, which makes it possible to integrate the proposed 
approach into a closed-loop reservoir management framework. In this chapter the 
estimations of the multiphase flow rates has been obtained using an ensemble Kalman 
filter. The performance of the data assimilation algorithm is adjusted by adding a certain 
model noise to components of the state vector, which produce the largest uncertainty in a 

simulation. These are in this case the inflow sources l and g. 

 It follows, that pressure measurements, both surface and downhole are required in 
order to estimate the inflow properly. In addition, it follows that the flow rate 
measurements at the outlet of the wellbore are also needed, as they provide necessary mass 
balances. On the one hand it may be disappointing as the corresponding equipment for such 
measurements is quite costly. On the other hand, it is still more reliable at the surface 
conditions rather than downhole.  
 

6.3. Results and discussions 

Test Case 1. Estimating flow rates under measurement error 
 The first test case considered assesses the capabilities of the estimator to obtain the 
multiphase rates if the available measurements are corrupted with certain measurement 
error. Due to a lack of real experimental data, a set of synthetic measurements has been 
used for data assimilation. Here, a twin experiment concept has been implemented, where 
the same mathematical model was used both for generating the measurements with a 
predefined inflow distribution and the inverse modelling, when missing dynamic variables 
are estimated by means of the proposed algorithm. The major advantage of the proposed 
approach is that the obtained estimates can be compared to the real values of the model 
variables. Moreover, the simulations are performed with noise parameters which are fully 
quantitatively defined.  
 Two scenarios are considered which deal with two-phase liquid/gas flow and the 
details of the initial data are given in Table 6.2.  The sketch of the estimation setup is given 
in Figure 6.4 and Figure 6.5. The inflow profiles are given only as a reference since they 
are unknown and have to be estimated via the proposed data assimilation procedure. The 
essential difference between test cases is in the range of flow parameters used allowing to 
perform the simulations for different flow regimes. Both scenarios deal with estimation of 
flow rates along the length of the wellbore, where the distribution of multiphase parameters 
is affected by three inflow sources. The first case corresponds to a bubbly flow regime. This 
regime can be described by homogeneous no-slip model. The inflow for these cases, is 
represented by gas, which is injected in three locations of the wellbore linearly up to 0.48 
kg/s from 20 to 50 minutes of production and afterwards kept constant for the last 10 
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minutes. In the second scenario, where the flow is described by the drift-flux model with a 
slip, the gas sources near the inlet and outlet of the pipeline are replaced by liquid inflow. 
The maximum amount of liquid entering the wellbore is 2 kg/s for each inflow point, while 
for gas it is 0.02 kg/s. 
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Figure 6.4. Computational setup for flow 

rate estimation. Homogeneous flow. 
Figure 6.5. Computational setup for flow 

rate estimation. Slug flow. 
  
 The flow rate estimator has been tested using the following measurement layout. It 
is assumed that several downhole pressure measurements are available. Moreover, outflow 
information about flow rates is also known, giving the following measurement vector. The 
purpose of the flow rate measurements is to provide the mass balance, necessary to obtain 
unique inflow distribution. The data vector is given by 

 
T

i g out out
y p u H                       (6.5) 

 The number of pressure measurements was taken equal to the number of grid 
nodes obtained from the discretization. The velocity and liquid volume fraction 
measurements are located at the last grid block of the simulation domain. For both 
scenarios the wellbore was discretized with 12 grid blocks of constant length including 2 
nodes for definition of the boundary conditions. The sampling interval for both considered 
cases was 60s. 

Table 6.1. Measurement noise used in simulations 

Uncertainty in pressure measurements 0.5% 

Uncertainty in flow rate measurements 1.0% 

 
 The Kalman filter initialization is here based on the outflow values of velocity and 
liquid volume fraction, which are assumed to be know due to metering. Since all the 
pressure measurements are available, the pressure is initialized from the current pressure 
distribution. The synthetic measurements representing the downhole pressure and the liquid 
outflow flow rate are generated using equations of the same flow model. For the first test 
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case the noise-free measurements have been used. For a second test case the simulations 
were performed with a zero mean white Gaussian noise added to mimic the uncertainty in 
measurements. Values of measurement error used in the simulations are given in Table 6.1 
 

Table 6.2. Initial data for the numerical experiments 

Quantity Values for 
case 1 

Values for 
case 2 

Pipe diameter, m 0.05 0.05 
Pipe length, m 100 100 

Liquid density, kg/m3 1000 1000 
Liquid viscosity, Pa.s 0.001 0.001 

Gas reference density, kg/m3 118.9 11.93 
Gas viscosity, Pa.s 1.82.10-5 1.82.10-5 

Inflow liquid rate Fl, kg/s 9.5 1.98 
Inflow gas rate Fg, kg/s 0.5 0.02 

x1, m 15 15 
x2, m 45 45 
x3, m 75 75 

Absolute roughness, m 0 0 
Distribution parameter, [-] 1.0 1.2 
Bubble drift velocity, m/s 0 0 

 

6.5

7

7.5

8

8.5

9

9.5

0 20 40 60 80 100

L, m

U
, m

/s

True, t=1800s.

Estimated, t=1800s

True, t=2400s

Estimated, t=2400s

True, t=3000s

Estimated, t=3000s

0.5

0.55

0.6

0.65

0.7

0.75

0 20 40 60 80 100

L, m

H
, [

-]

True, t=1800s

Estimated, t=1800s

True, t=2400s

Estimated, t=2400s

True, t=3000s

Estimated, t=3000s

 
Figure 6.6. Comparison of estimated and 

true flow velocity. Homogeneous flow. 
Figure 6.7. Comparison of estimated and 
true liquid fraction. Homogeneous flow. 

  
 The results of the simulation for the first scenario are given in Figures 6.6-6.7. 
Figure 6.6 shows the comparison between the estimated and true velocity distributions 
along the pipe length. The flow velocity is used to allocate the zones where a fluid is 
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entering or leaving the wellbore. In order to identify the type of fluid, the distribution of the 
estimated liquid volume fraction is required. This is depicted in Figure 6.7. The results are 
given for three time instants 30 minutes, 40 minutes and 50 minutes. Since the pressure is 
available continuously from the measurements it is not depicted as an estimate. Similar 
plots obtained for a second test case are depicted in Figures 6.8-6.9. Here the same 
observation as in the previous chapter can be made: even if the measurements are corrupted 
with low values of measurement noise, the quality of estimates is still significantly affected. 
 The results show that the proposed soft-sensor, for the given simplified 
formulation, is capable of reproducing the flow rate and liquid volume fraction distributions 
along the considered well part, even under a certain measurement error. Therefore, it is 
capable to detect multiple fluid sources as it is depicted in the figures. Similar results have 
been obtained for the second test case, where the drift-flux model with slip was used. Here 
due to a certain measurement noise, the quality of estimated deteriorates, though it is still 
possible to obtain reasonable estimates. Due to the induced uncertainty in pressure 
measurements, the flow rate estimator detects additional “parasite” inflow sources, which 
do not exist. As it is impossible to identify whether the calculated source is real or artificial, 
provided it satisfies the total mass balance, it affects the overall performance of the flow 
estimator. This can be observed in Figure 6.8, where one can note an almost continuous 
inflow from 20 to 60 meters and slightly inaccurate holdup predictions. However, as more 
measurements are used, the estimates are improved. The error accumulates to the 
(unknown) inflow section of the pipeline and decreases with the propagation of the 
solution, i.e. with the increase in incorporated measurement data.  
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Figure 6.8. Comparison of estimated and 
true gas velocity. Slug flow regime. Noisy 

measurement data. 

Figure 6.9. Comparison of estimated and 
true liquid holdup. Slug flow regime. Noisy 

measurement data. 
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 Additional simulations were performed for the second scenario with a decreased 
sampling interval. The simulations were performed with a sampling time of 20s. The 
obtained results, which are depicted in Figure 6.10 and 6.11, shows the expected 
improvement in the quality of the estimates quality as more measurements are used in the 
estimation procedure.  
 The results show that the proposed algorithm is capable to detect multiple fluid 
sources as it is depicted in the figures. The estimated liquid velocity is obtained from 
equation (2.28) and therefore it is as accurate as the predicted gas velocity. In that 
simulation case no attention has been paid to the flow regime. In reality, the flow may be 
described by the drift-flux model only in a limited range of flow conditions. Since both 
measurement generation and estimation are based on the same mathematical formulation, 
input data do not have to be physically realistic: any input set of parameters would result in 
fairly accurate soft-sensor performance. It should also be noted here that the added 
measurement error is the main source of the mismatch between estimated and true values. 
Performing noise-free simulations, however, would result in perfect estimation of relevant 
flow parameters. 
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Figure 6.10. Comparison of estimated and 

true gas velocity. Slug flow regime with 
reduce sampling time. 

Figure 6.11. Comparison of estimated and 
true liquid fraction. Slug flow regime with 

reduced sampling time. 
 

Test Case 2. Influence of the model error 
 The second study provides an assessment of the influence of the model error on 
the estimation results. A similar soft-sensing setup was used as depicted in Figure 6.3 with 
the measurement vector defined by (6.5). An important difference, however, was that the 
“true” well was not the same as the model used in the soft-sensor. The true wellbore 
measurements were obtained from the commercially available simulator OLGA. This was 
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done to assess the inevitable effect of the model error on the soft-sensing estimation results. 
Here both transient gas and liquid sources are present in a computational setup. Liquid is 
injected in the first part of the pipe, while a gas source is present close to its outflow cross-
section. This situation is a rough approximation of the gas breakthrough scenario. The 
scheme of the simulation domain is given in Figure 6.12. 

 
Figure 6.12. Computational setup flow rate estimation. Influence of model error. 

  
 Figures 6.13 and 6.15 represent the comparison between the obtained and true 
estimated velocities of gas and liquid. The estimated holdup is given in Figure 6.14. A 
particularly important modelling assumption for performing the OLGA simulations was to 
maintain the flow in the slug flow regime, since the model used is accurate for that type of 
multiphase flow. This was possible using the same set of input parameters, as for the test 
case 2.  The OLGA simulations were performed with 10 grid nodes, where the source term 
for liquid has been defined in the third grid block, and in the eighth grid block for gas. 
Consequently, this led to a soft-sensing setup with 10 available pressure measurements. 
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Figure 6.13. Estimated gas velocity 

distribution for the OLGA data. 
Figure 6.14. Estimated holdup distribution 

for the OLGA data. 
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 Obtained results are not as accurate as for the twin-experiment. However, it is still 
possible to allocate easily zones of liquid or gas inflow. A displacement of the estimated 
profiles with respect to the true ones is observed. This can be explained by the use of a 
different grid in the OLGA simulator and different interpolation of the flow variables 
between grid nodes and edges. 
 The estimated velocity, both for liquid and gas phases, is quite accurate despite the 
fact that the OLGA solver is based on a rigorous two-fluid model, whereas the drift-flux 
formulation is employed for the estimation. The drift-flux parameters seem to be key values 
to provide accurate performance of a real-time estimator. For the cases, when they are not 
well defined, it is reasonable to include them into the state vector and estimate these 
parameters online from the data available [Bloemen et al., 2004], though it might increase 
the size of the state vector and decrease the robustness of the method. 
 This leads to the conclusion that for estimation purposes complex flow modelling 
is not required. The flow model used as a soft-sensor may be simple enough to perform 
simulations in real-time, though it still should capture the main physics of the flow. It has 
been observed that since the information used for flow rate estimation is extracted from 
pressure measurements, it is quite important to account properly the friction factor 
correlation. In particular, preliminary runs in the open loop may be performed in order to 
validate the used model against OLGA data. 
 The performance of the estimator is greatly affected by the added model noise, 
which represents uncertainty in unknown inflow sources. By means of a certain choice of 
the model error matrix it was possible to improve the qualities of the estimates.  Since the 
true mismatch between model and OLGA is not known, it is very difficult to precisely 
define uncertainty in modelling, therefore the choice of model error which optimized the 
performance of real-time estimator is a topic of further research. 
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Figure 6.15. Estimated liquid velocity distribution for the OLGA data. 
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Influence of flow regime uncertainty  
 The preceding simulations showed that the proposed flow rate estimator can 
minimize the error associated both with measurement and model uncertainty and provided 
accurate estimates of flow variables. However, for the simulation tests considered, the 
major source of uncertainty was neglected. All the simulations were performed with a 
certain predefined flow regime, which was assumed to be known a priori. However, in the 
real-life applications the flow regime is not known by default which imposes the certain 
difficulty on estimation problems. In order to assess the influence of the flow regime on the 
quality of estimates the following test case is proposed. The measurements are generated 
via the twin experiment concept with the same layout as in Figure 6.6 where, however, the 
flow is described by different flow regimes. It is assumed that the flow in the first 40m of 
the wellbore length is bubbly, and slug in the rest. The flow regime dependency was 
incorporated using different sets of the distribution coefficient (C0=1.2 for slug flow and 
C0=1 for bubble flow). 
 The flow rates are again estimated using the proposed flow model, though in this 
particular case, since the true flow regime is not known, the assumptions of slug flow is 
taken for all the wellbore elements during the estimation. The results of the simulations are 
given in Figures 6.16-6.17. 
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Figure 6.16. Estimated gas velocity with 

the flow regime uncertainty. 
Figure 6.17. Estimated gas velocity with the 

flow regime uncertainty. 
  
 The obtained results indicate that the uncertainty in flow regime introduces a 
major error in estimated variables. The predictions of liquid holdup and gas velocities are 
sufficiently accurate for the part of the well, which is properly modeled as a slug flow (see 
obtained estimates for the length interval 40-100 meters). The mismatch between estimated 
and true variables in this region is caused by the impact of model error, which was used as a 

Flow direction
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tuning parameter to account the uncertainty related to flow regime change. Since the exact 
boundary between flow regimes is not known, this model error is used for all the grid 
blocks. The estimates in the remaining zone only qualitatively describe the inflow. Liquid 
holdup is underpredicted, whereas the gas velocity is higher than the true one. As the liquid 
velocity is proportional to gas with drift-flux model, the estimates of this variable are not 
depicted on the figure. 
 The quality of estimates can be improved by incorporating the flow regime 
dependency in the estimation algorithm. One can add the additional computational routine, 
which is used to predict the current flow regime. The state vector is then augmented by the 
values of the drift-flux parameters, which are estimated on-line together with dynamic state 
variables and inflow sources. For example, one can use the estimated superficial velocities 
in order to predict the existing flow regime by using certain flow regime transition criteria. 
Once the flow regime is obtained, the estimated superficial velocities can be corrected and 
the whole procedure repeated again iteratively. However, one can anticipate that stable 
operation of such algorithm requires additional independent measurements to be used in 
order to reduce the possibility of multiple solutions. One can analyze energy characteristics 
of the transient pressure fluctuations and establish the relationship between energy 
distribution of the signal and a flow pattern [Ding et al., 2006]. Application of the flow 
regime identification methods with flow rate estimators should be studied in detail during 
the future work.  
 

Test Case 4. Predefined inflow 
 It is common for all the test cases considered that initially no inflow sources are 
present in the simulation domain. Moreover, the assumption that both liquid and gas 
sources can not be present in a given location is too restrictive for real applications. The 
situation with complex inflow of both liquid and gas can be taken into account by 
separating the influence of these sources. In particular, if the inflow of one phase is already 
known and does not exhibit strong transient behaviour, it can be excluded from the 
estimation procedure. In order to evaluate the performance of the proposed algorithm the 
following case is proposed. The well initially produce a mixture of liquid and gas, with 
inflow of liquid continuously distributed along the length of the well. These sources are 
constant and they form the initial inflow profile which is assumed to be known. Afterwards, 
gas is rapidly entering the wellbore after 20 minutes of production in a location close to the 
outlet of the pipe. This inflow behaves in a similar way as it has been described in the 
previously considered cases. The simulations have been performed with the initial data 
relevant to bubbly flow regime and the synthetic measurements are obtained via a twin 
experiment.  
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 Some modifications are needed in order to use the estimation procedure for the 
considered scenario. In particular, the source, which represents the inflow is split in two 
parts. 

  0

Vk Vk Vk
                             (6.6) 

The steady part 
VK, is assumed known, defines the initial distribution of flow parameters 

in the wellbore. The transient one is calculated according to the following expression 

 10 inl
lVl

F s                                       (6.7) 

 Here Fl
inl  is the flow rate of the liquid entering the well in the axial direction per 

unit length, which is equal to 2 kg/s.m in that case, s is the coordinate of the grid block 

center, where the source is defined. The transient component Vk used in the data 

assimilation procedure is incorporated into the data assimilation procedure in the form of 
equation (6.3). The maximum values of the inflow source terms are equal to 0.01, 0.02 and 
0.03 kg/s respectively. These sources are located at 75, 85 and 95 meters of the wellbore.  

l gF F 3000

gmax

g

1200

 g 

l

 
Figure 6.18. Computational setup flow rate estimation. Predefined inflow distribution. 

  
 This test case represents the situation in which the estimation algorithm is used for 
any flow disturbance over a fully developed steady flow. In particular, one can think of 
such formulation of an estimation problem for gas coning control application, where the 
constant (slow) inflow of one phase is alternated by the rapid increase in another fluid. The 
estimated liquid holdup and flow velocity are depicted in Figures 6.19 and 6.20. 
 The results show, that the flow estimator provides accurate results, similar to the 
preceding test cases, minimizing the influence of the model error. However, additional 
questions should be addressed, such as whether it is possible to obtain accurate initial 
estimates. If these initial estimates are not available or poorly known, the corresponding 
uncertainty will propagate through the estimation procedure. Although the error in initial 
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estimates can be represented by a certain model error, it will not be minimized using a data 
assimilation algorithm. 
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Figure 6.19. Estimated gas velocity with 

predefined inflow distribution 
Figure 6.20. Estimated gas velocity with the 

predefined inflow distribution 

 

6.4. Conclusions 

 By means of two case studies, some limitations and possibilities of soft-sensor 
multiphase flow meters have been discussed. The proposed real-time estimator is based on 
the ensemble Kalman filter approach and requires as the input a simple model of the 
multiphase wellbore flow together with pressure measurements available downhole and one 
volume fraction and velocity measurement at the outflow. 
 It has been shown, that for a two-phase flow formulation it is possible to 
reconstruct the distributions of the flow velocity and liquid volume fraction along a pipe 
and to allocate the inflow of certain fluids in specific location along it.  
 The results indicate that the proposed method is stable for a certain range of 
wellbore operational conditions, and capable of taking into account measurement and 
model error. The applicability of the method is defined by the two following limitations. 
First, it requires the knowledge of the initial inflow distribution, which sometimes is 
difficult to obtain. Second, and more important, the uncertainty in flow regime seems to be 
a key-factor in obtaining fine estimates. If the flow regime is not known, the method easily 
fails. 
 
 
 

Flow direction
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7. Conclusions and Future Work 
 The aim of this thesis is to develop a multi-phase soft-sensor, with a focus on 
horizontal flows of oil/gas mixtures and to assess its performance. The proposed sensor 
focuses on the analysis of transient responses induced by wellbore-reservoir interaction. 
Here the conclusions with regards to the research questions formulated in Chapter 1 are 
given. The chapter is also supplemented with suggestions for future work. 

7.1. Modelling and Simulations 

Dynamic wellbore modelling 
 This thesis employs a simple one-dimensional approach to describe the transient 
phenomena in a multiphase wellbore flow. This is a common technique to deal with 
multiphase flows, for which due to lack of computational resources, or necessity of robust 
simulation response, the use of 3D formulations is impractical. The use of the one-
dimensional flow approximation simplifies greatly the programming issues, however, the 
physical modelling becomes more uncertain. In this case the reduction of the multi-
dimensional behaviour needs to be compensated by additional closure equations, which are 
often obtained from experiments and have a limited accuracy and range of applicability. 
 Following from the multi-fluid model, which is the most straightforward and 
rigorous one-dimensional formulation, more models are derived which can be used for 
specific applications. The homogeneous no-slip model consists of a mass and momentum 
balance for the mixture. The no-pressure-wave model considers the transient continuity 
equations for the separate phases and a static force balance for the mixture. The drift-flux 
formulation consists of fully transient equations for mass balances of individual phases and 
the momentum equation written for the mixture.  
 The homogeneous, drift-flux and two-fluid models are hyperbolic for a wide range 
of flow parameters with real and distinct eigenvalues corresponding to characteristics. For a 
drift-flux formulation two of these characteristics represent rapid pressure waves one 
propagating in upstream and one in downstream direction of the flow. One characteristic, 
which is not available in a homogeneous model, corresponds to the holdup wave and its 
transport is defined by an average velocity of the gas phase. The no-pressure wave model is 
of mixed hyperbolic-parabolic type, in which the only eigenvalue corresponds to the 
propagation of the composition wave. These eigenvalues represent the directions in which 
information is propagated in the physical domain with a certain speed. The speed of the 
dynamic waves is defined by the acoustic properties of the propagation medium and it is 
expected to give information about the flow structure via the analysis of the transient 
behaviour of pressure and velocity. 
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Flux splitting 
 The models considered can be solved numerically using splitting of the flux 
components according to the obtained eigenvalues, thereby explicitly accounting for the 
directions in which the information is transported. The shock capturing properties of the 
flux splitting schemes are improved by using high resolution schemes with flux limiters. 
The problem of a direct use of a flux splitting method is associated with the structure of the 
governing equations, since the proposed method was initially developed for homogeneous 
systems. With the drift flux model the source terms are present in both in the continuity and 
momentum equations, which leads to incorrect steady-state solution. In particular, the 
inflow from the reservoir, represented by a source in the continuity equation, produces local 
oscillations on the density profile. It is suggested to handle this problem by introducing the 
integrated source, which retains an exact balance with the flux gradients and keeps the 
conservative properties of the numerical solution. 
 The developed algorithm has been applied to a series of test cases. The proposed 
solver has been verified employing some reference solutions and data provided by the 
commercially available OLGA simulator. One of the advantages of the proposed technique 
is that the algorithm is applicable to any system of heterogeneous hyperbolic equations. 
 

7.2. Data Assimilation 

 All the flow models considered are represented by sets of partial differential 
equations, which should be converted into a state-space form by using relevant 
computational techniques. Among the variety of time integration schemes used, one can 
distinguish between the implicit Euler scheme, which is unconditionally stable for the 
whole range of time steps, and the explicit Euler scheme, which strongly defines the 
maximum value of the allowed time step. More important, the usage of these schemes leads 
to a completely different formulations of the state-space form, which might be 
inappropriate from the point of its usage with sequential data assimilation. The performance 
of the real-time parameter estimation based on the extended Kalman filter has been 
assessed. Using a model of the single phase oil flow in a porous medium formulated as a 
first-principles model, three types of estimators were derived: implicit, explicit and semi-
implicit. All these were designed for parameter estimation purposes, i.e. to estimate the 
radial distribution of permeability in a reservoir with a single producing well, based on 
transient pressure measurements downhole.   
 The fully implicit estimator uses an implicit Euler scheme to obtain both the state-
space form of the model equations and the model Jacobian used for the computation of the 
error covariance matrices. This scheme is unconditionally stable and no limitations are 
imposed on the integration time step size. Via simulation based test cases it has been shown 
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that the choice of initial conditions (the initial permeability distribution) is crucial for a 
satisfactory performance of the fully implicit estimator. For the cases where good initial 
conditions are not available, the filter diverges. This problem can be overcome by imposing 
smaller values for the time step. This, however, diminishes the main advantage of the fully 
implicit approach – the capability to run the simulations without time step limitations. In 
contrast, the fully explicit estimator, which uses an explicit Euler scheme to obtain both the 
state-space form of the model equations and the model Jacobian, does not exhibit this 
dependency of the estimation accuracy on the initial conditions. However, it is bounded to 
an upper limit on the integration time step size because of numerical stability 
considerations.  
 To eliminate the disadvantages of the two methods above and to reinforce their 
strong parts, a semi-implicit method has been proposed. In this approach the implicit Euler 
scheme is used for the computation of the model update step of this estimator while the 
explicit Euler scheme is used for computing the Jacobian needed for the computation of the 
error covariance matrix update in this step. Via simulation based test cases it has been 
demonstrated that this new estimator is only weakly affected by initial conditions and can 
be used for an extended range of time steps. 
 

 7.3. Soft-Sensing 

 The inflow of certain fluids from the reservoir initiates dynamic and kinematic 
waves which propagate in the wellbore. As the pressure wave travels both upstream and 
downstream the inflow location with a two-phase speed of sound defined by the acoustic 
properties of the mixture, the corresponding transient pressure measurements performed 
along the length of the pipeline may provide the information on the two-phase sonic speed. 
However, this gives very little insight in terms of estimation of inflow composition, i.e. the 
type of fluid which is entering the wellbore. The distribution of holdup, which defines the 
acoustic properties of the two-phase medium, is significantly delayed compared to the 
pressure waves, as its propagation speed is defined by the gas velocity, which is much 
lower than the mixture speed of sound. Due to this mismatch, it seems impossible to use the 
information from the same inflow source in order to estimate liquid holdup and flow 
velocity. The information on the flow velocity may be obtained from measuring the local 
pressure increase due to flow acceleration, which is however rapidly smeared out due to 
frictional effects in the wellbore.  
 The liquid fraction due to inflow may be estimated from a simplified engineering 
approach, where the variation of the pressure drop due to propagation of holdup wave is 
considered. This can be performed when the acoustic velocity is high enough to provide 
very fast transient behavior of pressure and velocity. Secondly, this method will only work 
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if the inflow is rapid, so it provides distinct signal which can be measured by the sensors. 
As the dynamic effects of the wellbore flow are not fully taken into account, it is reasonable 
to switch from a complex drift-flux formulation to a simpler no-pressure wave model.  The 
performance of the proposed technique has been evaluated via a series of test cases, which 
all aim to estimate the distribution of the liquid fraction in a segment of a horizontal well 
under various inflow conditions. As the estimator the extended Kalman filter has been used. 
The proposed method has also been tested against data generated by the wellbore simulator 
OLGA. The model error matrix is chosen by the user and used for the tuning of the Kalman 
filter.  
 It is important to note, that due to discrepancy in speeds of dynamic and kinematic 
waves, they cannot be estimated at the same time even if exhaustive computational tools are 
available. The velocity wave is decoupled from the holdup one, and therefore it appears that 
a simple homogeneous model is sufficient to estimate the flow velocity based on the 
transient pressure measurements. For the cases when the holdup wave is important, use of a 
simple no-pressure-wave model, which focuses on the convective transport, can be made.  
 If the inflow from reservoir needs to be considered on a different time scale, which 
does not produce any transient response in the wellbore, another technique is needed. This 
is especially important for gas coning control applications, when the process is governed by 
the slow reservoir dynamics. In that case the required information is obtained from multiple 
pressure measurements downhole supplemented with a single multiphase flow 
measurement at the surface. The performance of the technique has again been tested using 
simulation based test cases, and satisfactory performance has been demonstrated. The 
numerical experiments showed that the technique was able to correct the model error, 
induced by the OLGA simulation, if the friction factor correlation was specified correctly. 
 The important limitation of both considered methods is related to uncertainty in 
the flow regime. This should be known in advance, or be somehow integrated in the 
estimation procedure in order to provide fine performance. Secondly, both methods use the 
initial distributions to some extent on the inflow distribution (i.e. flow rates and liquid 
fractions along the well). This information, which may easily be missed in real-life 
applications, was found to be crucial. 
 The results obtained indicate that the soft-sensing techniques will not completely 
replace existing measurement equipment nor will be used as separate source of information, 
as in this case too many simplifying assumptions have to be made. It is rather more feasible 
to combine the output of the existing multiphase flow meters, installed downhole or at the 
surface, and relevant flow models in order to improve overall performance of the hardware 
instrumentation. The multiphase meters can then operate with increased accuracy, be able 
to work over a wider range of flow conditions, or cover flow regimes where direct 
measurements are unfeasible.  
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7.4. Suggestions for Future Work 

1) The semi-implicit Kalman Filter introduced in Chapter 4 has been initially developed for 
single phase flow in porous media, which is a typical example of parabolic differential 
equation, in which diffusion is dominating. In the area of multiphase wellbore flow, the 
convection is more important, therefore one should think of developing a similar semi-
implicit technique for multiphase flow estimators. The main obstacle to such an approach is 
that the fully implicit schemes are generally more diffusive and hence may not be used for 
problems with moving shocks and other discontinuities. On the other hand, the effect of 
numerical diffusion can be mitigated by high resolution numerical schemes and there is still 
big potential for performing simulations without time step limitation. 
2) Although it was at first expected that a drift-flux model was needed in order to obtain 
relevant estimates, the presented results have been obtained with simpler physical models. 
It is recommended to use the drift-flux approach (or more complex two-fluid model) when 
the combined estimation of velocity and holdup is required. This is especially important for 
highly heterogeneous flows for which the estimates of the velocity of the phases are 
coupled to the liquid fraction. It is also important to consider more complex models, which 
are applicable for all range of flow rates, and in which wellbore inclination and the flow 
regime dependency can be easily accounted for by incorporating rigorous transition 
mechanisms. Moreover, in real industrial systems, the wellbore profile is usually more 
complex than the idealized systems considered in this thesis. Multiple flow obstructions and 
rapid changes of the wellbore geometry affect greatly the dynamic inflow response. The 
performance of a semi-steady state technique is also affected, as local wellbore resistances 
might affect the holdup predictions. Last remark regarding wellbore modelling is related to 
the flow regime. It is expected to have a slug flow dominating in oil/gas wells, though the 
proposed drift-flux model gives only an averaged description of the phase distribution, with 
separate slugs not taken into account. The flow regime itself is another source of 
uncertainty as it should be known in advance in order to provide accurate estimates. 
Therefore it is suggested to incorporate the flow regime in estimation procedure or to obtain 
flow regime information using other methods.  
3) Finally, one should think of validation of the proposed approach. For that reasons a 
experimental setup has been built in the Multi-Scale Physics department of the Delft 
University of Technology, which is outlined in the Appendix B. Unfortunately, the 
experimental part of this project turned out to be rather rudimentary, and therefore results 
have not been included in this thesis as the outcome of the experimental work. The purpose 
of the experimental setup may be given as follows: 

 To analyze the existing flow patterns, define the flow regime map and calculate 
attenuation coefficients (i.e. friction factor) and phase velocities; 
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 To obtain data required for multiphase model inversion, i.e. generate and measure 
kinematic and dynamic waves. 

 The measurements of the pressure wave can be used to estimate the flow velocity 
while the static pressure drop provides the estimation of the holdup front. The latter can 
then be verified using a series of liquid fractions measurements, which should be available 
at several locations along the wellbore. The major advantage of a controlled experiment is 
that the model error associated with various flow phenomena can be identified and 
accounted for separately in the estimation.  
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Appendix A. Derivation of the Fully Explicit Parameter 
Estimator 
 With the computation grid given in Figure 4.2 centres of control volumes are 
placed in the middle between adjacent grid interfaces. The general node point is identified 
as P and its neighboring nodes to the west and the east are W and E respectively. The west 
face of the control volume is denoted by “w” and the east one as “e”. The distances 

between the nodes W and P and P and E are identified as rWP and rPE respectively. Figure 

A.1. shows the dicretized simulation domain for the control volume with length rP. 

 

PEr
WPr
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w
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Pr

 
Figure A.1. Control volume discretization with notations. 

 
The transient term is approximated in a common way 
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Where superscript * denotes the relation to the previous time-step. 
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 Regarding the second term (diffusion) in (4.6), two options are available. 
Depending on the time level which is used to evaluate this term, the numerical scheme can 
be either fully explicit or fully implicit. 
 For the fully explicit scheme 
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With pressure gradients computed as 
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The final discrete equation based on the explicit scheme for the grid block P can be written 
as  

 * * * * * *
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Or in a corresponding state space form 
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and 
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 The model written in (A.6) form should be linearized with respect to state 
variables and parameters. With the linearized right hand side (A.6) is written as 
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 With the tangent (pseudo-linear) model given (equation A.9) it is necessary to 
augment the state vector with the parameters (permeabilities).  
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Introducing 
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It is possible to obtain the state-space form of linearized model equation: 

 1k k k k k kp p k
       ;                                            (A.14) 

Introducing the augmented state vector X, the augmented model equation is given by 
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Appendix B. Experimental setup design 
 The purpose of this section is to study whether the proposed algorithm is operable 
for a controlled experiment. The results presented in this section have been obtained using 
the experimental loop which was especially built at the Multi-Scale Physics department at 
Delft University of Technology, the Netherlands. The length of the working section 
consists of 30 m with the internal diameter of 50.8 mm (2”). The elements of the test 
section are made out of Perspex, to allow visual observation of the flow. 
 The schematic representation of the flow loop is given in Figure B.1. The flow 
loop consists of a tank (which was also used for gas/liquid separation purposes), a pump 
and compressor, which inject water and air at the inlet of the rig. No flow preconditioning 
has been used. Air is injected into the pipeline at atmospheric conditions. Furthermore, 
there are the possibilities of additional liquid and gas inflow, which is organized by the 
established separate flow lines. The additional inflow points allow injection of water close 
to the inlet of the pipe and gas in the center of the test section.  

 
Figure B.1. Schematic representation of the two-phase flow loop at MSP. 

 
 The flow rates of gas and liquid are measured at the inlet by rotameters.  During 
the experiments, the liquid phase is pumped through the system by a 50 Hz pump with a 
theoretical maximum flow rate of 50 m3.h-1 through the main inflow point and 5.50 m3.h-1 
through additional inflow. The flow rates are controlled by means of valves mounted 
upstream the flowmeters. Air flow is generated by a compressor and practically not 
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restricted to any flow rate, except those prescribed by flow meter limitations. In order to be 
able to use the installed gas phase flow meters, some post-processing has to be made to 
convert the readings into the actual gas phase flow rate, since these meters are designed 
initially for liquid flows and have to be rescaled.  
 Pressure transducers (DRUCK, PDCR 820) with a pressure range of 1.5 Bar were 
mounted at four locations of the wellbore.  
 Two types of fluid injection have been used: the liquid is entering the wellbore at 
x=4.96m orthogonal to the main stream, while the gas phase enters the pipeline at 
x=14.84m parallel to flow. This difference can be seen in Figures B.2-B.3, where the 
pictures of the inflow points are given. The test section of the flow loop is sketched in detail 
in Figure B.4. 
 

 
Figure B.4. Detailed view of horizontal test section. 

  
Figure B.2. Liquid injection point. Figure B.3. Gas injection point. 
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Preliminary experimental runs on two-phase flow were carried out to identify the flow 
regime in the operational range of setup. The working range of the superficial liquid 
velocity is from 1 to 4.5 m/s and superficial gas velocity from 0 to 5 m/s. The obtained 
range of flow conditions used is depicted in Figure B.5 where it is compared with flow 
regime map by Mandhane et al., 1974. 

 
Figure B.5. Flow regime map (after Mandhane et al., 1974) with rectangular representing 

the working range of the designed flow loop. 
 

It is suggested that the designed flow loop can be used for the following purposes: 

 To analyze the existing flow patterns, define the flow regime map and calculate 
flow parameters relevant to a forward simulation of multiphase flows. 

 To obtain data required for multiphase model inversion, i.e. generate kinematic 
and dynamic waves and perform corresponding measurements.  

The measurements of the pressure wave can be used to estimate the flow velocity while the 
static pressure drop provides the estimation of the holdup front. The latter can then be 
compared to a series of liquid fractions measurements, which should be available in several 
locations along the wellbore. The major advantage of a controlled experiment is that the 
model error associated with various flow phenomena can be identified and accounted 
separately in the estimation. The use of real experimental data may be problematic, due to 
numerous shortcomings of experimental work. In particular, all the flow models considered 
require the stable conditions within the flow loop. However, this might be difficult to 
achieve for certain flow regimes and flow rates. One is referred to Prickaerts, 2008 for a 
detailed description of preliminary work and experimental runs performed.
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Afterword 

 
From the very beginning I had doubts that I manage to write this section properly. 

Should it include lengthy descriptions of all the difficulties I had, people I met, and cities I 
visited or better keep it for later memoirs? As things look quite different and biased from 
Stavanger, it didn’t work out in any formulation. Furthermore, it seems that I am just 
unwilling to confess that my Delft adventure is over and it is time to summarize it.  

The idea of a PhD research was heavily set into my mind since 2002, when I still 
was a student of MSTU studying hydraulics engineering. It took me 4 years to change the 
main vector of my interest into the area of multiphase flows and eventually to produce a 
PhD thesis written in the field of applied physics. This transformation was not an easy one 
and first of all I want to mention Dr. Oleg Zhuravlev, who first suggested me an idea of 
PhD research in Delft University of Technology. Among the positions available there was 
only one that was somehow related to my background. Vague project proposal and natural 
enthusiasm: these two were the only prerequisites I had in 2006. I was able to convince 
Professor Rob Mudde that I have sufficient skills to start and, more important, to finish this 
PhD project. Rob introduced me to a world of multiphase flow and I am grateful for his 
guidance and help. I appreciate his critical editorial comments during preparation of this 
manuscript.  

I will be always grateful to Annekatrien Daalmans to be patient enough to help 
with all the administrative problems I was facing during my stay in Delft. I wish to thank 
also Alberto da Costa Assafrao who became most dangerous chess opponent in Hugo de 
Grootstraat. 

I should write down names of all people who one way or another contributed to 
this work and provided me an abundant social and scientific environment but this list is 
enormous. Therefore I would like to them all (including Russian-speaking people and 
colleagues from Multi-Scale Physics department). All errors are, of course, theirs.) 
  
 
Stavanger,  
January 2010 
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