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1

Introduction

1.1 Energy landscape

Energy is essential for our lives. On a daily basis energy is used to power
residential and commercial buildings, in the industrial sector and for trans-
portation. As the world population grows and the living conditions improve,
the energy demand increases.

The International Energy Agency expects the world energy consumption to
grow by 53% in total in the period from 2008 to 2035 (Figure 1.1). In coun-
tries outside the Organization for Economic Cooperation and Development
(non-OECD nations), where demand is driven by strong long-term economic
growth, the energy consumption increases by 85%. Energy use in OECD
economies increases by 18%∗.

To satisfy this increasing demand, liquid, natural gas, coal, nuclear power
and renewable fuel sources are extensively developed (Figure 1.2).

Although renewable energy is currently the world fastest growing form
of energy, it is not yet able to provide sufficient and reliable energy supply.
The earthquake and tsunami in Japan on March 11, 2011, resulted not only
in extensive loss of life and infrastructure damage, but also made the long-
term future of nuclear energy extremely uncertain due to the policies some
countries have adopted with respect to continued operation of the existing
nuclear plants. Fossil fuels (i.e. oil, natural gas and coal) will therefore most
likely remain the largest source of energy for the world for many decades to
come. Oil, in particular, is expected to provide about 30% of the world energy
needs.

∗As of September 1, 2010, the OECD member countries are the United States, Canada,
Mexico, Austria, Belgium, Chile, Czech Republic, Denmark, Finland, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland,
Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom,
Japan, South Korea, Australia, and New Zealand.
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Figure 1.1: World energy consumption per region according to [1].
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Figure 1.2: World energy consumption per fuel type according to [1].

Not only the global energy demand rises, so does the need to produce
the energy resources responsibly, to minimize impact on air and water pol-
lution, climate change and altogether to mitigate risks for environment and
society. The landscape of operations for the energy companies thus becomes
increasingly more complex.

To keep up with the demand and consumer expectations, the oil compa-
nies, in particular, need to continuously increase the rate of production from
the existing fields and discover new fields to compensate for the produced
amounts. To address the former, they need to develop new and enhance
current technologies to reduce production costs, minimize the environmental
effect and maximize the recovery.

The hydrocarbon recovery process can be divided into three phases [15]:

• primary recovery is the very early stage at which reservoir contains fluids
(e.g. gas, oil) under the high pressure. The gas or oil is produced by
natural decompression. Usually around 70%–80% of hydrocarbons are
left in the reservoir by the end of this stage;

• secondary recovery (water flooding) is oriented towards recovering part of
the remaining oil (or gas). For that purpose a fluid (typically the water)
is injected into injection wells maintaining high reservoir pressure and
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producing oil through production wells. After this stage often 50% or
more of hydrocarbons still remain in the reservoir. Water flooding suffers
from water breakthrough after which some injected water is produced
back via production wells. The time at which the first breakthrough
occurs is known as the breakthrough time;

• tertiary recovery (enhanced recovery) is the stage at which complex
chemical and thermal effects are involved to produce more hydrocarbons.
These effects could be achieved by e.g. injecting steam into reservoir to
modify the viscosity of the oil and to make it flow easier.

Which mode of the operation will be the most successful for the given field,
when secondary recovery has to be initiated to maximize recovery, what type
of the enhanced oil recovery (EOR) is appropriate for the prospect, depends
on the the reservoir rock properties, the nature of fluids filling reservoir and
the effects appearing due to rock-fluid interaction.

Implementation of any of the recovery strategies requires vast amounts of
investment, and therefore the energy companies rely on various tools to sup-
port their production and development decisions. Particularly, mathematical
models are advantageous as they allow to describe and study the behavior
of the system, evaluate associated risks and uncertainties, and forecast the
production performance.

1.2 Closed-loop model-based reservoir
management

Nowadays mathematical modeling is a widely used technique to describe the
reservoir system and in-situ processes via mathematical equations coupled
with boundary and/or initial conditions. The form of the model equations
essentially depends on the nature of reservoir, namely, the rock and fluids
filling it. The knowledge of the rock and fluid properties is generally very
limited, though crucial for creating a representative model. Additional diffi-
culties are caused by the fact that rock properties usually vary in space (i.e.
are heterogeneous).

Since the field description is quite complex, it is practically impossible to
solve the model analytically even using simplifying assumptions. This obstacle
can be overcome by solving the mathematical model via numerical methods
to obtain approximate results. The continuous development of the computer
industry supports building and solving numerical models with an increasing
number of details.

The mathematical models are employed in making initial predictions of
reservoir performance and evaluating if development of a particular asset is
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potentially profitable. Numerical models are also used to mimic the processes
occurring in the reservoir during production, which allows investigation and
comparison of various production scenarios, and determination of the most
optimal production strategy based on predefined, usually economic, criteria.

Mathematical models form an important component of the integrated
closed-loop model-based reservoir management (CLRM) framework [37, 38],
and as such have to be considered in close connection to the other key ele-
ments of the CLRM process. Figure 1.3 displays reservoir management as a
model-based controlled process.

System
(reservoir, wells
& facilities)

Optimization
routine

Sensors

Measured
output

System & sensor
models

Data assimilation
routine

Noise Input Output Noise

Controllable
input

Predicted
output

Figure 1.3: Closed-loop model-based reservoir management [38].

The system box on the top represents physical reality with one or more
reservoirs, wells and facilities. The system is controlled by a number of input
parameters, and system behavior is monitored with the help of sensors gath-
ering various information about the system variables (e.g. pressures and flow
rates in the wells). Both system inputs and outputs are imperfectly known
and subject to noise.

In the most general form the system model is a mathematical relationship
between the inputs and outputs. The system and sensor models may include
static (geological), dynamic (reservoir flow) and well bore flow models set up
to mimic the behavior of the real system. Here the multiple boxes represent
the need for multiple geological models to quantify the range of uncertainty
in the knowledge on subsurface structure for a given reservoir.
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These system models are usually just a very crude approximation of real-
ity, and the model parameters, such as permeabilities, are only known with
large uncertainty. Therefore the predictive value of these models is limited and
tends to deteriorate in time. Data assimilation (i.e. computer-assisted history
matching) is used to calibrate such models and improve their predictive capa-
bility. Data assimilation employs the data that become available during the
production life of the reservoir to update the values of poorly known model
parameters in time, i.e. to adapt parameters such that simulated results are
consistent with measured data.

After the history matching (HM) has been performed, the model can be
used for developing optimal production strategy and decision making. This
may involve e.g. determining the optimal number of wells, their locations
and controls. The procedure is reiterated whenever the new data become
available.

1.2.1 History matching loop

From the mathematical point of view history matching can be seen as a min-
imization problem, namely as searching for a combination of reservoir pa-
rameters that minimizes a least-squares objective function representing the
difference between the observed reservoir performance and the results of sim-
ulation over a past period [56, 59]. History matching is usually an ill-posed
problem, because there are more unknowns than constraints to resolve all un-
determined quantities. Then the Gauss-Newton method applied to minimize
cost function fails because the Hessian is ill-conditioned. Such a problem can
be overcome by applying some regularization strategy (e.g. by use of prior
geostatistical model [48]).

Formulated in this manner, the history matching problem can be addressed
with data assimilation methods as used in meteorology and oceanography. In
these fields, data assimilation is primarily used for state estimation, i.e. it is
aimed at producing improved forecasts of model states (dynamic variables)
by combining information available in measurements and prior models. The
majority of data assimilation techniques can be easily adjusted to also produce
improved forecasts of model parameters (static variables). An essential differ-
ence is that state estimation can be formulated as either a linear or a non-linear
problem, whereas parameter estimation is always a non-linear problem. Most
data assimilation methods were originally developed for linear state estimation
problems. Application of those techniques to history matching problems in
the reservoir engineering domain therefore requires adaptations to cope with
the essential non-linearity of parameter estimation, which usually results in
iterative procedures.

Traditionally, a distinction is made between two main approaches to data
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assimilation: 1) variational techniques, where gradient-based minimization
methods are used to minimize an objective function representing the mismatch
between all modeled and measured observations over the entire assimilation
period, and where exact gradients are used that are usually computed with
the aid of an adjoint method (see e.g. [13, 14, 17, 61, 77] for early applications
of adjoint-based variational algorithms in reservoir engineering and meteorol-
ogy); 2) recursive techniques (also known as ’sequential techniques’), where
the mismatch between modeled and measured observations is minimized at the
moment that the measurements become available, and where stochastic ap-
proximations to the gradients are used (see e.g. [39] for Kalman filter methods,
[23] for an overview of meteorological and oceanographic problems addressed
with the ensemble Kalman filter (EnKF) and its modifications). In fact there
is no reason to restrict the use of exact gradients to the assimilation of all
observations over the entire period, or to restrict the use of stochastic gradi-
ents to sequential assimilation, and indeed both variational and the recursive
methods may be utilized to sequentially assimilate groups of measurements
taken over subintervals of the data assimilation period. Variational meth-
ods may be applied to solve deterministic or stochastic assimilation problems.
Deterministic problems are those where uncertainty is assumed in neither the
measurements nor the model (i.e. the states and/or the parameters). On the
contrary, stochastic problems are those where we assume that errors may be
present in the measurements and/or the model. Recursive methods are typi-
cally only used to solve stochastic assimilation problems, because computing a
stochastic gradient presupposes the presence of uncertainty. It can be shown
that for linear problems the stochastic versions of variational and recursive
approaches lead to exactly the same results. For non-linear cases, however,
different results can be expected depending on the particular linearization
strategies and iterative procedures employed. During the past decades both
approaches have been actively exploited for parameter estimation in reservoir
engineering: Kalman filter algorithms for history matching are discussed in
e.g. [2, 24, 29, 53] and examples of adjoint-based variational techniques as ap-
plied to history matching are given in e.g. [13, 14, 48, 59]. The performances
of EnKF and variational algorithms in application to history matching have
been compared in [32].

The history-matched model is further used to forecast field performance
under specified development strategy. This allows investigation of various field
production scenarios, their evaluation against predefined criteria and compar-
ison with each other, and identification of potential risks during field develop-
ment.
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1.2.2 Production optimization loop

During production optimization, the goal mostly is to maximize a certain eco-
nomic criterion. Frequently the net present value (i.e. the difference between
the revenues and the costs) or the recovery factor is being maximized. The
optimization parameters are the number, the type and the location of wells,
and their control strategies.

Spatial heterogeneities of reservoir geological characteristics form addi-
tional obstacles for production optimization during water flooding, as they
can cause preferential fluid flow paths outside of which significant quantities
of hydrocarbons can be bypassed and remain not recovered. When water is
injected through the injection wells in order to sweep the oil into production
wells, the heterogeneities lead to irregularities in the shape of the moving
water-oil front. Once this front has reached the production well, a preferen-
tial flow path is formed, through which most of the injected water will flow.
Continuing water injection will result in production of water instead of oil.
This can make production from a given well economically inviable, and the
well will have to be shut-in. Had the wells been drilled in different locations
or operated in a different manner, the water breakthrough could have been
postponed.

Execution of the optimization loop in the CLRM framework can assist in
identifying an optimal production strategy. For a given configuration of wells,
the flooding process can be optimized over the producing life of the reservoir
by appropriate selection of well rates and pressures (see e.g. [9, 73]). This
problem has been studied both under assumption of perfect [43, 73] and imper-
fect [91] knowledge on model parameters. For early attempts on optimization
of tertiary recovery processes such as polymer or carbon dioxide flooding see
[66]. Optimizing production through sophisticated selection of well locations
and well trajectories is discussed in e.g. [91] and [85] respectively.

1.3 Research objective and solution directions

Constituting the subject of closed-loop model-based reservoir management
framework history matching (data assimilation) and optimization loops are
very challenging.

The history matching phase mainly focuses on improving the model pa-
rameters such that the model will closely mimic the processes occurring in the
reservoir during production. The solution of this problem is usually obtained
by incorporating available measurements into the model, i.e. translating them
into the corrections that have to be applied to the model parameters.

In a general case, the use of a larger measurement set potentially improves
estimators of the model parameters and predictive capability of the model.
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In that sense it is beneficial to involve all the measurements available into
a history matching procedure. However, the information extracted from the
measurements in the history matching phase is repeatedly found as not enough
to provide a well-calibrated model with a high predictive value (see e.g. [63,
83]). Hence, consideration of additional data can be of particular help. To
optimize the costs and effort associated with the collection of new data and
computations, one needs to (i) identify which data or portions of them have
the most effect on the model improvement and, hence, should be studied and
gathered carefully; (ii) establish the value of new data in reducing uncertainty;
(iii) estimate the type and amount of data required to be assimilated to obtain
a model of the desired accuracy.

The selection of measurements becomes an issue also during the produc-
tion optimization phase, since new wells to be drilled according to the field
development plan will bring additional data on previously inaccessible areas
of the reservoir. These new measurements are thereafter assimilated in the
model. Naturally, production settings yielding the same value of optimization
criterion do not necessarily provide observations having the same effect on
model uncertainty when history-matched. Therefore a production strategy
that results in gathering the most influential data can become preferential.

1.3.1 Research objective

The discussion on the use of observations raises an important question to be
answered: can the information provided by the observations be quantified?
A simple data count might be misleading as not all observations are equal in
what they measure and in their accuracy. This leads to the following objective
of this research:

To develop efficient tools for quantifying the impact of measured
data on the outcome of history matching of reservoir models.

The tools are recognized as efficient if they provide meaningful quantification
of the impact of observations, while requiring limited time and effort to be
incorporated in the history matching phase of the closed-loop reservoir man-
agement framework.

1.3.2 Solution directions

Methods to assess the impact of observations (i.e. measurements of physi-
cal variables) have originally been developed for meteorological and oceano-
graphic applications. In meteorology and oceanography the collected data
are fed into the data assimilation process with the aim to improve the ini-
tial conditions of the model. The measurement equipment nowadays provides
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enormous amount of data on a daily basis. Assimilating these data becomes
too demanding for operational forecasting systems due to time constraints on
obtaining the new forecast and limitations of computational resources. Hence
efforts are made towards proper selection of the most influential measure-
ments. The data assimilation process in meteorology and oceanography has
many similarities to computer-assisted history matching in petroleum reser-
voir engineering. Therefore, this thesis will investigate the applicability of
these methods to quantify the impact of observations to the history matching
of reservoir models.

Three main approaches can be distinguished to determine the impact of
observations:

• Observation targeting methodologies aim at identifying the regions where
uncertainty in the initial conditions can result in a wide range of pos-
sible model predictions. The regions can be detected with the help of
e.g. singular vectors [25, 60]. It is envisaged that assimilation of the
measurements collected in these sensitive regions can reduce the uncer-
tainty in the forecasts. The outcome of such an analysis can provide
useful guidelines for surveillance campaigns by targeting locations for
data gathering. However, there exists no direct way to translate these
recommendations into the value of a particular observation;

• An observation sensitivity matrix can be constructed to quantify the
effect of measured data on the model parameter update [11, 65]. The
matrix can be used to evaluate the amount of information extracted
from available data during the data assimilation phase and identify the
observations that have contributed to the parameter update the most.
Though no immediate conclusion can be made on the importance of
these exceptional data points for the quality of model predictions, it
is reasonable to expect that an improved model characterization will
result in improved forecasts. This technique is easy to implement both
for adjoint-based and EnKF types of data assimilation algorithms;

• The forecast sensitivity to observations concept considers the gradient
of a forecast error cost function with respect to the vector of measure-
ments. This gradient is used to diagnose the observations that, when
assimilated, are likely to have a positive impact on subsequent model
predictions [20, 26, 46]. The scalar forecast error cost function used
in atmospheric applications usually includes a verifying analysis trajec-
tory. In reservoir engineering applications, however, no verifying analy-
sis is available. Moreover, implementation of the sensitivity calculations
is cumbersome and relies on an adjoint, which is often not available.
Though the authors of [49] attempted to overcome this drawback for
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data assimilation systems involving EnKF, it has not yet resulted in the
standardized procedure.

The above discussion on the available methods, their benefits and drawbacks,
leads to selecting the observation sensitivity matrix approach as the most
prospective candidate for tackling the stated research problem. Throughout
the study we consider a field at the secondary recovery stage being operated
through water flooding with multiple injectors and producers to test the in-
fluence of the data on the outcome of the history matching.

1.4 Thesis outline

The thesis is organized as follows.
Chapter 2 presents the mathematical model for multi-phase fluid flow be-

havior and provides the set-up of the case studies performed in the remainder
of the thesis.

Chapter 3 investigates application of a particular variational method, the
representer method, to history matching. Computational inefficiency of the
representer method for assimilation of large data sets leads to testing the
capabilities of its accelerated version.

Chapter 4 describes two EnKF techniques: the classical EnKF and its
asynchronous modification. Both techniques are powerful tools for data as-
similation, and are tested prior to being used as platforms to evaluate the
impact of measured data. This chapter is partly based on [44].

Chapter 5 focuses on the details of the observation sensitivity matrix con-
cept and its implementation for history matching with both variational- and
EnKF-based algorithms, and discusses and interprets the results. In addition,
possible theoretical extensions of the concept are considered. This chapter is
partly based on [45].

Finally, Chapter 6 concludes the thesis by summarizing the findings and
recommendations for further research.



2

Experimental environment

2.1 Introduction

To quantify the impact of data in reservoir modeling and history matching,
first the history matching exercise itself has to be set up. We are considering
a field at the secondary recovery stage being operated through water flooding
with multiple injectors and producers, and test the influence of the data on the
outcome of the history matching with the aid of a synthetic (’twin’) experiment
(Section 2.3). Setup of the history matching exercise includes:

• identifying the appropriate model to describe the processes in the reser-
voir at the water flooding stage of production;

• defining the known parameters of the fluid flow model;

• determining the uncertain parameters to be estimated and specifying
the prior knowledge on these;

• generating synthetic data (or collecting real ones);

• implementing and testing the history matching algorithms.

This chapter defines the experimental settings and characteristics to be
used in the case studies except for the history matching algorithms that are
discussed in the next two chapters.

2.2 Reservoir model

We consider the equations for two-phase (oil-water) flow through porous me-
dia (see e.g. [4]). Moreover, we simplify the analysis by assuming a two-
dimensional horizontal reservoir, isotropic permeability, small fluid and rock

11
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compressibilities, and by disregarding gravity and capillary pressure. For the
details on fluid-rock properties (e.g. capillary pressure) the reader is referred
to e.g. [4, 21] and Appendix A of this thesis.

2.2.1 Governing equations

The mass balance equations can be expressed for each phase as

∇ · (ρivi) +
∂ (ρiφSi)

∂t
− ρiqi = 0, (2.1)

where ρ is phase density at in-situ conditions, v is the Darcy velocity, φ is
porosity, S is saturation, q is flow rate per unit volume, t is time, and the
subscript i indicates the phase (oil or water). The differential representation
of Darcy’s law for the simultaneous flow of more than one phase takes the
form

vi = −kri
µi

k∇pi, (2.2)

where k is permeability, kri(Si) is relative permeability (see also Appendix A),
µ is viscosity and p is pressure.

Substituting (2.2) in (2.1), using the closure equation

2∑

i=1

Si = 1, (2.3)

and working out the expressions yields

−∇ ·
(
ρw

krw
µw

k∇p

)
+

∂ (ρwφSw)

∂t
− ρwqw = 0, (2.4)

−∇ ·
(
ρo

kro
µo

k∇p

)
+

∂ (ρoφ(1− Sw))

∂t
− ρoqo = 0, (2.5)

where the subscripts ’o’ and ’w’ for the pressure have been omitted, since the
absence of capillary pressure implies that po = pw.

With the aid of the definitions for small fluid and rock compressibilities

ci(p) =
1

ρi

∂ρi
∂p

(2.6)

and

cr(p) =
1

φ

∂φ

∂p
(2.7)
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equations (2.4)–(2.5) can be rewritten as

− 1

µw

[
∂

∂x

(
kkrw

∂p

∂x

)
+

∂

∂y

(
kkrw

∂p

∂y

)]

+

[
φSw(cw + cr)

∂p

∂t
+

∂Sw

∂t

]
− qw = 0,

(2.8)

− 1

µo

[
∂

∂x

(
kkro

∂p

∂x

)
+

∂

∂y

(
kkro

∂p

∂y

)]

+

[
φ (1− Sw) (co + cr)

∂p

∂t
− ∂Sw

∂t

]
− qo = 0.

(2.9)

Initial conditions for equations (2.8)–(2.9) are set in the form of con-
stant pressure and saturation fields. Boundary conditions are specified as
no-flow conditions at external boundaries and prescribed bottom-hole pres-
sures and/or total flow rates at the wells.

2.2.2 State space representation

Applying a central difference scheme with uniform grid to approximate the
spatial differentials [4], the spatially discretized version of model (2.8)–(2.9)
can be expressed as

Ê(x)ẋ = Â(x)x + B̂(x)u, (2.10)

where Ê is the accumulation matrix, Â is the transmissibility matrix, B̂ is
the input matrix, u is the input vector representing prescribed flow rates or
bottom hole pressures in the wells, and xT = [pT sT] is the state vector
consisting of grid block pressures p and water saturations s. Expression ẋ

designates the derivative of the state vector with respect to time.

2.2.3 Simple simulator simsim

The in-house simple simulator simsim used in the current investigation solves
the system of equations (2.10). The reservoir is supposed to be operated under
constraints on bottom hole pressures and/or total flow rates at the wells. The
simulator uses implicit Euler integration with Newton iteration for solving
(2.10). After initialization with grid block pressures and saturations, a given
input strategy u, and with parameters describing the rock and fluid properties
(permeability, porosity, compressibility and viscosity), the user can obtain the
state vector x at each time point of interest tn, i.e.

xn = M(xn−1,φ,k),

where porosity φ and permeability k are vectors containing values of porosity
and permeability for each of the grid cells, and M is an operator representing
the action of the reservoir simulator.
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The simulator also generates an output vector ypr of production data,
consisting of the values of bottom hole pressures and water and oil flow rates
at each of the wells, i.e.

ypr =




pwell
bh

qwell
o

qwell
w


 ,

where pwell
bh denotes the vector of bottom hole pressures, qwell

o and qwell
w stand,

respectively, for the vector of oil flow rates and the vector of water flow rates.
The output vector is related to the state vector according to

ypr
n = Hpr(xn,φ,k),

where Hpr is an operator providing output from the model.

2.2.4 Parameter estimation: augmented state vector
approach

One of the approaches to perform parameter estimation involves incorporation
of the parameters of interest into the state vector. Our study is focused on
estimating porosity and permeability fields, hence, the relevant variables have
to be included into the state vector.

The parameters values are often subject to a log-transform [59] in order to
comply with the Gaussian assumptions classically used in the data assimilation
methods (see e.g. [23, 39]). If porosity φ and permeability k are transformed
into ln(− lnφ) and lnk respectively, then the transformed values belong to the
interval (−∞,∞). Log-transformation also resolves the problem of obtaining
non-physical values of parameters after a linear data assimilation update.

Using these transformations, the augmented state space vector reads:

x∗ =




x

ln(− lnφ)
ln(k)


 =




p

s

ln(− lnφ)
ln(k)


 . (2.11)

Note that a linear assimilation update can potentially also result in non-
physical values of the pressures p and particularly of the saturations s. More-
over, since the data assimilation update does not take into account the physical
nature of the relationships between different variables, the updated values of
pressures and saturations may be impossible for the system to reach from its
initial condition given the newly estimated values of the parameters.

Appropriate transformations can be employed to ensure the updated val-
ues of the pressures and saturations are within physical bounds, e.g. the
authors of [67] and [36] respectively suggest applying log-transform or inverse
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error function transform to the saturations. This, however, does not resolve
the possible inconsistency between the dynamic state of the system and its
estimated parameters. Transforming the saturations is not considered in this
thesis, as we are mostly interested in the estimated values of porosity φ and
permeability k, which in turn allow to consistently restore the dynamic state
of the deterministic system given its initial state.

If the model parameters are considered as static, i.e. time invariant, then
the model equations take the form

x∗
n = M∗

(
x∗
n−1

)
, (2.12)

where

M∗
(
x∗
n−1

)
=




M(xn−1,φ,k)
ln(− lnφ)
ln(k)


 .

Expression (2.12) gives the state space representation of the model under
study. To account for time invariance, operator M∗ acts as identity operator
for the parts of the state vector x∗ corresponding to the transformed porosity
and permeability values. In a simple case of linear transformation M with a
matrix M, the transformation M∗ is also linear and given by a block diagonal
matrix

M∗ =




M 0 0

0 Iφ 0

0 0 Ik


 ,

where Iφ and Ik are the identity matrices (operators) of appropriate sizes to
be applied to the transformed vectors of porosity and permeability.

The remainder of the paper considers the model in the form (2.12) with
the asterisk omitted to simplify the notation.

2.3 Twin experiment

We test the performance of the history matching algorithms with the aid of
a twin experiment, i.e. we use a reservoir model representing the ’truth’ to
generate synthetic noisy measurements, and we assimilate these measurements
in another model, different from the ’truth’ but with similar characteristics.

2.3.1 ’Truth’ model

We use a simple two-dimensional two-phase (oil-water) simulation model to
represent the ’truth’ with a permeability field resembling the fields considered
in earlier studies [64] and [70]. The model describes a square oil field with
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a size of 700 m × 700 m and a thickness of 2 m. The model has a uniform
cartesian grid consisting of 21 grid cells in each direction.

The field is produced through waterflooding with five wells: a water in-
jection well (INJ) at the center and four production wells, one each at the
North-West (NW), South-West (SW), North-East (NE) and South-East (SE)
corners. The ’true’ permeability and porosity fields are depicted in Figure
2.1. They each represent a single member out of ensembles of permeability
and porosity fields which will be described later.
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Figure 2.1: ’True’ permeability and porosity fields. The scale represents trans-
formed values of permeability [m2] and porosity [-].

The relevant reservoir and fluid properties are listed in Table 2.1. The wells
are controlled by prescribing an injection rate of 0.002 m3/s in the injection
well and bottom hole pressures of 2.5 · 107 Pa in the producers.

Property Value Units

Oil viscosity 0.5 · 10−3 Pa · s
Water viscosity 1.0 · 10−3 Pa · s
Total compressibility 1.0 · 10−7 1/Pa
Initial reservoir pressure 3.0 · 107 Pa
Initial water saturation 0.2 −
End point relative permeability, oil 0.9 −
End point relative permeability, water 0.6 −
Corey exponent, oil 2.0 −
Corey exponent, water 2.0 −
Residual oil saturation 0.2 −
Connate water saturation 0.2 −

Table 2.1: Reservoir and fluid properties.
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2.3.2 Synthetic noisy measurements

The simulator is run from time t0 = 0 [days] to tend = 900 [days] providing
synthetic measurements after every 30 days of production. We assume that it
is possible to measure bottom hole pressure in the injector, and oil and water
fluid flow rates in the producers. Therefore the output vector yn becomes

yn = H (xn) =




pINJ
bh

qNW
o

qNE
o

qSWo

qSEo

qNW
w

qNE
w

qSWw

qSEw




,

where H is the non-linear observation operator that produces measurements
from a given state vector x predicted by the model.

These ’perfect’ measurements are transformed to noisy measurements by
adding noise to the ’true’ values of y according to

yn = H (xn) + ξn,

where ξn is Gaussian noise with mean zero and diagonal covariance matrix

Rn ∈ R
9×9, such that Ri,i

n = 0.1 ·
∣∣∣(H (xn))

i
∣∣∣, i = 1, . . . , 9, with superscript i

denoting the relevant matrix or vector element. This strategy implies that the
error in each observable variable is taken to be 10% of its actual value. The
same covariance matrix is then used to represent the measurement noise in the
data assimilation exercise. If the value of a generated synthetic measurement
is infeasible, it is discarded. An example of ’perfect’ and noisy measurements
is given in Figure 2.2.

2.3.3 ’Uncertain’ model

The data assimilation algorithm has to be initialized by generating an initial
augmented state. We assume that the initial state (grid block pressures and
water saturations) is equal to the initial condition of the ’true’ model and
does not contain any error. Moreover, we consider all inputs, reservoir dimen-
sions, and all parameters describing rock and fluid properties to be known
without uncertainty except for the grid block permeabilities k and the grid
block porosities φ. We however assume that lnk and ln(− lnφ) are normally
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Figure 2.2: Example of synthetic measurements: solid line — ’perfect’, dotted
line — noisy measurements.



2.3. Twin experiment 19

distributed. Finally, we avoid any model discretization error by using an ’un-
certain’ model for the data assimilation with the same number and geometry
of grid blocks as the ’truth’ model. These assumptions provide us with a very
simple test case that allows to assess the performance of the algorithms under
controlled conditions.

The mean and the spatial covariance matrices of the uncertain parameter
fields k and φ are obtained from an ensemble of 1000 reservoir models gen-
erated with an in-house developed geostatistical algorithm. The algorithm is
based on ordinary principal component analysis of a training image (similar to
[74]) and a matrix partitioning method [19] to constrain the parameter values
at the well bore location to known values. The mean values of the permeability
and porosity ensembles (depicted in Figure 2.3) are used as prior parameter
fields for the data assimilation procedure. The two ensemble members that are
selected as ’true’ permeability k and porosity φ fields are excluded from the
mean and covariance computations throughout the assimilation procedure.

5 10 15 20

5

10

15

20
 

 

−31

−30.5

−30

−29.5

−29

−28.5

(a) permeability field

5 10 15 20

5

10

15

20
 

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) porosity field

Figure 2.3: Prior permeability and porosity fields. The scale represents trans-
formed values of permeability [m2] and porosity [-].

The above twin experiment set-up is used as a base test case throughout
the study, unless specified otherwise.
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Representer and accelerated
representer algorithms

3.1 Introduction

A particular variational method is the representer method (RM). The original
RM was introduced by Bennett [8] for oceanography-related problems and
designed to perform a single minimization of an objective function over a long
assimilation time period using all available observations (typically a relatively
small amount). The algorithm’s key feature is the computation of a set of
so-called representers describing the influence of a certain measurement on an
estimation of the state and/or parameter. Traditionally, an important benefit
of the RM method was claimed to be its capacity to account for model errors
by imposing a model as a ’weak constraint’. However, e.g. [3, 80] have shown
that the addition of model errors is possible also in other variational data
assimilation schemes, although it may result in time consuming iterative pro-
cedures. For linear assimilation problems, the RM provides the answer to the
weak constraint problem using a one-shot approach, but for non-linear prob-
lems this benefit is lost because iteration is required anyway. Computationally,
the RM can be interpreted as a specific implementation of the Gauss-Newton
method for minimization of an objective function. Moreover, the representers
can be seen as sensitivity matrices that quantify the sensitivity of observations
to changes in linear combinations of model states or parameters. For linear
applications, it can be shown that these sensitivity matrices, and thus the
representers, are cross-covariance matrices between the observations and the
states or parameters [7]. The representers can also be interpreted as data-
driven basis functions to reparameterize a high-dimensional system model in
terms of the product of a small number of representer coefficients multiplying
the same small number of representers [70].

21
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Initially developed for the linear models, the algorithm was revised in [71]
for non-linear models providing an iterative technique that uses the RM to
solve a linearized problem at each iteration. Examples of the applications of
the RM to parameter estimation in reservoir models are described in [5, 6, 35,
64, 70].

However, the RM encounters computational efficiency problems when used
for systems with large amounts of measured data. This fact initiated a dis-
cussion on accelerating computations in [7]. Because meteorological mea-
surements nowadays become available for assimilation near-continuously, thus
tremendously increasing the computational workload, within meteorology Xu
and co-authors [89] developed an accelerated version of the representer method
(ARM) where direct computation of representers is avoided.

The features of the models and measurements used in reservoir engineer-
ing bear a similarity to those in ocean and atmospheric data assimilation. In
particular, an increasing amount of measurements is becoming available, e.g.
in the form of time-lapse seismic. That fact provided us with a motivation
to test the ARM in reservoir engineering applications and compare its per-
formance to that of the classical RM in terms of accuracy and computational
speed. The methods are used for assimilating production data to estimate
the permeability and porosity fields in a two-phase two-dimensional fluid flow
model.

3.2 The RM and the ARM

The section addresses solving an inverse problem formulated in terms of min-
imizing an objective (cost) function of least-squares type. This approach em-
ploys the method of Lagrange multipliers that yields a coupled Euler-Lagrange
system of equations, which are thereafter decoupled by means of the RM. The
method was introduced in [8] within oceanography and has a continuous form
in space and time. This section describes the algorithm in a manner similar
to [87] following a meteorological convention, in which the relevant equations
are first discretized in space and time.

3.2.1 Generalized cost function

Under the fundamental assumption that initial errors, model errors and ob-
servation errors are normally distributed, and considering model errors and
measurement errors to be uncorrelated in time, the inverse problem can be
viewed as a minimization of the following objective function:

J = Jp
0 + Jq + Jr, (3.1)
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where

Jp
0 =

1

2
[xp

0 − x0]
T
P−1

0 [xp
0 − x0] ,

Jq =
1

2

N∑

n=1

[xn −M(xn−1)]
T
Q−1

n [xn −M(xn−1)] ,

Jr =
1

2

N∑

n=1

[yn −H(xn)]
T
R−1

n [yn −H(xn)]

for the time period t0 ≤ tn ≤ tN . Jp
0 , J

q and Jr are the cost functions of the
initial, model and observation errors respectively. Superscript p refers to the
prior, subscripts 0 and n stand for the initial and the nth model time steps.
The non-linear model M is assumed to have a state vector of length I and N
time steps with 1 ≤ n ≤ N , xn is a state vector in the model space, and Qn

is a rank I model error covariance matrix at time t = tn. The prior x
p
n is a

forecast of length I at time t = tn, P0 is a rank I covariance matrix of initial
errors. A vector of observations of length kn at a time t = tn is denoted by
yn, where

∑N
n=1 kn = K. Therefore K is the dimension of the full observation

vector. H is a non-linear observation operator that produces kn measurements
predicted by the model from a given state vector xn at time t = tn and Rn is
a rank kn observation error covariance matrix at a time t = tn.

The non-linear model M is assumed to be imperfect:

xn −M(xn−1) = ǫn, (3.2)

where ǫn represents model error forcing at time t = tn. With the aid of the
method of Lagrange multipliers, imposing (3.2) to the problem of minimizing
cost function (3.1) leads to the following optimization problem:

J =
1

2
[xp

0 − x0]
TP−1

0 [xp
0 − x0]

+
1

2

N∑

n=1

ǫTnQ
−1
n ǫn

+
1

2

N∑

n=1

[yn −H(xn)]
TR−1

n [yn −H(xn)]

+

N∑

n=1

λT
n [xn −M(xn−1)− ǫn].

(3.3)

Taking the first variation of function (3.3) yields

δJ =
∂J

∂x0
δx0 +

N∑

n=1

∂J

∂xn
δxn +

N∑

n=1

∂J

∂ǫn
δǫn +

N∑

n=1

∂J

∂λn
δλn,
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hence,

δJ =
{
−(xp

0 − x0)
TP−1

0 − λT
1 M0

}
δx0

+

N∑

n=1

{
−(yn −H(xn))

TR−1
n Hn

}
δxn +

N∑

n=1

{
λT
n − λT

n+1Mn

}
δxn

+

N∑

n=1

{
ǫTnQ

−1
n − λT

n

}
δǫn

+
N∑

n=1

{xn −M(xn−1)− ǫn}T δλn,

(3.4)

where the matrix Mn = ∂M(xn)
∂xn

is the I × I Jacobian matrix corresponding

to the model operator M(xn) and the kn × I matrix Hn = ∂H(xn)
∂xn

is the
Jacobian matrix for observation operator H(xn). For later convenience, a
’dummy’ variable λN+1 is chosen equal to 0.

If xa is the analysis (or the estimated) state, i.e. the value of x that
minimizes J , then δJ |

x=xa = 0. Under this requirement, it follows from (3.4)
that

λn −MT
nλn+1 = HT

nR
−1
n (yn −H(xa

n)), n = 1, . . . , N − 1, (3.5)

subject to λN = HT
NR−1

N (yN −H(xa
N )) and

xa
n −M(xa

n−1) = Qnλn, n = 1, . . . , N, (3.6)

subject to xa
0 = x

p
0 +P0M

T
0 λ1. Note that Qnλn = ǫn, n = 1, . . . , N .

Expression (3.5) is an equation for adjoint variable λn, n = 1, . . . , N , and
has to be integrated backward in time, whereas (3.6) integrates the analysis
variable xa forward in time. Equations (3.5) and (3.6) form a coupled system
that cannot be solved directly. The next subsection outlines a decoupling
strategy for the system (3.5)–(3.6) via the RM.

3.2.2 The RM: linear and non-linear cases

Under the simplifications introduced in the previous section and assump-
tions of model and observation operator linearity (i.e. M(xn) = Mnxn and
H(xn) = Hnxn) the Euler-Lagrange equations (3.5)–(3.6) yield

λn −MT
nλn+1 = HT

nR
−1
n (yn −Hnx

a
n), n = 1, . . . , N − 1, (3.7)

subject to λN = HT
NR−1

N (yN −HNxa
N ) and

xa
n −Mnx

a
n−1 = Qnλn, n = 1, . . . , N, (3.8)
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subject to xa
0 = x

p
0 +P0M

T
0 λ1.

The prior state estimate xp is obtained via model forecast

xp
n = Mnxn + ǫpn, n = 1, . . . , N,

subject to the initial condition x
p
0. Here ǫ

p
n is a prior estimate of model noise.

Consider K representer functions γk, 1 ≤ k ≤ K, with the adjoints αk,
1 ≤ k ≤ K, satisfying

{αk}n −MT
n{αk}n+1 = {HT

k }n, n = 1, . . . , N, (3.9)

and {αk}N+1 = 0. Then the adjoint field αk for the kth observation can
be obtained by integrating equation (3.9) backwards. Once αk is known, the
representer functions can be found by solving

{γk}n −Mn−1{γk}n−1 = Qn{αk}n, n = 1, . . . , N, (3.10)

subject to initial condition {γk}0 = P0M
T
0 {αk}1.

The solution of (3.7)–(3.8) is sought as a sum of a prior and correction
terms, whereas the correction is a linear combination of representer functions

xa = xp +

K∑

k=1

γkβk = xp + ΓTβ, (3.11)

where matrix ΓT = (γ1, . . . ,γK) contains representers, β = (β1 . . . βk . . . βK)T

is a vector of unknown scalar coefficients, and βk is the representer coefficient
for the kth representer function. Note that Γ is actually a prior error co-
variance between the observations and the model states. The representer
coefficient vector β can be computed as

β = [HΓT +R]−1[y −Hxp], (3.12)

where yT = [yT
1 . . .yT

n . . .yT
N ] is a vector of all observations, R is a block

diagonal matrix with blocks R1, . . . ,RN , H is a block diagonal matrix with
blocks H1, . . . ,HN . For further details the reader is referred to [87].

Solving the coupled Euler-Lagrange equations (3.5) and (3.6) meets addi-
tional obstacles due to the fact that the operators M and H are non-linear.
This problem can be overcome by producing an iterative sequence of coupled
problems, each iteration step linearized about an analyzed basic state from
the previous iteration [71]. The linearized problem is thereafter solved via the
RM. The algorithm flowchart is presented below (Figure 3.1).

The procedure is expected to converge to an approximation of the non-
linear solution if the non-linearities in the system are not too strong.

It turns out that for systems with a large amount of measurements direct
computation of representer coefficients (3.12) is inefficient. This fact has led to
discussion on accelerating computations in [7], and derivation of the so-called
ARM introduced in [88] and further developed in [89].
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Figure 3.1: Iterative approach to the RM in the non-linear case.

3.2.3 The ARM

To reduce the computational costs while solving the Euler-Lagrange equations
(3.7)–(3.8) via the RM, an accelerated procedure can be used. The accelerated
algorithm, following [89], aims at improving the performance of the solver
[HΓT+R]−1[y−Hxp] and the post-multiplication with ΓT in equation (3.11).

The solver [HΓT +R]−1[y −Hxp]

The problem can be described as solving a system of linear equations

[HΓT +R]z = [y −Hxp] (3.13)



3.2. The RM and the ARM 27

with respect to z, where zT = [zT1 . . . zTn . . . zTN ] and zn is a vector of length kn
corresponding to time tn. Equation (3.13) is usually solved iteratively using
descent methods such as the conjugate gradient (CG) algorithm. Within
these algorithms a matrix-vector multiplication has to be performed at each
iteration:

v = [HΓT +R]w,

where w is a known vector of length K and v is a vector of length K, or

v = v∗ + v+ (3.14)

with v∗ = HΓTw and v+ = Rw.
Define (v∗)T = [(v∗

1)
T . . . (v∗

n)
T . . . (v∗

N )T] and wT = [wT
1 . . .wT

n . . .wT
N ],

where (v∗
n)

T and wT
n are vectors of length kn with wT

n assumed to be known
for n = 1, . . . , N . Introduce two vectors fn and gn which are defined for each
time tn and have length I. Then the backward sweep reads as

fn = MT
n fn+1 +HT

nwn, n = 1, . . . , N − 1,

subject to fN = HT
NwN .

The backward sweep is followed by the forward sweep

gn = Mn−1gn−1 +Qnfn, n = 1, . . . , N,

subject to g0 = P0M
T
0 f1.

Finally,
v∗
n = Hngn, n = 1, . . . , N,

and computation of vn via (3.14) is therefore straightforward.

The post-multiplication ΓT

The post-multiplication reduces to the problem of matrix-vector multiplication
ΓTz. Similarly to the previous section the algorithm consists of backward and
forward sweeps, which are

fn = MT
n fn+1 +HT

nzn, n = 1, . . . , N − 1,

subject to fN = HT
NzN and

gn = Mn−1gn−1 +Qnfn, n = 1, . . . , N,

subject to g0 = P0M
T
0 f1.

Finally
xa
n = xp

n + gn, n = 0, . . . , N.

Given the original forward simulation, a new state estimate xa for the ARM
can be produced at the costs of two backward and two forward sweeps. The
algorithm also avoids direct computation and, hence, storage of the representer
matrix Γ.
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3.2.4 Scaling

Implementation of data assimilation methods and, in particular, representer-
based algorithms often meets an additional obstacle, namely, different orders
of magnitude of the entries in the state vector and the measurement vector
(e.g. pressure values in the order of 107 Pa and production rates in the order
of 10−3 m3/s). This fact becomes crucial when matrix-matrix and matrix-
vector multiplications have to be performed. In these operations the small
numbers tend to get lost because of finite machine precision, even though
they are important for the process. To prevent such a loss of information and
even divergence of the algorithm, we propose to rewrite the generalized cost
function (3.1) as

J∗ =
1

2
[xp

0 − x0]
T
P−1

0 [xp
0 − x0]

+
1

2

N∑

n=1

[xn −M(xn−1)]
T
Q−1

n [xn −M(xn−1)]

+
1

2

N∑

n=1

[
R−1/2

n yn −R−1/2
n H(xn)

]T [
R−1/2

n yn −R−1/2
n H(xn)

]
.

(3.15)

If scaled versions of the measurement vector and the observation operator are

considered, i.e. vector y∗
n = R

−1/2
n yn and operator H∗(xn) = R

−1/2
n H(xn),

then cost functions (3.15) and (3.1) are of the same form and representer
methods can be applied to minimize (3.15). Note that the Jacobian matrix

for observation operator H∗(xn) is H
∗
n = ∂H∗(xn)

∂xn

= R
−1/2
n

∂H(xn)
∂xn

= R
−1/2
n Hn.

It is also possible and sometimes desired to work with the scaled version
not only of the measurement vector/operator but also of the state space vector
and model. In such a case, a state vector can be premultiplied with e.g. an
inverse of a diagonal matrix that has absolute values of elements of the initial
state vector on its diagonal [79, 82]. In this study, however, scaling the vector
of observations was found to be sufficient to avoid numerical problems.

3.2.5 Assessing the quality of the algorithm performance

To evaluate the quality of the parameter estimate, we consider the value of the
cost function at the parameter estimate. Denote this value of the cost function
by Jopt. It can be shown that in case of linear parameter estimation problems
the minimum of 2J is approximately distributed as a χ2 with K degrees of
freedom [78]. In practice this result remains valid also for non-linear parameter
estimation problems [59]. Hence the expected value of cost function J at a
minimum is approximately K/2 and the corresponding standard deviation
is

√
K/2. Without further discussion, it is assumed in [59] that a reliable
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realization of the distribution lies within five standard deviations from the
mean and, therefore, the following inequality should hold for the obtained
estimate

K − 5
√
2K ≤ 2Jopt ≤ K + 5

√
2K. (3.16)

We can provide a rather rigorous justification of this fact with the aid of
Chebyshev’s inequality [31]

P (|X − µ| ≥ ασ) ≤ 1

α2
, (3.17)

where X is a random variable, µ and σ correspond to its mean and standard
deviation respectively, and α is a scalar. In our case X = Jopt, µ = K/2,
σ =

√
K/2 and α is suggested to be equal to 5. Then it follows from inequality

(3.17) that a realization of the distribution lies outside five standard deviations
from the mean with the probability of at most 1

α2 = 1
52

= 0.04, hence, in 96%
cases satisfying (3.16). Thus if the estimated model parameters imply a value
of Jopt that does not satisfy (3.16), their quality should be questioned.

In a synthetic case, moreover, there is an opportunity to compare estimated
values of the parameters with the ’true’ ones that were used to initialize the
experiment. For that matter a root mean square (rms) error measure is defined
as

Erms(z) =

√
‖z− ztrue‖22

I/4
, (3.18)

where z stands for the vector of parameters of interest, e.g. permeability.
The performance of a data assimilation procedure can also be characterized

by the quality of predictions obtained by using the history-matched model to
forecast behavior of the physical process beyond the history-matched period.
In particular, we will consider the prognosis of the water breakthrough time
in the production wells.

3.3 Results and discussion

The study is divided into two parts. First a history matching problem is solved
with the classical representer method and the accelerated representer method
to ensure that under certain conditions both algorithms provide estimates of
the same accuracy. Thereafter the computational performances of the RM
and the ARM are compared.

3.3.1 The RM as iterative procedure

We start by performing a history matching experiment with the RM. The
data assimilation is performed from time t0 = 0 [days] till tend = 450 [days],
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which ensures that water breakthrough occurs in none of the production wells.
The data is assimilated every 15 days for 20 times and since each measurement
vector contains 9 observations, a total of 180 measurements is history-matched.

Table 3.1 displays the results of the experiment in terms of measures
(3.16)–(3.18).

Value of
cost function

Erms(φ) Erms(k)

Initially 1948.881 0.12 1.16
1st outer loop 117.840 0.07 0.60
2nd outer loop 79.824 0.06 0.53
3rd outer loop 79.312 0.06 0.53
4th outer loop 79.305 0.06 0.53
5th outer loop 79.304 0.06 0.53

Table 3.1: Results of history matching using the RM.

The largest drop in the value of the cost function occurs after the first iter-
ation, while the subsequent iterations keep steering the cost function towards
a local minimum. Overall, the cost function drops from 1948.881 to 79.304.
Moreover, the computed minimum value of the cost function is close to the
expected minimum value of 90 and satisfies criterion (3.16), which in this par-
ticular case has the form 42.567 ≤ Jopt ≤ 137.434. Since we are running a
synthetic experiment, we have an opportunity to compare the estimated per-
meability and porosity fields to the ’true’ ones in terms of the rms error. The
changes in rms error follow the same trend as the changes in the value of cost
function. In particular, the biggest improvement is again obtained within the
1st outer loop of the algorithm. Overall, the rms error for permeability is
reduced from 1.16 to 0.53 and for porosity from 0.12 to 0.06.

In line with these results, the updated permeability and porosity fields
already display the main features of the ’true’ fields after the first iteration
(compare Figure 3.2a vs. 2.1a and Figure 3.3a vs. 2.1b). In particular, the
high permeability (and porosity) streak between the SW and NE production
wells can be recognized. Subsequent outer loops keep improving the details of
the earlier determined structure (see Figures 3.2 and 3.3).

An important aspect of reservoir simulation is the accurate prediction of
water breakthrough in the production wells. In our case, the prediction is
obtained by running the model forward to time moment t = 1500 [days] with
parameters as estimated at tend = 450 [days]. Figure 3.4 illustrates that the
prediction of water breakthrough is much more accurate when the calibrated
model is used than when the initial model is applied.
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Figure 3.2: Estimated permeability field. The scale represents transformed
values of permeability [m2].

3.3.2 Tuning the ARM

To compare the computational performance of the RM and the ARM, it is
first necessary to adjust the ARM in such a way that it produces results of
the same accuracy and in the same number of outer loops as the RM. This
can be done by selecting the appropriate termination criterion used to cease
the conjugate gradient loop while solving equation (3.13).

For that purpose we ran one outer loop of the RM assimilating data at 20
times and one outer loop of the ARM with various termination criteria for the
conjugate gradient solver using the same data. The experiment was repeated
ten times and the averaged results are displayed in Figure 3.5.
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(e) 5th outer loop

Figure 3.3: Estimated porosity field. The scale represents transformed values
of porosity [-].

Naturally, a run of the ARM requires more time if a smaller value is used
for the stopping criterion (Figure 3.5a). At the same time, the accuracy of
the value of the cost function improves. It can be observed that if 10−2

is chosen as termination criterion, the ARM provides a cost function which
value is reasonably close to the one obtained by the classical RM (Figure
3.5b). Moreover, Figures 3.5c and 3.5d illustrate that for this value of the
termination criterion the parameters estimated by the two methods are of the
same quality. Therefore, we used a termination criterion equal to 10−2 for the
remainder of the study.
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Figure 3.4: Forecast of water flow rate at production wells.

3.3.3 Comparison of computational performance

We first consider the approximate amount of elementary operations (summa-
tion and multiplication of two numbers) that have to be accomplished within
one outer loop of the RM and the ARM. The computations are summarized
in Tables 3.2 and 3.3. We discuss only the operations that correspond to the
core of the methods and that are different for the algorithms.

Under the measurement strategy that we apply (namely, nine measure-
ments are collected at a time, i.e. K = 9N or N = K/9), the computational
load of the RM is driven by terms of magnitude K3 and K4, whereas the num-
ber of operations for the ARM grows as K3 for large amounts of data. Using
the estimates of the total number of operations performed by both methods
(Tables 3.2 and 3.3) we can expect that for small amounts of measurements
the original RM is faster than the ARM, but that for K ≥ 13 the ARM
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Figure 3.5: Different performance measures of the ARM vs. the stopping
criterion for terminating the conjugate gradient loop.

demonstrates its efficiency. Indeed, the results of the computational exper-
iment presented in Figure 3.6a confirm that the ARM starts outperforming
the classical RM as the amount of assimilated data points increases. However,
it can be observed that the ARM only outperforms the RM when more than
85 observations are used for the experiment, which is a considerably higher
number than the 13 observations expected from the operations count.

The main reason for this delayed performance is that due to implemen-
tation matters, the ARM needs to accomplish some extra work to load the
model Jacobians. In particular, there have to be loaded 2N and 2N + 2NK
Jacobians within one outer loop of the RM and the ARM respectively. This
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Figure 3.6: Computational time of the RM and the ARM vs. number of
measurements.

effect is illustrated in Figure 3.6b, in which time spent by both methods for
loading Jacobians has been excluded from the comparison.

3.4 Conclusions

We compared the (computational) performance of the classical RM and the
ARM as applied to gradient-based history matching. In particular, we per-
formed a twin experiment in which we estimated the uncertain permeability
and porosity fields in a small two-phase two-dimensional subsurface fluid flow
model from noisy production measurements in the wells. First the RM was
tested and was found to provide a reasonable parameter estimate in such a
case. Thereafter the possibilities to tune the ARM to produce results of the
same accuracy as the original RM were investigated. It was found that the
accuracy of the ARM can be controlled by the termination criterion for the
conjugate gradient loop in the inner loop of the optimizer. When the value of
this criterion was set to 10−2 (or smaller) both methods provided outcomes
of the same accuracy at each iteration.

Finally, the computational performance of the two procedures was com-
pared. The results indicate that the ARM outperforms the classical RM in
terms of computational speed when the number of assimilated measurements
increases. In our particular example the ARM became more efficient than the
RM when more than 85 individual measurements had to be history-matched.
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This conclusion makes ARM to be a promising tool for history matching ap-
plications, especially for cases where large amounts of data have to be assim-
ilated.
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Routine Subroutine Number of operations

Backward run (3.9)
{αk}n −MT

n{αk}n+1 = {HT
k }n,

n = 1, . . . , N − 1
2I2(N − 1)K

Forward run (3.10)
{γk}n −Mn−1{γk}n−1 = Qn{αk}n,

n = 1, . . . , N
[2(2I − 1) + 1]INK

{γk}0 = P0M
T
0 {αk}1 2(2I − 1)IK

Solver (3.12) via CG [HΓT +R]β = y −Hxp
{2[2(2K − 1) + 1] + 4K

+(2K − 1)K + I(N + 1)(2K − 1)K
+[2I(N + 1)− 1]K2}K

Correction term (3.11) ΓTβ I(N + 1)(2K − 1)

In total
(1 + 4I + 4IN)K3 + (11 − I − IN)K2

+(−2 + 2I2 + IN + 6I2N)K − IN − I

Table 3.2: Number of operations per outer loop of the RM.
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Routine Subroutine Number of operations

Prerequisites (3.14), etc.
{2(2K − 1) + 1 + 4K + (2K − 1)K

+[2I(N + 1)− 1]K
+2(2K − 1) + 1}K

The solver backward sweep
fn = MT

n fn+1 +HT
nwn,

n = 1, . . . , N − 1
{I(N + 1)(2K − 1)

+[(2I − 1) + 1]I(N − 1)}K
fN = HT

NwN (2I − 1)IK

The solver forward sweep
gn = Mn−1gn−1 +Qnfn,

n = 1, . . . , N
[2(2I − 1) + 1]INK

g0 = P0M
T
0 f1 (2I − 1)IK

Post-multiplication
fn = MT

n fn+1 +HT
nzn,

n = 1, . . . , N − 1
I(N + 1)(2K − 1) + [(2I − 1) + 1]I(N − 1)

fN = HT
NzN (2I − 1)I

gn = Mn−1gn−1 +Qnfn,
n = 1, . . . , N

[2(2I − 1) + 1]IN

g0 = P0M
T
0 f1 (2I − 1)I

In total
2K3 + (10 + 4I + 4IN)K2

+(−2− I + 2I2 + 6I2N)K + 6I2N − 2IN + 2I2 − 3I

Table 3.3: Number of operations per outer loop of the ARM.
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An ensemble Kalman filter
and its modifications

4.1 Introduction

As follows from Chapter 3 representer-based history matching algorithms in
particular (and variational data assimilation techniques in general) do not
allow continuous model updating. Namely, as new data become available, the
whole history matching process has to be repeated using all observed data.
At the same time, the amount of deployed sensors for permanent monitoring
of pressure or flow rates increases. This fact yields an increase of data output
frequency and creates a problem of incorporating the obtained data in the
model as soon as it becomes available so that the model is always up-to-date.

Kalman filtering is known as the most popular methodology for assimilat-
ing new measurements to continuously update the state of the system. Orig-
inally, the Kalman filter was developed for operating on linear models, while
non-linearity requires using some further modifications, e.g. the extended
Kalman filter. However, when the model is highly non-linear or the size of
the state vector is too large, application of the extended Kalman filter also
meets difficulties. These difficulties can be overcome by applying the ensemble
Kalman filtering (EnKF) algorithm based on a Monte-Carlo approach. The
EnKF schemes do not require availability of the model adjoint, which makes
them very attractive for data assimilation with large-scale complex non-linear
models. This chapter focuses on examining the usage and the applicability of
a number of ensemble Kalman filtering techniques to history matching.

As the great majority of the problems in reservoir engineering are highly
non-linear and characterized by a large number of variables, the EnKF has
been a natural choice for a wide range of history matching studies (see e.g.
[29, 86]). Papers [28, 51] report the results of using the EnKF to history match

39
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a PUNQ-S3 model. These studies not only demonstrate that the EnKF is suc-
cessful in assimilating production data to update an initial reservoir model and
that its application allows reducing computational costs for history matching,
but also identify directions for further investigations and improvements.

Specifically, the research described in [90] has shown that for some non-
linear models the EnKF does not provide completely acceptable characteri-
zations of the uncertainties. The situation becomes more problematic if the
a priori information on the reservoir structure is poor and the initial guess
about the system state is far from the actual one. This leads to the idea
of using EnKF modifications, namely iterative EnKF schemes, which aim at
obtaining an ensemble that provides an improved representation of the state
distribution. There exist several approaches in the petroleum engineering
literature, e.g. the ad-hoc confirming EnKF method proposed by [86], the
iterative EnKF method analyzed by [67] from an optimization point of view
instead of a Monte Carlo sampling methodology, and the ensemble random-
ized maximum likelihood filter developed by [30]. Inspired by investigations
on the iterative extended Kalman filtering approach [39], the authors of [44]
suggest to iterate the filter globally. The proposed iterative technique allows
to restart the procedure with a new initial guess that is closer to the actual so-
lution and, hence, requires less improvement by the algorithm while providing
better estimation of the parameters.

Continuous data assimilation is unfortunately not always feasible for large-
scale forecasting applications because each assimilation interrupts ensemble
integration, causes an update of the ensemble and a restart. These opera-
tions can become too expensive if performed frequently. The authors of [72]
develop a modification of the EnKF — known as an asynchronous EnKF
(AEnKF) — that allows assimilating collected observations in batches over
a number of time windows and, hence, less often. The assimilation is then
performed at times different to the times when measurements become avail-
able, therefore [72] takes measures to account for the evolution of the state
and state error covariance over the length of a particular time window. The
problem of asynchronous data assimilation also arises in reanalysis, when it
is often desirable to improve the performed analysis by taking advantage of
relationships between the observations in time, and usage of the variational
data assimilation techniques is not possible due to unavailability of adjoint.

This chapter discusses the AEnKF and the classical EnKF algorithms
applied to estimating the permeability and porosity fields in a two-phase two-
dimensional fluid flow model.
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4.2 The ensemble Kalman filter

Kalman filtering is a powerful technique designed for solving data assimilation
problems. This section presents the general idea of Kalman filtering in a
manner similar to [76] and of ensemble Kalman filtering as given in [23]. Let
us restrict ourselves to the case of the following linear system:

xn+1 = Mnxn +Bnun +Gnwn, (4.1)

yn = Hnxn + vn, (4.2)

where Mn,Bn,Gn,Hn are matrices, n is the time index, xn denotes the state
of the system, un is the system input, yn is the vector of measurements, wn

is Gaussian white system noise process with zero mean and covariance matrix
Qn, vn is Gaussian white measurement noise with zero mean and covariance
matrix Rn. The initial state is assumed to be Gaussian with mean x0 and
covariance matrix P0. Moreover, the variables x0, wn and vn are assumed to
be independent from each other.

Vector xn which contains information on the current system state cannot
be directly observed. However it is possible to measure yn which is some func-
tion of xn affected by noise vn. The idea is to use the available measurements
yn for estimating the state of the system xn.

To solve filtering problem (4.1)–(4.2) we have to determine the probability
density of the state xn conditioned on the history of available measurements
y1, . . . ,ykn . It turns out that this conditional density function is Gaussian,
hence, it can be characterized by its mean and covariance matrix. However,
for a non-linear model operator Mn (as is the case for reservoir engineering
applications) such a conditional density function can be represented by its
first two moments only approximately.

The EnKF has been examined and applied in a number of studies since
it was first introduced by Evensen in [22] and improved by Burgers in [10].
This filtering approach is relatively easy to implement and has affordable
computational costs. The EnKF is based on a representation of the probability
density of the state estimate at time n by a finite number Nens of randomly
generated system states xn,i, i = 1, . . . , Nens. Equations to obtain mean xn

and covariance matrix Pn of the probability density of state xn at time n
conditioned on the history of the measurements y1, . . . ,ykn via the EnKF
algorithm can be formulated as follows [23]:

Initialization step

xa
0,i ∼ N (x0,P0), i = 1, . . . , Nens. (4.3)
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Forward step

x
p
n,i = Mnx

a
n−1,i +Bnun +Gnwn,i, i = 1, . . . , Nens, (4.4)

xp
n =

1

Nens

Nens∑

i=1

x
p
n,i, (4.5)

Lp
n =

[
x
p
n,1 − xp

n, . . . ,x
p
n,Nens

− xp
n

]T
, (4.6)

where L
p
n defines an approximation of the covariance matrix P

p
n with rank

Nens:

Pp
n =

1

Nens − 1
Lp
nL

pT
n . (4.7)

Assimilation step

Kn =
1

Nens − 1
Lp
n (HnL

p
n)

T

(
1

Nens − 1
(HnL

p
n) (HnL

p
n)

T +Rn

)−1

, (4.8)

where Kn is the Kalman gain matrix determining the weights with which the
measurements have to be incorporated into the model update outcome:

xa
n,i = x

p
n,i +Kn

(
yn −Hnx

p
n,i + vn,i

)
, i = 1, . . . , Nens, (4.9)

xa
n =

1

Nens

Nens∑

i=1

xa
n,i. (4.10)

Algorithm (4.3)–(4.10) can be visualized by the flowchart presented in Figure
4.1, where blocks with a shadow represent the ensemble at different stages of
the procedure.

Note that (4.9) involves generating additional noise vn,i while constructing
the measurement set corresponding to the ensemble. This noise vn,i has the
same statistics as assumed for the observation errors. The perturbed mea-
surements are necessary, because the absence of perturbation would lead to
an updated ensemble that has a too low variance and causes divergence of the
algorithm [10].

The forward step can be performed by making a forward run of the reser-
voir simulator (2.12), which is used as a black box in the EnKF analysis.

It turns out that parameter estimation via the EnKF is also possible. This
can be done by constructing the augmented state vector (2.11) and performing
the Kalman filter analysis on it. The forward step of the algorithm results
in updating only the dynamic variables with time and conserving the values
of static parameters. However, at the assimilation step the variables of both
types are simultaneously updated providing corrected estimations of the state
vector and, hence, model parameters.
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Figure 4.1: Ensemble Kalman filter algorithm.

4.2.1 The confirming ensemble Kalman filter

The use of the classical ensemble Kalman filter in reservoir engineering often
leads to physically unreasonable values of the state variables. This problem
originates from performing data assimilation on the extended state vector
without any constraint coming from the physical nature of the parameters.
Hence the updated dynamic variables may become unfeasible and inconsistent
with the estimated static variables. The authors of [86] proposed to include
one additional so-called confirmation step into the EnKF algorithm in order
to ensure that the updated state is physically plausible and consistent with
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the flow equations.
Within the confirmation step approach, we first perform a usual forecast

update from time n−1 up to time n and a data assimilation step. Afterwards
taking only recently updated static model parameters, the flow simulator is
run again from current time n− 1 to the next time moment n. The dynamic
variables obtained replace those obtained after the measurement update and
become the new initial guess for the next update step. This procedure guar-
antees that the updated state is consistent with the flow model. Figure 4.2
sketches integration of the confirmation step in the global workflow of the
EnKF algorithm.

The inclusion of the confirmation step into the algorithm results in almost
doubling the computational time due to the additional forward model run per
ensemble member at each time step. In fact at the later times, when the pro-
duction data carry less new and valuable information on reservoir heterogene-
ity, the differences between the EnKF with and without the confirmation step
become smaller, and the EnKF can be switched back to the non-confirming
mode to save some computation time [86].

We use the EnKF technique with confirmation step instead of classical
ensemble Kalman filtering for our investigations. So from now on we imply
the use of the confirmation step approach to EnKF when using the acronym
’EnKF’.

4.2.2 The asynchronous ensemble Kalman filter

The classical EnKF, particularly with confirmation step adjustment, is often
computationally demanding for large-scale applications. The AEnKF tech-
nique is a modification of EnKF that offers a practical way to perform data
assimilation in such cases by updating the system with batches of measure-
ments collected at the times different to the time of the update.

The AEnKF requires only one forward run of the system to obtain and
store data necessary for the analysis. Furthermore, it does not rely on an
adjoint model, though it resembles the approach usually followed in variational
methods.

The AEnKF method is based on the concept of propagation of corrections
along the forecast trajectory. As long as the system can be considered linear
within data assimilation window, the evolution of the corrections can be also
treated in a linear way, which simplifies the analysis.

To perform data assimilation with the AEnKF algorithm, one needs to
work with the actual measurements, the observation error covariance, and the
ensemble of observations predicted by the model. The AEnKF solution can
be obtained by formally replacing an ensemble of states xn,i, i = 1, . . . , Nens

at time n by a joint ensemble x̃n,i, i = 1, . . . , Nens, that contains variables to
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Figure 4.2: Ensemble Kalman filter with confirmation step.
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be estimated (e.g. the state at the end of the data assimilation window) and
predicted asynchronous data [72]. Hence, joint ensemble has the following
structure:

x̃n,i =




xn,i

H1x1,i

...
Hnxn,i


 . (4.11)

This joint ensemble (4.11) is thereafter updated within the regular EnKF
framework. Figure 4.3 outlines the steps to be performed for data assimilation
with the AEnKF algorithm.

It is important to note that although the AEnKF was originally intro-
duced for an idealized framework that included assumptions of linearity for
the model and observation operators, the algorithm can be used in practice
as a suboptimal solution in situations when these assumptions are to certain
extent violated [72].

4.2.3 Scaling

The use of different units and scales for the measurement variables may result
in a problem to implement the filter algorithms, similar to the one discussed
in Section 3.2.4. To avoid this computational problem and prevent divergence
of the filter, we propose the following modification to the data assimilation
step of the filtering procedure.

Consider an arbitrary time step n and rewrite the expression to compute
the Kalman gain (4.8) as
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p
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)−1
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n R−1/2

n

=
1
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∗
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p
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)T
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n

or

Kn = K∗
nR

−1/2
n , (4.12)

where K∗
n =

(
1
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(
R

−1/2
n HnL

p
n

)(
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−1/2
n HnL
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)T
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Figure 4.3: Asynchronous ensemble Kalman filter.

The Kalman gain factorization (4.12) involves matrix K∗
k which is com-

puted via operations only on the scaled matrices. The ensemble update (4.9)
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is now performed as

xa
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p
n,i +Kn

(
yn −Hnx

p
n,i + vn,i

)

= x
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nR
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= x
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n,i +K∗

n

(
R−1/2

n yn −R−1/2
n Hnx

p
n,i +R−1/2

n vn,i

)
.

(4.13)

Expression (4.13) involves matrices and vectors scaled by the observation error
covariance matrix.

4.3 Results and discussion

We tested the performance of the EnKF and AEnKF assimilation algorithms
by estimating the model parameters of a two-phase two-dimensional fluid flow
model. For each algorithm we solve the history matching problem and obtain
estimates of permeability and porosity for the base case described in Section
2.3. The filter analysis is done from time t0 = 0 [days] till tend = 450 [days],
which ensures that water breakthrough occurs in none of the production wells.

4.3.1 History matching with the EnKF

It turns out that EnKF faces an important practical problem, namely, the
standard deviation of the errors in the state estimate converges very slowly
with the number of ensembles. This makes the ensemble Kalman filter quite
sensitive to the number of ensemble members used for simulation [24]. Pre-
liminary analysis shows that in our case an ensemble consisting of Nens = 100
members is sufficient for the EnKF runs. We use the same ensemble size also
for the AEnKF runs.

We consider the quality of estimating the model parameters. For that
purpose the rms error measure (3.18) is plotted in time both for permeability
and porosity estimations (Figure 4.4). The quantities are related to the en-
semble mean and ensemble members corresponding to evaluated permeability
and porosity fields. The graph demonstrates an improvement of the param-
eter estimation in the first data assimilation step followed by stabilization of
the error, and reduction of the uncertainty for estimated values (since the
ensemble spread becomes narrower). This means that at the later times as-
similated data carry less useful information on reservoir structure than at the
early times.

We obtain permeability and porosity fields resembling the ’true’ ones (com-
pare Figures 2.1 and 4.5). The variance field is obtained through the diagonal
terms of the covariance matrix computed from the statistical properties of the
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Figure 4.4: EnKF: rms error in estimated permeability and porosity vs time.
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Figure 4.5: EnKF: estimated permeability and porosity fields. The scale rep-
resents transformed values of permeability [m2] and porosity [-].

ensemble. The difference between the top and the bottom subplots in Figure
4.6 indicates a reduction of the variance and therefore of the uncertainty in
the estimation of permeability and porosity.

Altogether the results presented in Figures 4.4–4.6 confirm the efficiency
of the EnKF for history matching and estimation of model parameters in a
small example.

4.3.2 History matching with the AEnKF

We proceed by performing history matching with the AEnKF in order to
compare its performance to that of the EnKF. The joint ensemble is formed
by running the model forward up to tend = 450 [days] and collecting the
model predictions on the measured variables every 30 [days] to augment the
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Figure 4.6: EnKF: ensemble variance. The scale represents variance for trans-
formed values of permeability [m2] and porosity [-].

state vector. The model update is thereafter performed only once at tend =
450 [days].

The estimated porosity and permeability fields are presented in Figure 4.7.
Visual comparison of the AEnKF results to the ’true’ field and the field recov-
ered by the EnKF confirms that the applied method leads to an acceptable
estimation of the field features. The values of rms error measure support this
judgment. Namely, the rms measure is 0.5744 for permeability and 0.0685 for
porosity estimates, which is similar to the final rms values of 0.5897 and 0.0686
for the permeability and porosity fields as estimated by the EnKF respectively.

Alternatively, the quality of the history match can be assessed by ana-
lyzing the capability of the calibrated model to correctly forecast e.g. water
breakthrough time in the production wells. Figure 4.8 illustrates that accurate
prediction of water breakthrough is achieved with models obtained through
data assimilation based on both the AEnKF and the EnKF techniques. These
forecasts are also comparable to the predictions generated by the model that
was history-matched via the RM.
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Figure 4.7: AEnKF: estimated permeability and porosity fields. The scale
represents transformed values of permeability [m2] and porosity [-].
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Figure 4.8: Forecast of water flow rate at production wells.
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Thus the use of the AEnKF algorithm yields a reasonable estimate of the
model parameters with estimated fields analogous to the ones obtained with
the EnKF and the RM.

4.4 Conclusion

We have reviewed the use of ensemble Kalman filtering techniques as tools to
solve the history matching problem. The EnKF method and its modifications
belong to the family of recursive techniques as opposed to the variational
algorithms (RM and ARM) discussed in Chapter 3.

First, the details of the EnKF algorithm have been presented alongside
the considerations on occasional cost inefficiency of the EnKF for data assim-
ilation in an operational environment. This discussion led to examination of
the asynchronous modification of the EnKF technique and comparison of the
performance of the two methods.

Results of history matching with the EnKF and the AEnKF are analogous
and both demonstrate a considerable improvement of the model parameter
estimates. In particular, the rms measure is 0.5744 for permeability and 0.0685
for porosity estimates obtained with the AEnKF, being similar to the final
rms values of 0.5897 and 0.0686 for the estimates obtained by the EnKF. Also
the capability of the model calibrated with the EnKF to predict the water
breakthrough time is comparable to the one of the model history-matched
with the AEnKF (see Figure 4.8). Since the AEnKF allows assimilation of
all the data gathered throughout the observational period at once, it permits
comparison of the effect of observations collected at different time instances.
The equivalence of the AEnKF to variational techniques (e.g. RM) yields
the possibility to evaluate if sequential and variational methods utilize the
observations in a similar manner.

These features and the indifference of the AEnKF to the availability of
an adjoint model make it a good candidate to be used further as a data
assimilation method when quantifying the importance of the observations for
history matching.



5

Observation sensitivity
matrix

5.1 Introduction

The predecessor of the observation sensitivity matrix, the so-called influence
matrix, originated in ordinary least-squares applications as a tool for moni-
toring statistical regression analysis (see e.g. [33]). Within regression analysis
this matrix is called a hat matrix and provides a means to understand the in-
fluence that a data value will have on each fitted value and identify exceptional
data points.

The concept was further modified and adapted within the inverse modeling
domain under the name of ’model resolution matrix’. This matrix allows to
investigate which parameters are unresolved or well-resolved by assimilation of
the data. In [52] the model resolution matrix was discussed within a geophys-
ical context; in [62] the model resolution matrix was applied to investigate the
usefulness of chlorophyll data to estimate the parameters of an ocean model;
[68] considered the model resolution matrix for inverse problems related to
atmospheric sounding. The model resolution matrix approach has been also
applied to the history matching problems in [18, 57, 58], where the possibility
to resolve reservoir model parameters from the data has been studied.

The next step was taken by the authors of [65] and [11] who investigated the
possibilities to choose an optimal subset of data for assimilation in models used
for weather predictions via the so-called data resolution matrix and the related
influence matrix (or observation sensitivity matrix) respectively. All of these
matrices rely on information-theoretic concepts and determine the influence
of individual observations on the quality of the ’analysis’, i.e. the procedure
to minimize the mismatch between measured data and model predictions of
those data.

53
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The issue of information content of observations was recently brought up
in meteorological applications [65] and [11], because nowadays measurement
equipment collects an enormous amount of atmospheric data on a daily ba-
sis. In meteorology the main use of observations for model updating is to
improve the initial conditions of the model, a process referred to as data as-
similation, which has many similarities to computer-assisted history matching
in petroleum reservoir engineering. In general, increasing the amount of ob-
servations improves the results of the data assimilation procedure and the
forecasting capability of the model. In that sense it is beneficial to involve
all the measurements available in the assimilation. This, however, becomes
too demanding for operational weather forecasting systems due to time con-
straints on providing the new forecast. Therefore a proper selection of the
most influential data points is needed to reduce the computational effort while
preserving the desired accuracy.

Contrary to the situation in meteorology, there are often too few observa-
tions available in reservoir engineering. The information extracted from these
measurements in the history matching phase is frequently found to be not
enough to provide a well-calibrated model with a high predictive value. This
is mainly caused by the high cost of data gathering in the petroleum industry.
Moreover, data collection requirements such as frequency and accuracy of pro-
duction tests or in-well sensors have to be determined in advance, i.e. during
the field development phase, and are difficult to adjust during the operational
life of a field. Methods to assess the value of measurements for model parame-
ter updating and subsequent model-based production forecasting are therefore
needed, to allow up-front selection of the most influential measurements and
their locations.

To assess the value of production measurements for history matching we
apply a method originally developed for atmospheric problems. We consider
assimilating production data to estimate the permeability field in a two-phase
(oil-water) two-dimensional reservoir model. The most influential measure-
ments are then found from an observation sensitivity matrix, which provides
a fast and easy way to diagnose the influence of individual observations on the
analysis.

5.2 Concept of observation sensitivity

The section outlines the key points of the observation sensitivity matrix di-
agnostics in a manner similar to [11] by considering history matching in a
Bayesian framework (see e.g. [24, 59]). Then under the usual assumptions
on Gaussianity of the model and measurement errors, the optimal solution to
the analysis problem in a linear case can be written as a linear combination
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of observed data and prior model data:

xa = xp +K(y −Hxp),

where xa is the analyzed (i.e. updated) vector of model state variables, K de-
notes the Kalman gain matrix that balances the influence of the prior knowl-
edge xp and the observations y, H stands for the observation operator estab-
lishing the link between the model state vector and the measurements. The
weight factors in the Kalman gain depend on the covariances of the prior model
errors and the measurement errors, namely K = P0H

T
(
HP0H

T +R
)−1

,
where P0 stands for the covariance of prior model errors and R denotes co-
variance of measurement errors. Predicted observations ŷ of the analyzed
model can then be expressed in the form of a weighted sum of predicted ob-
servations Hxp of the prior model and the measured observations y:

ŷ = Hxa = Hxp +HK(y −Hxp) = (I−HK)Hxp +HKy, (5.1)

where I is an identity matrix of an appropriate size. Finally, the observa-
tion sensitivity matrix, i.e. the sensitivity matrix of the analyzed predicted
observations with respect to the measured data, can be computed as

S =
∂ŷ

∂y
= HK. (5.2)

The observation sensitivity matrix S, also referred to as the influence ma-
trix, is a square matrix of dimension K, where K is the total amount of
assimilated data. The diagonal elements Sii are pure numbers and are called
self-sensitivities. They represent the change in a predicted observation with
respect to variations in the corresponding measured observation. If the co-
variance matrix of measurement errors is diagonal, the self-sensitivities can
be proven to be in [0, 1] bounds [11]. A zero self-sensitivity indicates that the
ith observation has no influence at all on the analysis, while Sii = 1 shows
that the entire information content of that observation has been devoted to
updating those model parameters that influence the corresponding prediction.

The trace of sensitivity matrix Tr(S) characterizes the amount of informa-
tion extracted from the observations. Note that its maximum value is equal to
the number of observations. The complementary trace Tr(I−S) describes the
remainder of the information, which originates from the prior model. Start-
ing from the observation sensitivity matrix, some further diagnostics can be
performed. For instance, one can define the ’global average influence’ (GAI)
and ’partial averaged influence’ (PAI) for any selected subset of data:

IGA =
Tr(S)

K
and IPA =

∑
i∈K

Sii

KK

, (5.3)
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where KK is the amount of measurements in subset K. The subset can, for
example, represent a specific observation type or location. Note that measures
(5.3) only quantify the impact of data on the history matching procedure,
i.e. how much the outcome of the history matching would differ from the
prior under the influence of measurements. Expressions (5.3) do not allow
investigating if certain data have a positive or a negative influence on the
quality of history-matched model.

To illustrate the concept we consider the two most extreme cases, when
either a highly uncertain prior or highly uncertain observations are involved
in the analysis.

Highly uncertain prior:

Recall that in such a case an algorithm exploits the measurements, since
the prior model is unreliable as indicated by its high uncertainty. Indeed,
the observation sensitivity matrix can be written in the form

S = HK = HP0H
T
(
HP0H

T +R
)−1

. (5.4)

Since

S = HP0H
T
(
HP0H

T +R
)−1

=
((

HP0H
T
) (

HP0H
T
)−1

+R
(
HP0H

T
)−1

)−1

=
(
I+R

(
HP0H

T
)−1

)−1

=
(
RR−1 +R

(
HP0H

T
)−1

)−1

=
(
R−1 +

(
HP0H

T
)−1

)−1
R−1,

expression (5.4) is equivalent to

S =
(
R−1 +

(
HP0H

T
)−1

)−1
R−1. (5.5)

It is clear from (5.5) that if the problem is characterized by a highly
uncertain prior, the observation sensitivity matrix degrades to an iden-
tity matrix of an appropriate size, i.e. S = I. Therefore Tr(S) = K
and the GAI is equal to 1 yielding the conclusion that the entire infor-
mation content of every observation has been used to update the model
parameters.

Highly uncertain observations:

Highly uncertain observations force the model update to rely mostly on
the prior, since the accuracy of the available measurements is poor. It
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also follows from (5.4) that if the observations are very uncertain, the
observation sensitivity matrix becomes a zero matrix of appropriate size,
i.e. S = 0. Hence, Tr(S) = 0 and the GAI is equal to 0 indicating that
the measurements have no influence at all on the update of the model.

The above discussion demonstrates that the trace of the sensitivity matrix can
also be used as a tool to compare the quality of observations and prior.

In the following sections we investigate if other properties of the observa-
tion sensitivity matrix can provide additional insights into the influence of the
measurements on the analysis.

5.3 Structure of the observation sensitivity matrix

The section addresses the structure and the features of the observation sen-
sitivity matrix. We are particularly interested if (or under which conditions)
the observation sensitivity matrix is symmetric positive semidefinite and all
of its entries are dimensionless (i.e. pure real numbers). The properties to
be derived will be used for the analysis presented in the remainder of this
chapter.

5.3.1 Symmetry of the observation sensitivity matrix

To investigate the issue of symmetry of the square observation sensitivity
matrix S one needs to determine if and under which conditions

S = ST

or equivalently

HP0H
T
(
HP0H

T +R
)−1

=
(
HP0H

T +R
)−1

HP0H
T. (5.6)

Elaborating on (5.6) we obtain

(
HP0H

T +R
)
HP0H

T = HP0H
T
(
HP0H

T +R
)

and finally
RHP0H

T = HP0H
TR. (5.7)

It is now obvious that in a general case the observation sensitivity matrix S

is not symmetric unless condition (5.7) holds.
A particular example when symmetry is achieved can be given by a history

matching case with independent measurements of the same type and accuracy.
In this case the covariance matrix of measurement errors R is given by r2I,
where I is identity matrix of appropriate size, and r is a scalar representing the
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standard deviation of the measurement errors. Moreover, such data features
ensure that both the diagonal and the off-diagonal entries of matrix S are pure
numbers.

Since the discussed case is very limiting, we proceed by introducing a ver-
sion of matrix scaling that creates a dimensionless analogue of the observation
sensitivity matrix with somewhat more attractive properties.

5.3.2 Scaled observation sensitivity matrix

To create a dimensionless version of predicted observations ŷ of the analyzed
model we consider an invertible diagonal scaling matrix Rs such that

R−1/2
s ŷ = R−1/2

s Hxp +R−1/2
s HKR1/2

s (R−1/2
s y −R−1/2

s Hxp). (5.8)

and all the quantities constituting to (5.8) become dimensionless. There exist
various choices of a scaling matrix that would lead to the desired outcome,
however, the most natural choice is to prescribe Rs to be the same as the
covariance matrix of measurement errors R, i.e. we consider Rs = R. Note
that Rs is then the same as the scaling matrix that appears throughout min-
imization of the generalized cost function in a history matching procedure to
account for different orders of magnitude of the entries in the measurement
vector.

We define the scaled version of the observation sensitivity matrix as

S̃ = R−1/2
s HKR1/2

s = R−1/2
s SR1/2

s . (5.9)

Elements of this scaled observation sensitivity matrix S̃ are dimensionless.
Importantly, the results of the trace diagnostic performed with matrix S̃ are
exactly the same as those obtained with original matrix S due to the properties
of matrix trace [47]

Tr(S̃) = Tr(R−1/2
s SR1/2

s ) = Tr(SR1/2
s R−1/2

s ) = Tr(S).

Hence, either matrix can be used to perform the original diagnostics of [11].
Moreover, note that formulation (5.9) exhibits a certain intuitively expected
similarity to the dimensionless sensitivity matrix introduced in [92] to quantify
the sensitivity of the predicted data to the model parameters.

The issue of symmetry of the scaled observation sensitivity matrix, how-
ever, requires further investigation. Similarly to Section 5.3.1 one needs to
check conditions under which

S̃ = S̃T

or equivalently

R−1/2
s HP0H

T
(
HP0H

T +R
)−1

R1/2
s

= R1/2
s

(
HP0H

T +R
)−1

HP0H
TR−1/2

s . (5.10)
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After several linear algebraic transformations on (5.10) we obtain

RR−1
s HP0H

T = HP0H
TR−1

s R. (5.11)

Generally speaking, the scaled observation sensitivity matrix S̃ is not neces-
sarily symmetric. However, the matrix can be forced to become symmetric by
choosing an invertible diagonal scaling matrix such that Rs = R.

5.3.3 Positive (semi)definiteness of the scaled observation
sensitivity matrix

A symmetric matrix A ∈ R
n×n is considered to be positive definite (PD) if

xTAx > 0 for all nonzero x ∈ R
n and positive semidefinite (PSD) if xTAx ≥ 0

for all x ∈ R
n [47]. The following criteria can be used to determine if the

matrix is P(S)D:

• A ∈ PD if the eigenvalues of A are all positive,

• A ∈ PSD if the eigenvalues of A are all nonnegative.

The covariance matrices are PSD due to their physical nature. Hence, in our
case, matrices P0 and R are PSD.

Since the scaled observation sensitivity matrix is symmetric when Rs =
R, the notion of positive (semi)definiteness is applicable and can be further
investigated. With the aid of (5.4) and (5.9) the scaled observation sensitivity
matrix can be written as

S̃ = R−1/2HKR1/2

= R−1/2HP0H
T
(
HP0H

T +R
)−1

R1/2

=
(
R−1/2HP0H

TR−1/2
)(

R−1/2HP0H
TR−1/2 + I

)−1
.

(5.12)

To analyze (5.12) we use the following properties of positive (semi)definite
matrices [34], where A, B ∈ R

n×n, C ∈ R
m×n:

• a PSD matrix is PD if and only if it is invertible,

• if A ∈ PD, then A−1 ∈ PD,

• if A ∈ PSD and k is any positive integer, then A1/k ∈ PSD,

• if A ∈ PSD, then CACT ∈ PSD,

• if A ∈ PSD and B ∈ PD, then A+B ∈ PD,

and
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• if A, B ∈ PSD and AB = BA, then AB ∈ PSD [69].

Consider the terms constituting to (5.12) in detail:

• we consider R to be invertible; then due to the first property of P(S)D
matrices it is also PD,

• R−1/2 is PSD by the 2nd and the 3rd property,

• R−1/2HP0H
TR−1/2 is PSD with the aid of the 4th property,

• I is PD, since all of its eigenvalues are equal to 1 and, hence, are posi-
tive. Therefore R−1/2HP0H

TR−1/2 + I is PD by the 5th property and(
R−1/2HP0H

TR−1/2 + I
)−1

is PD as well by the 2nd property,

• note that both R−1/2HP0H
TR−1/2 and R−1/2HP0H

TR−1/2 + I are
symmetric. Then

(
R−1/2HP0H

TR−1/2
)(

R−1/2HP0H
TR−1/2 + I

)−1

(S̃=S̃T)
=

(
R−1/2HP0H

TR−1/2 + I
)−T (

R−1/2HP0H
TR−1/2

)T

=
(
R−1/2HP0H

TR−1/2 + I
)−1 (

R−1/2HP0H
TR−1/2

)

and conditions of the 6th property hold leading to the final conclusion
that scaled observation sensitivity matrix is PSD.

Thus, the developed scaling technique allows consideration of a dimen-
sionless (and for many cases symmetric positive definite) analogue of the ob-
servation sensitivity matrix that can be analyzed by means of trace-based
quantities (5.3), matrix norms (Sections 5.4 and 5.6.1) and singular values
(Section 5.6.2). From now on we deal only with the scaled versions of the
observation sensitivity matrix and the (predicted) observations and we refer
to them simply as the ’observation sensitivity matrix’ and the ’(predicted)
observations’.

5.4 Matrix norm of the observation sensitivity
matrix

The observation sensitivity matrix S is defined by (5.2) to describe how pre-
dicted analyzed observations would get changed due to changes introduced
into actually measured data. The expression (5.2) can be reformulated as

S ·∆y = ∆ŷ, (5.13)
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where ∆y and ∆ŷ denote the changes occurring in actual data and predicted
measurements respectively. The norm of the observation sensitivity matrix
can be therefore used to investigate if a change in the quality of the measure-
ments will trigger a sufficient subsequent change in the analyzed model. This
knowledge is useful for taking decisions on e.g. the need for collecting more
accurate data. The derivations in this section are inspired by considering the
condition number of a matrix (Appendix B.1).

Suppose we are in possession of two sets of measured data, y1 and y2,
obtained with different accuracy and, hence, described by measurement errors
ǫ1 and ǫ2. The observation model links measured erroneous data to ’perfect’
data through

yi = y + ǫi, i = 1, 2,

where y stands for ’perfect’ (i.e. noise free) measurements, ǫi represents a
Gaussian process with zero mean and a diagonal covariance matrixRi ∈ R

K×K.
The covariance matrix Ri can be written as

Ri = (0.01)2 · diag
(
(αi1|y1|)2 , . . . , (αij|yj |)2 , . . . , (αiK |yK |)2

)
,

i = 1, 2, j = 1, . . . ,K,

where |yj |, j = 1, . . . ,K, is an absolute value of the coordinate j of vector
y, and αij is a scalar greater or equal than 0. This strategy implies that the
error in each observed variable yij, i = 1, 2, j = 1, . . . ,K, is taken to be αij%
of the actual value yj.

If the simulator is initialized with the ’true’ reservoir parameters and is
not subject to simulation errors, the outcome of the forward run complies with
the ’perfect’ measurements y, and history matching has no effect: ŷ = y.

History matching with the first and second sets will result in predicted
analyzed observations ŷ1 and ŷ2, where ŷi = ŷ+ ǫ̂i, i = 1, 2, and ǫ̂i represents
a difference between the analyzed model and the ’true’ model. The difference
in analyzed predicted data ∆ŷ = ŷ2−ŷ1 = ǫ̂2−ǫ̂1 is connected to the difference
in measured data ∆y = y2−y1 = ǫ2− ǫ1 by the sensitivity matrix S. In fact,
∆y can be interpreted as the change in measurement error of the observed
data due to e.g. use of more accurate measurement equipment. Then ∆ŷ

corresponds to the subsequent change in the predicted analyzed observations
and, hence, the analyzed model.

The relative change in the error in y is given by
‖∆y‖2
‖y‖2

. Similarly, the

relative change in the error in predicted analyzed observations is
‖∆ŷ‖2
‖ŷ‖2

. Then

with the aid of (5.13)

‖∆ŷ‖2
‖ŷ‖2

≤ ‖S‖2 · ‖∆y‖2
‖ŷ‖2

= ‖S‖2 ·
‖∆y‖2
‖y‖2

. (5.14)
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Hence, the norm of the observation sensitivity matrix S provides a bound on
how large the relative change of the error in ŷ can be. For details on matrix
and vector norms the reader is referred to Appendix B.2 and [27, 34, 69].

The independent measurement errors ǫij, i = 1, 2, j = 1, . . . ,K, have a
Gaussian distribution with mean 0 and standard deviation 0.01 ·αij |yj|. Then
the difference ǫ2j − ǫ1j , j = 1, . . . ,K, has a Gaussian distribution with mean 0

and standard deviation 0.01 ·
√

α2
1j + α2

2j |yj|, for which p of the drawn values

lie within δ standard deviations from the mean.
Suppose αij = αi, for all j = 1, . . . ,K. Then with probability p the change

in the measurement error ǫ2j − ǫ1j falls within bounds[
−δ · 0.01 ·

√
α2
1 + α2

2|yj|; δ · 0.01 ·
√
α2
1 + α2

2|yj |
]
, j = 1, . . . ,K. Therefore,

the maximum change one may expect to achieve in the model by e.g. improv-
ing the accuracy of observations is given by

∣∣∣∣
‖ǫ̂2‖2
‖ŷ‖2

− ‖ǫ̂1‖2
‖ŷ‖2

∣∣∣∣ ≤
‖ǫ̂2 − ǫ̂1‖2

‖ŷ‖2
=

‖∆ŷ‖2
‖ŷ‖2

(5.14)

≤ ‖S‖2 ·
‖∆y‖2
‖y‖2

= ‖S‖2 ·
‖ǫ2 − ǫ1‖2

‖y‖2
≤ 0.01 · δ · ‖S‖2 ·

√
α2
1 + α2

2.

(5.15)

Thus, the upper bound in relation (5.15) is determined by the norm of obser-
vation sensitivity matrix and the accuracy of the measured data. Depending
on the observation sensitivity matrix, introduction of more accurate measure-
ments might not always lead to sufficient changes in the analyzed model.

The underlying assumption for the derivation of (5.15) exploits proba-
bilistic properties of the measurement error quantity ǫ2 − ǫ1. Hence the final
inequality (5.15) holds with a certain probability, and there is a chance that
introduction of more accurate measurements will lead to greater changes in
the analyzed model than expected. The probability with which (5.15) holds
can be evaluated as follows:

P

(∣∣∣∣
‖ǫ̂2‖2
‖ŷ‖2

− ‖ǫ̂1‖2
‖ŷ‖2

∣∣∣∣ ≤ 0.01 · δ · ‖S‖2 ·
√

α2
1 + α2

2

)

= P

(
‖S‖2 ·

‖ǫ2 − ǫ1‖2
‖y‖2

≤ 0.01 · δ · ‖S‖2 ·
√

α2
1 + α2

2

)

= P
(
‖ǫ2 − ǫ1‖22 ≤ 0.012 · δ2 ·

(
α2
1 + α2

2

)
‖y‖22

)

= P




K∑

j=1

|ǫ2j − ǫ1j |2 ≤ 0.012 · δ2 ·
(
α2
1 + α2

2

) K∑

j=1

|yj |2

 ,
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hence,

P

(∣∣∣∣
‖ǫ̂2‖2
‖ŷ‖2

− ‖ǫ̂1‖2
‖ŷ‖2

∣∣∣∣ ≤ 0.01 · δ · ‖S‖2 ·
√

α2
1 + α2

2

)

≥
K∏

j=1

P
(
|ǫ2j − ǫ1j |2 ≤ 0.012 · δ2 ·

(
α2
1 + α2

2

)
|yj|2

)

=

K∏

j=1

P

(
|ǫ2j − ǫ1j | ≤ 0.01 · δ ·

√
α2
1 + α2

2|yj |
)

=

K∏

j=1

p

= pK .

(5.16)

Thus one can manipulate the value of probability p involved into (5.16) to
obtain a sharper bound in (5.15) and vice verse. When the δ and p are chosen
and fixed, the inequality (5.15) holds with a probability greater than pK ,
where the probability clearly depends on the amount of measurements used
for history matching. If e.g. δ = 4, then p = 0.9999 and the probability (5.16)
remains to be high even for large data sets. This allows the inequality (5.15)
to be used as part of a decision making procedure regarding the benefit of
collecting more accurate measurements vs. the associated costs and efforts.

5.5 Uncertainty in the analyzed model

The ultimate goal of this section is to assess how the change in the quality
of the observations used for history matching influences the quality of the
resulting analyzed model. The quality of the analyzed model is studied based
on the uncertainty in the analyzed predicted observations.

Recall that history matching is performed with the aid of measurement
vector y, where the covariance matrix of the corresponding measurement er-
ror isR ∈ R

K×K. The analyzed model is then normally distributed with mean
vector xa and covariance matrix P = (I −KH)P0. Therefore the predicted
analyzed observations obtained from this model are normally distributed with
mean vector Hxa and covariance matrix PH = H(I −KH)P0H

T. Reformu-
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lating in terms of observation sensitivity matrix we obtain

PH = H(I−KH)P0H
T

= H
(
I−P0H

T
(
HP0H

T +R
)−1

H
)
P0H

T

= HP0H
T −HP0H

T
(
HP0H

T +R
)−1

HP0H
T

= HP0H
T
(
HP0H

T +R
)−1 (

HP0H
T +R−HP0H

T
)

(5.4)
= SR.

(5.17)

Note that covariance matrices PH and R are symmetric, hence, SR = RST.
Suppose we are in possession of two sets of measured data y1 and y2 ob-

tained with different accuracy. The covariance matrices of the corresponding
measurement errors are R1 ∈ R

K×K and R2 ∈ R
K×K. History matching with

the first and second sets will result in two analyzed models. These models yield
predicted analyzed observations that are normally distributed with mean vec-
tors Hxa

1 and Hxa
2 and covariance matrices PH

1 = S1R1 and PH
2 = S2R2.

After some linear algebraic transformations we obtain the following relation
between covariance matrices PH

2 and PH
1 :

PH
2 = S2R2

= S1R1 + S2R2 − S1R1

= PH
1 +R2S

T
2 − S1R1

= PH
1 + S1

(
S−1
1 R2 −R1S

−T
2

)
ST
2

(5.4)
= PH

1

+ S1

((
PH

0 +R1

) (
PH

0

)−1
R2 −R1

(
PH

0

)−1 (
PH

0 +R2

))
ST
2

= PH
1 + S1 (R2 −R1)S

T
2 ,

(5.18)

where PH
0 = HP0H

T.
Note that for a 2-norm (Appendix B.2) ‖ST

2 ‖2 = ‖S2‖2. Then the rela-
tive change in the uncertainty in the analyzed model due to a change in the
accuracy of the observations is bounded by

‖PH
2 −PH

1 ‖2
‖PH

1 ‖2
(5.18)
=

‖S1 (R2 −R1)S
T
2 ‖2

‖PH
1 ‖2

≤ ‖S1‖2 · ‖R2 −R1‖2 · ‖S2‖2
‖PH

1 ‖2
.

(5.19)

Expression (5.19) demonstrates that the upper bound on relative change in
the uncertainty is proportional to the norms of observation sensitivity matrices



5.6. Application of the observation sensitivity matrix to HM with the RM 65

corresponding to the history matching systems with two different observation
sets and the norm of the difference between the covariance matrices of the
measurement errors. Moreover, (5.19) can be executed prior to a history
matching experiment with a second data set allowing to assess its potential
contribution to the model update.

5.6 Application of the observation sensitivity

matrix to history matching with the RM

A typical strategy to investigate sensitivity of a history matching algorithm
to the measurements by means of the observation sensitivity matrix is demon-
strated on the basis of the exercise described in Section 2.3. History match-
ing is performed from 0 [days] till 450 [days] with the data available every
30 [days] from 30 [days] till 300 [days], using the representer algorithm. The
choice of the time interval ensures that water breakthrough has not yet oc-
curred.

5.6.1 Observation sensitivity matrix

A first insight into the sensitivity of the history match to observations is
provided by the entries of the observation sensitivity matrix. In case of history
matching with the representer method, the observation sensitivity assessment
needs to be performed at each outer iteration separately, because the problem
is linear only within an outer iteration. The best possible linear approximation
to the history matching problem is however obtained at the last iteration
of the representer method, since then the model is linearized in the close
neighborhood of a (local) minimum. Therefore, we focus on the observation
sensitivity matrix computed at the last iteration of the representer algorithm.

It is instructive to plot the elements of the observation sensitivity matrix
row-wise as a 2D field (see Figure 5.1, where Figure 5.1b displays a detailed
version of the top left block of Figure 5.1a).

The following remarks can be made based on careful visual examination
of the observation sensitivity matrix:

• the diagonal entries often are of high magnitude. Indeed, a particular
predicted measurement is naturally the most sensitive to the actual data
of the same type collected at the same time moment at exactly the same
location;

• consider e.g. high magnitude values of observation sensitivity coefficients
S2j for j = 9k + 2, k = 0, 1, . . . , 9. It is now easy to notice that a
particular predicted measurement is highly influenced by the actual data
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Figure 5.1: Observation sensitivity matrix (obtained with the RM).

of the same type collected at exactly the same location at different time
instances. The measurements collected just a few time instances away
from the current time have a higher impact than those collected further
away in time;

• consider e.g. high magnitude values of observation sensitivity coefficients
S2j for j = 9k + 6, k = 0, 1, . . . , 9. These coefficients illustrate that a
particular predicted oil flow rate measurement is highly influenced by
the water flow rate measurements collected at exactly the same loca-
tion. The high magnitudes of e.g. S6j for j = 9k + 2, k = 0, 1, . . . , 9,
demonstrate the impact of the oil flow rate data on the predicted water
flow rates;

• observation sensitivity coefficients Sij ≈ 0 for every i = 9k + l, k =
0, 1, . . . , 9, l = 2, 3, . . . , 9, and j = 9k + 1, k = 0, 1, . . . , 9. This indicates
that bottom hole pressure measurements pbh at the injection well have
almost no influence on the analysis;

• by the same token, observation sensitivity coefficients Sij are approx-
imately zero for i = 9k + 1, k = 0, 1, . . . , 9, and every j = 9k + l,
k = 0, 1, . . . , 9, l = 2, 3, . . . , 9. Hence, the predicted values of the bottom
hole pressure measurements are also hardly influenced by assimilation
of any other available data in the current measurement network set-up;

• observation sensitivity coefficients Sij for i = 9k + 3 and j = 9k + 4,
k = 0, 1, . . . , 9, are negative with large magnitudes. These coefficients
describe the sensitivity of the predicted qo measurement at the NE well
to the qo data from the SW well. Note that both wells are connected
by a high-permeable area and are somewhat ’competing’ for the flow.
Hence, an increase of the actually measured oil flow rate in the SW well
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immediately results in adjusting the model to decrease the predicted oil
flow rate at the NE well, and vice versa. The same reasoning explains
the values of the observation sensitivity coefficients Sij for i = 9k + 4
and j = 9k+3, k = 0, 1, . . . , 9. Analogous arguments hold for sensitivity
coefficients Sij for i = 9k+7 and j = 9k+8, k = 0, 1, . . . , 9, and Sij for
i = 9k+8 and j = 9k+7, k = 0, 1, . . . , 9. In general, similar phenomena
can be observed for all sensitivity coefficients related to the predicted
and measured phase flow rates.

Suppose one has now available for history matching the same production
data as in Section 2.3, but twice as accurate, i.e. with 5% error. Then
according to inequality (5.15) the maximum change one may expect to achieve
in the model due to such an improvement in the accuracy of the observations
is given by

∣∣∣∣
‖ǫ̂2‖2
‖ŷ‖2

− ‖ǫ̂1‖2
‖ŷ‖2

∣∣∣∣
(5.15)

≤ 0.04 · ‖S‖2 ·
√

α2
1 + α2

2 = 0.04 · 0.997 ·
√

102 + 52 = 0.45.

Improving the accuracy of the data further, i.e. reducing the value of α2 to
zero in the above inequality, we obtain the following assessment on the upper
boundary for the achievable change in the model accuracy:

∣∣∣∣
‖ǫ̂2‖2
‖ŷ‖2

− ‖ǫ̂1‖2
‖ŷ‖2

∣∣∣∣ ≤ lim
α2→0

0.04 · ‖S‖2 ·
√

α2
1 + α2

2 = 0.04 · 0.997 ·
√
102 = 0.40.

This result yields that the accuracy of the calibrated model can be somewhat
influenced by choosing more precise measurements for the history matching,
but only to a limited extent. Hence, if the measurements comprising the
original data set did not have enough influence on the data assimilation to
produce a reasonable history matched model, it might be not possible to
obtain a better model by improving only the accuracy of these measurements.
One might need to reconstruct the measurement network to include different
data.

However, if we consider the change in the uncertainty of the estimate
through (5.19), we obtain

‖PH
2 −PH

1 ‖2
‖PH

1 ‖2
≤ ‖S1‖2 · ‖R2 −R1‖2 · ‖S2‖2

‖PH
1 ‖2

= 0.75.

Such a high boundary implies that by improving the accuracy of the observa-
tions from 10% to 5% (i.e. twice) one may expect to change the uncertainty
associated with the history matched model up to 75%. If the calibrated model
is accurate enough, narrowing the uncertainty range down can be beneficial.
To the contrary, if the calibrated model is far from the true one, a significantly
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reduced uncertainty range may not span the true model which is undesirable.
The analyst, therefore, needs to carefully manage both the accuracy of the
history-matched model and the associated uncertainty.

We proceed by studying the SVD of the observation sensitivity matrix.

5.6.2 SVD of the observation sensitivity matrix

Consider the outcome of a SVD performed on the observation sensitivity ma-
trix (for the general theory on the SVD of a matrix see Appendix B.3). The
singular values of matrix S are plotted on logarithmic scale in Figure 5.2a and
the corresponding singular vectors are given in Figure 5.2b. Then right singu-
lar vectors of S determine linear combinations of data that are satisfied by the
adjustments due to parameter estimation. Moreover, in our case the right and
left singular vectors coincide as we actually have an eigenvalue decomposition.

The shape of the curve presented in Figure 5.2a provides additional insights
into the features of the measurement network. If the curve is flat, all the linear
combinations of the measurements can be concluded to have influenced the
history matching process. However, sharp bending of the curve down to zero
illustrates that some linear combinations of the measurements are not impor-
tant for the analysis and can be omitted, simplifying the data assimilation.
Further investigation is needed to formulate the criteria for selection of the
redundant data based on the shape of the curve.
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Figure 5.2: Singular values and singular vectors of the observation sensitivity
matrix.

A closer look at the singular vectors corresponding to the three largest
singular values (Figure 5.3) provides some insight in measurement combina-
tions that have the largest influence on the history matching process. One can
notice a clear repetition of the most influential patterns of measurements in
time in the first three singular vectors, e.g. it follows from the first singular
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Figure 5.3: First three singular vectors of the observation sensitivity matrix.

vector that the combination of phase flow rates at the NE and SW wells is
important for the analysis.

5.6.3 Trace diagnostics of the observation sensitivity matrix

The original observation sensitivity assessment via (5.3) can now be performed
at each iteration separately. For our test case the GAI of the observations per
iteration and the corresponding GAI for the prior IP are given in Table 5.1.

Iteration Value of cost function J IGA IP

initial 1001.48 — —

1st 55.87 0.0414 0.9586

2nd 47.35 0.0411 0.9589

3rd 47.23 0.0428 0.9572

4th 47.23 0.0428 0.9572

5th 47.23 0.0428 0.9572

Table 5.1: GAI and PAI per iteration of representer method.

However, one is naturally interested in more general measures of obser-
vational impact. One of the questions to be answered is how an observation
influences the final outcome of the estimation procedure. For this matter one
might focus only on the observation influence calculated for the last iteration
of the algorithm, since then the linearization is performed in the neighbor-
hood of the (local) minimum and, hence, provides the best possible linear
approximation to the problem.

Alternatively, one could also look at the importance of the observations
from a point of view of algorithm convergence. It was already observed that
the main improvement of the model occurs in the first iteration of the his-
tory matching algorithm, and even if the algorithm has not yet converged, the
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model has already a reasonable quality. Therefore the observations providing
such an improvement need to receive a higher score. Then the overall observa-
tion influence can be defined as a linear combination of observation influences
with weights related to the overall drop of the cost function and the drop per
iteration:

IGA =

Niter∑

i=1

|Ji − Ji−1|
|JNiter

− J0|
IiGA,

where Niter stands for the total number of executed outer loops of the repre-
senter algorithm.

In the current exercise the fluctuations in the influence of observations
between different iterations are negligible and lead to equivalence of these two
approaches. In a general case, however, it is probably best to work with the
sensitivity matrix obtained at the last iteration of the RM.

Finally, the GAI for the current exercise is only 4%. The GAI of the prior
is therefore 96%. Thus, in our example the majority of the information in the
history matching exercise results from the prior. This result is in line with the
practical experience that the outcome of computer-assisted history matching
with production data is strongly influenced by the prior model.

Additional exercises are required to draw general conclusions about the
dependency between the location / type of the measurement and its impor-
tance.

5.6.4 Role of measurement type and/or location

To obtain a better insight into the trace diagnostics defined in Section 5.2 we
perform a number of history matching exercises based on the set-up described
in Section 2.3. This set-up is slightly adjusted to investigate the dependency
between the measurement location / type and its importance to history match-
ing. The test cases involve various combinations of well control strategies and,
hence, different combinations of measurements, whereas the rest of the setting
remains as in Section 2.3. The summary of the set-ups is given in Table 5.2.
Note that Exercise 5.6.4.1 was discussed in detail in Sections 5.6.1–5.6.3.

The estimates of the permeability and porosity fields obtained in Exercises
5.6.4.1–5.6.4.6 are given in Figures 5.4 and 5.5 respectively illustrating that a
reasonable reconstruction of the field features is achieved in all cases.

There are, however, some visual differences in the quality of estimated
permeability and porosity fields resulting from Exercises 5.6.4.1–5.6.4.6. To
investigate the link between the quality of the estimate, measurement strategy
and information content of the data we summarize the average information
content of the observations and the PAI for the measurements of different types
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prescribed measured
pbh qt pbh qo, qw

Exercise 5.6.4.1
NW, NE,
SW, SE

INJ INJ
NW, NE,
SW, SE

Exercise 5.6.4.2 —
NW, NE,
SW, SE,

INJ

NW, NE,
SW, SE,

INJ
—

Exercise 5.6.4.3
NW, SE,

INJ
NE, SW NE, SW

NW, SE,
INJ

Exercise 5.6.4.4
NE, SW,

INJ
NW, SE NW, SE

NE, SW,
INJ

Exercise 5.6.4.5
NW, NE,

INJ
SW, SE SW, SE

NW, NE,
INJ

Exercise 5.6.4.6
SW, SE,

INJ
NW, NE NW, NE

SW, SE,
INJ

Table 5.2: Settings of the exercises with various measurement strategies.

computed via (5.3), and the rms error in the obtained parameter estimates in
Table 5.3.

K IGA
IPA Erms

pbh qo qw k φ

Exercise 5.6.4.1 90 0.0428 0.0360 0.0492 0.0381 0.5541 0.0665

Exercise 5.6.4.2 50 0.0200 0.0200 — — 0.7500 0.0830

Exercise 5.6.4.3 70 0.0649 0.0377 0.1013 0.0588 0.6626 0.0758

Exercise 5.6.4.4 70 0.0759 0.0837 0.0994 0.0550 0.5012 0.0617

Exercise 5.6.4.5 70 0.0651 0.0661 0.0883 0.0490 0.5955 0.0708

Exercise 5.6.4.6 70 0.0663 0.0658 0.0898 0.0510 0.5503 0.0660

Table 5.3: GAI, PAI and rms error in the estimated parameters for exercises
with various measurement strategies.

We start by comparing the outcomes of the Exercises 5.6.4.3 – 5.6.4.6,
since the measurement scenarios simulated in these exercises are somewhat
similar. Namely, we collect bottom hole pressure data at two production wells
and at the injector, and phase flow rates at the other two producers. The
choice of the production wells for pbh measurements varies per exercise. The
following remarks can be made based on investigating the four bottom rows
of the Table 5.3:



72 5. Observation sensitivity matrix

5 10 15 20

5

10

15

20
 

 

−31

−30.5

−30

−29.5

−29

−28.5

(a) Exercise 5.6.4.1

5 10 15 20

5

10

15

20
 

 

−31

−30.5

−30

−29.5

−29

−28.5

(b) Exercise 5.6.4.2

5 10 15 20

5

10

15

20
 

 

−31

−30.5

−30

−29.5

−29

−28.5

(c) Exercise 5.6.4.3

5 10 15 20

5

10

15

20
 

 

−31

−30.5

−30

−29.5

−29

−28.5

(d) Exercise 5.6.4.4

5 10 15 20

5

10

15

20
 

 

−31

−30.5

−30

−29.5

−29

−28.5

(e) Exercise 5.6.4.5

5 10 15 20

5

10

15

20
 

 

−31

−30.5

−30

−29.5

−29

−28.5
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Figure 5.4: Estimated permeability field in [m2] on natural log scale.

• in Exercise 5.6.4.4 the measurements have the largest impact on the
history match (IGA = 0.0759), and the best estimates of the model
parameters (Erms(k) = 0.5012, Erms(φ) = 0.0617) are achieved. In
this exercise pbh is measured at the NW and SE wells located in low
permeability zones;

• in Exercise 5.6.4.3 the measurements have the smallest impact on the
history match (IGA = 0.0649), and the worst estimates of the model
parameters (Erms(k) = 0.6626, Erms(φ) = 0.0758) are obtained. In this
exercise pbh measurements are collected at the NE and SW wells placed
in the high permeability streak;
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(b) Exercise 5.6.4.2
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(c) Exercise 5.6.4.3
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(d) Exercise 5.6.4.4
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(e) Exercise 5.6.4.5
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(f) Exercise 5.6.4.6

Figure 5.5: Estimated porosity field in [-] on natural log(− log) scale.

• the change in GAI for the various exercises is mostly caused by respective
changes in the information content of the pbh observations;

• in Exercise 5.6.4.5 and 5.6.4.6 the measurement influence is similar, and
also the PAI’s for various data types are approximately the same. Note
that in these exercises the pbh measurements are collected in a well lo-
cated within the low permeability area and a well placed outside this
zone;

• pbh data have less impact on the history matching procedure than qo
data;

• qo data are more influential than qw data.
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The last two conclusions can be also drawn from Figure 5.6 demonstrating
the influence of the measurements of different types, i.e. the PAI of bottom
hole pressure observations and phase flow rates.
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(d) Exercise 5.6.4.4
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(e) Exercise 5.6.4.5
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Figure 5.6: PAI for sets of pbh, qo and qw measurements for the exercises with
various measurement strategies.

In Exercise 5.6.4.1 pbh data also have less impact on the history match-
ing procedure than qo data, and qo data are more influential than qw data.
However, there is notably no connection between the measurement impact
and the quality of the estimate achieved in the various exercises. The mea-
surements used in Exercise 5.6.4.1 are clearly less influential than those in
Exercise 5.6.4.3 (IGA = 0.0428 versus IGA = 0.0649), however, the estimated
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model parameters are better in the former case (e.g. Erms(k) = 0.5541 versus
Erms(k) = 0.6626). This fact illustrates that the observation sensitivity ma-
trix for history matching is indeed unable to distinguish between positive and
negative influences of the data on the quality of the estimated parameters (see
Section 5.2).

The relation between the location of pbh measurements and their impor-
tance for the history matching procedure is illustrated in Figure 5.7, whereas
Figures 5.8 and 5.9 give the PAI for qo and qw measurements collected at
various locations.
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(b) Exercise 5.6.4.3
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Figure 5.7: PAI for pbh measurements at different locations for the exercises
with various measurement strategies.
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(a) Exercise 5.6.4.1
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(b) Exercise 5.6.4.3
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(c) Exercise 5.6.4.4
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(d) Exercise 5.6.4.5
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Figure 5.8: PAI for qo measurements at different locations for the exercises
with various measurement strategies.

Careful examination of Figures 5.6–5.9 yields the following remarks:

• qw data collected at injection well are not influential compared to the
observations from the other wells;

• pbh (respectively qo and qw) data collected at the wells located in the
low permeable zone have a higher influence than if collected at the wells
located in the high permeability areas. This is in agreement with the
discussion of Table 5.3.



5.6. Application of the observation sensitivity matrix to HM with the RM 77

0 0.1 0.2 0.3 0.4

NW

NE

SW

SE

W
el

l l
oc

at
io

n

PAI q
w

 

 

iter1
iter2
iter3
iter4
iter5
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(b) Exercise 5.6.4.3
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(c) Exercise 5.6.4.4
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(d) Exercise 5.6.4.5
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Figure 5.9: PAI for qw measurements at different locations for the exercises
with various measurement strategies.

Note that in the discussed exercises the low permeability areas are not present
in the prior, therefore, it is reasonable to expect that data collected at these
locations will contribute the most to the parameter update. To elaborate on
that hypothesis we proceed with a study case initialized with a different prior
model.
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5.6.5 Role of prior fields

To investigate how the observation influence depends on the prior model, we
consider the base case described in Section 2.3 and a modified version with
different permeability and porosity prior fields (see Figure 5.10). Note that
the prior fields given in Figure 5.10 are mirrored versions of the fields in Figure
2.3.
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(b) porosity field

Figure 5.10: Prior permeability and porosity fields. The scale represents trans-
formed values of permeability [m2] and porosity [-].

History matching with prior fields as in Figure 5.10 shows good results.
The value of the cost function drops from 1086.307 to 71.239, while the com-
puted minimum value of the cost function satisfies criterion (3.16), which in
this particular case has the form 42.567 ≤ Jopt ≤ 137.434. The rms errors in
the estimated permeability and porosity fields are reduced from 1.65 to 0.77
and from 0.16 to 0.11 respectively. Though the estimated permeability and
porosity fields plotted in Figure 5.11 might be not fully resembling the ’true’
fields in Figure 2.1, they contain the main features of the ’true’ fields and the
prediction of water breakthrough clearly gets improved if the history-matched
model is used.

Figure 5.12 illustrates that the predictions of water breakthrough with
calibrated models resulting from both regular prior 1 (Figure 2.3) and modified
prior 2 (Figure 5.10) have comparable quality.

The results of the sensitivity diagnostics via (5.3) for exercises with both
prior fields are given in Tables 5.4 – 5.6.

As the prior permeability field in Exercise 5.6.5.2 does not contain a high
permeability pass from the SW to the NE well, it is reasonable to expect that
the history matching procedure in this case should rely more on the available
production data to reconstruct the truth. This fact is also illustrated by the
computed GAI for Exercises 5.6.5.2 and 5.6.5.1 (0.0454 versus 0.0428). The
slight increase in the measurement influence is mostly due to the increased
importance of the pbh measurements.
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(b) porosity field

Figure 5.11: Estimated permeability and porosity fields. The scale represents
transformed values of permeability [m2] and porosity [-].

Prior IGA
IPA

pbh qo qw

Exercise 5.6.5.1 Figure 2.3 0.0428 0.0360 0.0492 0.0381

Exercise 5.6.5.2 Figure 5.10 0.0454 0.0663 0.0491 0.0364

Table 5.4: GAI and PAI for sets of pbh, qo and qw measurements for cases with
various priors.

Prior
IPA

NW NE SW SE

Exercise 5.6.5.1 Figure 2.3 0.0554 0.0362 0.0483 0.0571

Exercise 5.6.5.2 Figure 5.10 0.0542 0.0375 0.0495 0.0553

Table 5.5: PAI for qo measurements collected at different locations for cases
with various priors.

Prior
IPA

NW NE SW SE

Exercise 5.6.5.1 Figure 2.3 0.0458 0.0241 0.0325 0.0500

Exercise 5.6.5.2 Figure 5.10 0.0435 0.0238 0.0313 0.0471

Table 5.6: PAI for qw measurements collected at different locations for cases
with various priors.

In both cases measurements collected outside high permeable area are more
influential than measurements of the same type collected at other locations, i.e.
inside the high permeability zone. This allows reformulating the hypothesis



80 5. Observation sensitivity matrix

0 500 1000 1500
0

1

2

3

4

5

6
x 10

−4

time [days]

w
at

er
 fl

ow
 r

at
e 

|q
w
| a

t p
ro

du
ct

io
n 

w
el

ls
 [m

3 /s
]

NW

 

 
calibrated model prior 1
calibrated model prior 2
initial model prior 1
initial model prior 2
true model

(a) NW well
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(b) NE well
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(c) SW well
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(d) SE well

Figure 5.12: Forecast of water flow rate at production wells for the case of
various priors.

from the Section 5.6.4: even if the information on low permeability areas is
present in the prior, the measurements collected in these regions remain more
important than the data of the same type collected in high permeability zones.

5.6.6 Role of ’true’ fields

The structure of the ’true’ permeability and porosity fields so far used in
the synthetic exercises is favorable for history matching (given the utilized
5-spot configuration of the wells). The high permeability streak connecting
the SW and NW production wells and the injector is easy to be estimated
from the available prior and measurements. Therefore the simulations based
on the ’true’ fields given in Figure 2.1 might be not enough to draw general
conclusions about the features of the history matching process [40, 63]. This
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led us to consider somewhat more complex ’true’ fields given in Figures 5.13a
and 5.14a. These are the fields used in Exercise 5.6.6.1. We enlarge this study
by also running synthetic Exercise 5.6.6.2 based on the ’true’ fields given in
Figures 5.13b and 5.14b. The rest of the set-up remains as described in Section
2.3.
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Figure 5.13: Various ’true’ permeability fields. The scale represents trans-
formed values of permeability [m2].
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Figure 5.14: Various ’true’ porosity fields. The scale represents transformed
values of porosity [-].

The estimated permeability and porosity fields are given in Figures 5.15
and 5.16, demonstrating that the main features of the ’true’ fields were recov-
ered during the history matching process.

Tables 5.7–5.9 contain the results of the sensitivity diagnostics for Exercises
5.6.6.1–5.6.6.2 and the reference case with the regular truth given in Figure
2.1. Recall that the reference case was discussed in detail throughout Sections
5.6.1–5.6.3.

The results demonstrate similar low values of GAI of the observations for
all the performed study cases. Considering the importance of the measure-
ments of the same type collected at different locations (Tables 5.8–5.9), one
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Figure 5.15: Estimated permeability fields for the case of various truth. The
scale represents transformed values of permeability [m2].
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Figure 5.16: Estimated porosity fields for the case of various truth. The scale
represents transformed values of porosity [-].

Truth IGA
IPA

pbh qo qw

Exercise 5.6.6.0 Figure 2.1 0.0428 0.0360 0.0492 0.0381

Exercise 5.6.6.1 Figures 5.15a, 5.16a 0.0427 0.0372 0.0491 0.0376

Exercise 5.6.6.2 Figures 5.15b, 5.16b 0.0462 0.0431 0.0519 0.0414

Table 5.7: GAI and PAI for sets of pbh, qo and qw measurements for cases with
various truth.

can finally conclude that the data gathered at production wells that do not
have a direct high permeability connection to the injector are more important
for the history matching procedure than the data of the same type collected
at producers linked to the injector by a high permeability streak. A possible
explanation could be that if the producer is separated from the injector by
a low permeability zone, the flow that reaches this producer contains more
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Truth
IPA

NW NE SW SE

Exercise 5.6.6.0 Figure 2.1 0.0554 0.0362 0.0483 0.0571

Exercise 5.6.6.1 Figures 5.15a, 5.16a 0.0519 0.0510 0.0411 0.0524

Exercise 5.6.6.2 Figures 5.15b, 5.16b 0.0287 0.0471 0.0671 0.0646

Table 5.8: PAI for qo measurements collected at different locations for cases
with various truth.

Truth
IPA

NW NE SW SE

Exercise 5.6.6.0 Figure 2.1 0.0458 0.0241 0.0325 0.0500

Exercise 5.6.6.1 Figures 5.15a, 5.16a 0.0408 0.0400 0.0273 0.0422

Exercise 5.6.6.2 Figures 5.15b, 5.16b 0.0168 0.0345 0.0581 0.0561

Table 5.9: PAI for qw measurements collected at different locations for cases
with various truth.

information about the interior structure of the reservoir as it has to find ways
to bypass the low permeability region. In turn, if injection and production
wells are directly connected by a high permeability streak, the flow immedi-
ately shoots through to the producer, thus limiting the amount of information
about the reservoir structure gathered on the way.

5.7 Application of the observation sensitivity
matrix to history matching with the AEnKF

Until now we were solving the history matching problem by means of the RM
which is a variational technique. It allowed for a straightforward calculation
of the sensitivity matrix, but needed the model adjoint for the experiment.
This requirement is often not feasible, so application of the sensitivity matrix
concept to an adjoint-free history matching system is of practical interest.
In the current application, the history matching problem is solved via the
AEnKF, which has several favorable features for our purposes:

• The AEnKF does not require an adjoint model (like none of the methods
from the family of ensemble Kalman filtering techniques);

• The AEnKF allows for asynchronous data assimilation, i.e. history
matching observations made at a time different from the time of the
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update. Hence, all observations collected during a certain time-window
can be assimilated at once at the end of observational period. This
allows for comparison of the influence of the observations collected at
different times.

For this exercise we employ the usual set-up described in Section 2.3. The
history matching is performed from 0 [days] till 450 [days] with data avail-
able every 30 [days] from 30 [days] till 300 [days] with the AEnKF algorithm.
The choice of the time interval ensures that water breakthrough has not yet
occurred and we can compare the results to the ones obtained with the RM.

The elements of the observation sensitivity matrix are plotted row-wise as
a 2D field (see Figure 5.17, where Figure 5.17b displays a detailed version of
the top left block of Figure 5.17a).
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Figure 5.17: Observation sensitivity matrix (obtained with the AEnKF).

Comparison of the GAI calculated for the exercises with the AEnKF algo-
rithm (0.0428) and the RM (0.0428), and Figures 5.1 and 5.17 allows to con-
clude that both the RM and the AEnKF algorithm have utilized the available
measurements in a similar manner. We can therefore proceed with investigat-
ing the importance of the measurements for the history matching exercises in
general by considering either the AEnKF or the RM history matching tech-
nique.

5.7.1 Role of water breakthrough

We have so far observed (see Section 5.6.4) that the amount of information
brought to the history-matched system by measurements changes if the flow
behavior in reservoir is altered. In that respect water breakthrough is known to
substantially influence the system, and it is therefore of interest to investigate
the impact of the measurements collected after water breakthrough in at least
one well. As our current implementation of the RM does not permit to perform
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history matching for the time interval including water breakthrough time, we
use the AEnKF algorithm instead.

For this exercise we employ the usual set-up described in Section 2.3 (Ex-
ercise 5.7.1.1). The history matching is performed from 0 [days] till 900 [days]
with the data available every 30 [days] from 30 [days] till 900 [days] with the
AEnKF algorithm. The choice of the time interval ensures that water break-
through has occurred, and we can evaluate the importance of the measure-
ments collected within various time intervals containing or not containing
water breakthrough. For comparison we also consider an exercise with a unit
mobility set-up (Exercise 5.7.1.2) that utilizes a linear model for relative per-
meabilities. The description of the differences in both exercises is given in the
Table 5.10.

Viscosity
End point
relative

permeability

Corey
exponents

Exercise 5.7.1.1
µo = 5 · 10−4 [Pa · s]
µw = 1 · 10−3 [Pa · s]

k0ro = 0.9 [−]
k0rw = 0.6 [−]

no = 2.0 [−]
nw = 2.0 [−]

Exercise 5.7.1.2
µo = 1 · 10−3 [Pa · s]
µw = 1 · 10−3 [Pa · s]

k0ro = 1.0 [−]
k0rw = 1.0 [−]

no = 1.0 [−]
nw = 1.0 [−]

Table 5.10: Settings of the exercises with various relative permeability models.

Synthetic measurements generated for Exercise 5.7.1.2 are plotted in Fig-
ure 5.18.

The general observation sensitivity assessment via (5.3) is now performed
for each study case and the results are given in Table 5.11. This table
also contains the PAIs of the measurements taken within two time intervals:
0 [days]− 300 [days] and 300 [days]− 900 [days], i.e. before any water break-
through and thereafter. In addition Table 5.11 lists the PAIs of the pbh, qo
and qw groups of measurements computed for different time windows. The
resulting IGA = 0.1668 for Exercise 5.7.1.1 indicates a higher influence of the
data on the history matching process when history matching is performed
for a longer time period with the inclusion of the water-breakthrough-related
data. The increase in the global averaged influence is mostly due to the
more extensive utilization of the qw data for time intervals containing water
breakthrough. The PAI of the qw measurements collected in the time win-
dow 0 [days]− 300 [days] (no water breakthrough has yet occurred) is 0.0192.
The PAI of the same type of measurements gathered during the time interval
300 [days] − 900 [days] (water breakthrough in SW, NE and NW producers)
equals 0.3926. Similar phenomena can be observed during the PAI assess-
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Figure 5.18: Synthetic measurements (Exercise 5.7.1.2): solid line — ’perfect’,
dotted line — noisy measurements.
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IGA IPA
Time window in [days]
0− 300 300− 900

Exercise 5.7.1.1 0.1668

0.0201 0.2401
pbh 0.0087 0.0118
qo 0.0240 0.1446
qw 0.0192 0.3926

Exercise 5.7.1.2 0.0666

0.0511 0.0743
pbh 0.0060 0.0060
qo 0.0176 0.0382
qw 0.0958 0.1275

Table 5.11: GAI and PAI for groups of measurements collected at different
time intervals for cases with various relative permeability models.

ment in Exercise 5.7.1.2, though the increase of observation influence is less
pronounced.

Note that more influential measurements are collected at times when sub-
stantial alterations to the behavior of the fluid flow are observed, e.g there is
no change in the pbh in Exercise 5.7.1.2 (see Figure 5.18a), hence, no difference
in the importance of pbh measurements gathered at various times is observed;
on the contrary, the value of the pbh in Exercise 5.7.1.1 is slightly changing in
time (see Figure 2.2a) yielding a small increase in the corresponding PAI.

Figures 5.19 and 5.20 summarize for each well the PAIs of the qo and qw
measurements collected at different times, and water flow rates predicted by
the initial, ’true’ and calibrated models. Analysis of these figures provides
further details on the importance of qo and qw data collected at various time
instances / locations:

• the importance of qw measurements sharply increases just before water
breakthrough and sharply drops at the time of water breakthrough in
case of the non-linear relative permeability model (see Figure 5.19);

• in case of the non-linear relative permeability model the importance of
qo measurements increases from the time of water breakthrough and on,
or at the end of the data assimilation interval if no water breakthrough
was observed for the duration of the history matching;

• in the unit mobility (linear permeability model) exercise, the importance
of qw measurements both sharply increases and drops before the water
breakthrough event (see Figure 5.20);
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Figure 5.19: PAI for qo and qw measurements collected at different lo-
cations/time instances. Non-linear relative permeability model (Exercise
5.7.1.1).

• in both exercises the importance of qo measurements remains relatively
low until the water breakthrough time suggesting that these measure-
ments provide redundant information to the data assimilation system.

These findings suggest including both self-sensitivities of the qw measure-
ments and the predictions obtained from the initial and calibrated models into
considerations on the times of water breakthrough. The self-sensitivities of the
qw observations can be also obtained and used directly after history match-
ing to provide the first rough estimates of the water breakthrough times, i.e.
already before the simulation with the calibrated model is completed. These
estimates are somewhat conservative, which however allows enough time for
taking decisions on the necessary adjustments in the production strategy and
their implementation.

5.7.2 Role of exciting input

The results so far indicate that production data generally have a low influence
on the history match, and the estimation mostly relies on prior information.
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Figure 5.20: PAI for qo and qw measurements collected at different loca-
tions/time instances. Linear relative permeability model (Exercise 5.7.1.2).

These facts are in agreement with practical experience and results of previ-
ous studies (see e.g. [82, 83]). Section 5.7.1 nevertheless demonstrates that
the importance of the data is highly increased if water breakthrough related
measurements are used for history matching. However, in practice we would
like to obtain a calibrated model before this kind of data becomes available,
such that the model is able to actually predict water breakthrough. Hence,
we need to look for other ways to obtain more influential data.

It is known within the field of system identification, that some parameters
of a dynamic system may not be identifiable from the measurements (i.e. sys-
tem output signals) unless the system input is varied [54]. The data, collected
under such a changing input, allows to restore more of the unknown model
parameters. Therefore we have found a number of concepts from system iden-
tification theory and experiment design to be particularly useful. The idea
is to supply the system with such an exciting input signal that the obtained
measurements can be utilized by history matching algorithms more effectively.
In this respect one needs to decide on: (i) which system input can be used
as an exciting signal, (ii) what shape does this input signal need to have, and
(iii) what is the maximum permitted change in the value of the input.
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In the framework of our base case exercise described in Section 2.3 the
injection rate is the most natural choice of the input signal to be altered.
To keep the method practically feasible, we propose the injection rate to be
changed at discrete time moments that coincide with the time instances when
measurement data are collected.

Concerning the shape of the exciting signal, we follow [50] and [81] and
consider a number of typical exciting signals, i.e. a step function, a random
binary signal (RBS) and a harmonic signal. In all exercises the amplitude of
the signal is taken to be 15% of its initial value in order to stay consistent, since
a larger amplitude frequently led to convergence problems in the software. The
rest of the history matching set-up remains as in Section 2.3.

Step function

We use a step function to describe the water injection strategy and change
the system behavior. The exact shape of the input signal is given in Figure
5.21, where the change in the value of the injection rate occurs at 210 [days].
The response of the system to such an input is given in Figure 5.22. Note
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Figure 5.21: Input signal determined by a step function.

that a stepwise increase in the injection rate results in higher production rates
and, hence, in a somewhat faster water breakthrough (compare Figure 5.22
to the base case Figure 2.2). Although the system is exposed to a sudden
change in the input, the system response turns out to be unable to provide
the history matching algorithm with extra knowledge on the model parameters
(IGA = 0.0434 vs. IGA = 0.0428 in the regular exercise).
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(c) water flow rate

Figure 5.22: Synthetic measurements for stepwise input signal: solid line —
’perfect’, dotted line — noisy measurements.
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Random binary signal

Let {w(t)} be a stochastic white noise process, then

u(t) = c · sign[w(t)] (5.20)

is a binary signal that assumes values ±c, i.e. c equals 15% of the initial value
of the injection rate in our case. The reasons to use such a signal in a general
case are discussed in [81]. In the current study, however, the main advantage
is that an injection rate excited according to (5.20) can be straightforwardly
obtained in the existing physical configuration by e.g. opening or closing a
valve at discrete times for discrete amounts. We allow the signal to switch
sign every time the new data are collected. The generated RBS signals with
clock period chosen as the time step of data gathering (Tc = 30 [days]) and
with an increased clock period (Tc = 60 [days]) are given in Figure 5.23. The
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(b) Tc = 60 [days]

Figure 5.23: Input signal determined by RBS.
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RBS input signal of the same amplitude as the considered above step function
introduces only a minor shift in the water breakthrough time (see Figure 5.24).
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(b) Tc = 60 [days]

Figure 5.24: Synthetic measurements for RBS input signal: solid line — ’per-
fect’, dotted line — noisy measurements.

The history matching exercises initialized with injection rate varied ac-
cording to each of the curves in Figure 5.23 however demonstrate no in-
creased sensitivity to the measurements (IGA = 0.0429 and IGA = 0.0424
vs. IGA = 0.0428 in the regular exercise).

Harmonic signal

Another typical input signal that is used to obtain extra knowledge about a
system is described by harmonic functions: sine and cosine. As we intend
to alter the injection rate only at discrete time instances, these continuous
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functions need to be approximated by piecewise constant functions (see e.g.
Figure 5.25 that gives a piecewise constant approximation of sine functions
with clock period Tc of 100 [days] and 300 [days]). Note that input in the form
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(b) Tc = 300 [days]

Figure 5.25: Input signal determined by sine.

of the approximated harmonic signal does not affect the water breakthrough
time (see Figure 5.26).

One needs to decide on the range of possible frequencies to be investi-
gated. The minimum length of the sampling interval in our case is chosen to
be 30 [days], i.e. the same as the length of the time intervals used for col-
lecting data. This according to the Nyquist-Shannon theorem [55, 75] allows
approximation of the sine functions with frequencies higher than 1

2·30 [days−1].
We therefore consider only sine functions with the period Tc > 60 [days].

We perform history matching for 300 [days] and naturally would like to
observe within this time at least one full period of the sine wave to cover the
range of possible responses of the system. This translates into considering
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(b) Tc = 300 [days]

Figure 5.26: Synthetic measurements for approximated sine input signal: solid
line — ’perfect’, dotted line — noisy measurements.

sine functions with a period Tc ≤ 300 [days] (i.e. with a frequency lower than
1

300 [days−1]).
We perform simulations for two extreme cases of high and low frequencies:

Tc = 100 [days] and Tc = 300 [days] with the largest amplitude permitted by
the software, i.e. 15% of the initial value of the injection rate. Nevertheless,
there is no actual difference in the importance of the measurements comparing
to the base case (IGA = 0.0431 and IGA = 0.0429 vs. IGA = 0.0428).

Modified staircase signal

The simulations discussed above demonstrated that typical variations in the
shape of the input signal do not provide the history matching algorithm with
more influential production data. Only the stepwise input signal has shown
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some potential in that respect. Unfortunately the magnitude of the step can-
not be increased due to software limitations. Therefore we propose an ap-
proach that creates an input signal of a staircase type allowing to increase
the values of injection rate in total up to 90% of its initial value (see Figure
5.27). This, in turn, results in an earlier water breakthrough times (see Fig-

0 100 200 300 400 500 600 700 800 900
2

2.5

3

3.5

4
x 10

−3

time [days]

in
je

ct
io

n 
ra

te
 [m

3 /s
]

Figure 5.27: Input signal determined by stepwise function.

ure 5.28) and increased importance of the measurements (IGA = 0.0718 vs.
IGA = 0.0428).
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Figure 5.28: Synthetic measurements for modified staircase type input signal:
solid line — ’perfect’, dotted line — noisy measurements.

The increase in the GAI of the measurements can be explained by the fact
that the higher water injection rate causes earlier water breakthrough. Hence,
history matching within the regular time window 0 [days]−300 [days] includes
assimilating measurements collected in the vicinity of the water breakthrough.
As has been observed in Section 5.7.1, the measurements collected in the neigh-
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borhood of the water breakthrough time have a larger influence throughout
the history matching procedure. Note that in practice accelerating the oc-
currence of the water breakthrough is most often not desired, though it can
provide more influential measurements.

5.8 Conclusion

We applied a measure developed in meteorology, the observation sensitivity
matrix, to a history matching problem in reservoir engineering. In particular,
we used the diagonal elements of the matrix, known as self-sensitivities, as a
quantitative measure of the influence of observed measurements on predicted
measurements. Based on the examples investigated, the main findings are:

• the observation sensitivity matrix can be used as a tool to analyze the
importance of the collected measurements for the history matching;

• the norm of the sensitivity matrix can be applied to assessing the magni-
tude of possible change in the accuracy of the updated model due to the
respective change in the accuracy of collected observations (see (5.15)
and (5.19));

• RM and AEnKF utilize the data with comparable effectiveness;

• for a simple test case the global averaged influence of the observed mea-
surements is only 4%. This is a rather low value compared to the 96%
global averaged influence of the prior;

• bottom hole pressure measurements are in general less influential than
fluid flow rates measurements;

• data gathered at production wells that do not have a direct high per-
meability connection to the injector are more important for the history
matching procedure than data of the same type collected at producers
linked to the injector by a high permeability streak;

• the fluid flow rate measurements collected at times close to water break-
through are highly important for history matching;

• together with predictions provided by the initial and calibrated models,
the self-sensitivities of the qw measurements can be used for obtaining
the estimations of the water breakthrough times;

• regular modifications in the shape of the function describing the water
injection strategy (step function, RBS and harmonic function) do not
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result in providing the history matching algorithm with more influen-
tial production data, unless also the magnitude of the injection rate is
increased yielding earlier water breakthrough times.

Further work is required to assess which influence the assimilated obser-
vations have on forecast beyond the data assimilation period.
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Conclusions

6.1 Overview

Energy companies worldwide are currently facing a challenging operational
landscape. To sustain the company competitiveness on the global energy
market, it becomes increasingly important to ensure that appropriate produc-
tion and development decisions are taken. Reservoir modeling is nowadays a
standard tool used in the decision making process allowing analysis and pre-
diction of the reservoir flow behavior, identification of beneficial production
strategies and evaluation of the associated risks.

The models used for reservoir simulation contain a large number of imper-
fectly known parameters characterizing the reservoir flow, e.g. permeability
and porosity of the reservoir rock. Therefore the predictive value of such mod-
els is limited and tends to deteriorate in time. History matching is employed
to update the values of poorly known model parameters in time with the help
of the production data which become available during the production life of
the reservoir, i.e. to adapt parameters such that simulated results are con-
sistent with measured production data. Such an approach generally improves
estimators of the model parameters and predictive capability of the model.

Remarkably, the information extracted from the measurements in the
history matching phase is repeatedly found as not enough to provide well-
calibrated model with a high predictive value. Hence, consideration of ad-
ditional data can be of particular help. To optimize the costs and effort
associated with collection of new data and computations, up-front selection
of the most influential measurements and their locations is desirable. Meth-
ods to assess the impact of measurements on model parameter updating are
therefore needed.

The research described in this thesis has been focused on quantifying the
impact of measured data on the outcome of history matching of reservoir
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models, and leads to the following conclusions and recommendations for future
studies.

6.2 Conclusions

This research addressed history matching of a two-dimensional two-phase five-
well reservoir model with production data (bottom hole pressure at the injec-
tion well and oil and water flow rates at the production wells). The study was
twofold. It first concerned the applicability and implementation of a number
of data assimilation algorithms. The selected algorithms were thereafter used
for data assimilation when quantifying the measurements impact on history
matching. The following conclusions can be drawn based on the synthetic test
cases considered in the thesis.

• A particular variational method, the representer method (RM), has been
tested and was found to provide a reasonable parameter estimate. This
iterative algorithm is designed to perform the minimization of an ob-
jective function over the whole time window using a relatively small
amount of observations. The method requires availability of the adjoint
model. If an increasing amount of measurements is becoming available
the RM turns out to become computationally inefficient. In such a case
an accelerated version of the representer method (ARM) can be used.
Comparison of the performance of the classical RM and the ARM has
demonstrated that the ARM can be controlled to provide outcomes of
the same accuracy as those of the RM. Furthermore, the computational
load of the RM per iteration has been found to be driven by terms of
magnitude K3 and K4, where K is the total number of measurements,
whereas the number of operations for the ARM grows as K3 for large
sets of data. This causes the ARM to outperform the classical RM
in terms of computational speed when the number of assimilated mea-
surements increases. In a particular example the ARM became more
efficient than the RM when more than 85 individual measurements had
to be history-matched.

• Variational methods do not allow continuous model updating. Instead
of assimilating new data on the fly, i.e. as soon as they become avail-
able, the whole history matching process will have to be repeated. The
ensemble Kalman filter (EnKF) based techniques are the methods com-
monly used to deal with the problem. Furthermore, these methods do
not require the adjoint model to be available. The classical EnKF has
been tested and was found to give improvements in parameter estimates
similar to the RM and ARM methods. Unfortunately, EnKF can be
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occasionally cost inefficient in the operational environment, when the
forward model run has to be interrupted too frequently to assimilate the
most recent data. It was therefore decided to also examine the asyn-
chronous modification of the EnKF (AEnKF) technique, which allows
assimilating data in batches at times different from when the data be-
came available. Results of history matching with the EnKF and the
AEnKF have been demonstrated to be close.

• The RM and the AEnKF methods are theoretically related, although
they belong to different families of data assimilation techniques. In
our examples, the two methods also yielded analogous estimates of the
model parameters. Moreover, since both methods allow assimilation
of all the data gathered throughout the observational period at once,
it is possible to study the effect of observations collected at different
time instances. The RM and AEnKF have been therefore chosen as a
backbone for evaluating the data impact on the history matching. Based
on the performed tests, the RM and AEnKF were found to utilize the
data with similar effectiveness.

• The concept of an observation sensitivity matrix has been found appli-
cable to quantify the impact of measured data on the outcome of the
history matching process. This matrix describes the changes in measure-
ments predicted by the model due to assimilation of the actual measure-
ments. The indicators derived from the observation sensitivity matrix
can be used to characterize the influence of the entire data set, each par-
ticular observation or any selected subset of data on the model update.
Consequently, analysis of the impact of measurements of different types
or originating from different locations becomes possible. In addition it
has been proposed how to elicit the magnitude of a possible change in
the accuracy of the updated model due to a change in the accuracy of
collected observations from the norm of the sensitivity matrix.

• In the considered test cases the global averaged influence of the mea-
surements was found to be only 4%. The global averaged influence of
the prior to the analysis is therefore 96%. Hence the outcome of the
history matching is mostly influenced by the prior model. This result is
in line with practical experience. The findings indicate that assimilating
production data only has almost no impact on the estimates of model
parameters, and other types of data, e.g. seismic or gravity data, need
to be included in the history matching exercises. Additionally, extra
focus is needed on obtaining accurate prior models and ensuring proper
uncertainty specification.
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6.3 Recommendations

The proposed sensitivity matrix based approach to quantifying impact of mea-
surements on the history matching procedure requires additional testing before
potential deployment to industrial applications. The following directions for
further investigations are recommended:

• In this study the method was implemented and tested on a reasonably
simple and small-scale two-dimensional two-phase model. The feasi-
bility of the computations carried out to obtain the sensitivity matrix
needs to be verified for large-scale three-dimensional models. Ensemble
Kalman filter based techniques are frequently used for history matching
such models, as an adjoint is seldom available making variational data
assimilation difficult. The users also often take advantage of the fact
that the EnKF algorithm and its modifications are ’embarrassingly par-
allelizable’, which yields considerable speed-up of the history matching
process. To ensure that the cost of the observation sensitivity matrix
computation does not diminish the positive effect of the parallelization,
an approach to parallelizing the computation of the sensitivity matrix
needs to be developed.

• This thesis considers matching the production history (bottom hole pres-
sures and phase rates at the wells) directly, i.e. a so-called ’amplitude
matching’. Such an approach is well known to result in a highly nonlin-
ear inverse problem, often leading to an inadequate history match. The
authors of [16] suggest lining up observed data and model predictions
at some reference time, e.g. water breakthrough time. This approach,
called ’generalized time inversion’, has demonstrated superior behavior
for the case studies in [16]. The generalized time inversion seems to of-
fer a conceptually different treatment of the field data. The sensitivity
matrix can be used as a tool to rigorously evaluate if this method leads
to more efficient utilization of the available measurements and, hence,
can become particularly beneficial for history matching scarce measure-
ments.

• The global averaged influence (GAI) indicator can be used to compare
the effectiveness of various measurement strategies. Both the GAI and
the other indicators deduced from the observation sensitivity matrix
can be fed to an optimization procedure to determine the optimal con-
figuration of the measurement network. The network configuration is
considered optimal in a sense that it provides the data assimilation al-
gorithm with the most influential measurements, i.e. the data that can
result in the largest contribution to the updated values of model param-
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eters. It cannot be directly concluded to which degree this sophisticated
choice of data contributes to the development of a better production
strategy. The way forward could include identifying how to incorporate
the relevant indicators in an objective function, such that the network
configuration can be determined as a part of the optimal field produc-
tion strategy within a production optimization loop. This approach is
also expected to allow accounting for the costs related to the execution
of the derived field surveillance program.
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optimal control of water flooding using proper orthogonal decomposition.
Computat. Geosci., 10(1):137–158, 2006.

[85] S. Vlemmix, G.J.P. Joosten, D.R. Brouwer, and J.D. Jansen. Adjoint-
based well-trajectory optimization in a thin oil rim. In SPE/EUROPEC
EAGE Annual Conference and Exhibition, SPE 121891, Amsterdam, The
Netherlands, 2009.

[86] X.-H. Wen and W. C. Chen. Real-time reservoir model updating using
ensemble Kalman filter with confirming option. SPE J., 11(4):431–442,
2006.

[87] L. Xu and R. Daley. Towards a true 4-dimensional data assimilation
algorithm: application of a cycling representer algorithm to a simple
transport problem. Tellus A, 52(2):109–128, 2000.



112 Bibliography

[88] L. Xu and R. Daley. Data assimilation with a barotropically unstable
shallow water system using representer algorithms. Tellus A, 54(2):125–
137, 2002.

[89] L. Xu, T. Rosmond, and R. Daley. Development of NAVDAS-AR: for-
mulation and initial tests of the linear problem. Tellus A, 57(4):546–559,
2005.

[90] M. Zafari and A. C. Reynolds. Assessing the uncertainty in reservoir
description and performance predictions with the ensemble Kalman filter.
In SPE Annual Technical Conference and Exhibition, SPE 95750, Dallas,
Texas, USA, 2005.

[91] M.J. Zandvliet, M. Handels, G.M. van Essen, D.R. Brouwer, and J.D.
Jansen. Adjoint-based well-placement optimization under production
constraints. SPE J., 13(4):392–399, 2008. SPE-105797-PA.

[92] F. Zhang, A.C. Reynolds, and D.S. Oliver. Evaluation of the reduction in
uncertainty obtained by conditioning a 3D stochastic channel to multiwell
pressure data. Math. Geol., 34(6):715–742, 2002.



A

Fluid-rock properties

A.1 Capillary pressure

Capillary pressure occurs across an interface between any two immiscible flows
and is a consequence of the interfacial tension. In a two-phase system capillary
pressure is the difference between pressures of the non-wetting and wetting
phases:

pc = po − pw = pc(Sw).

Capillary pressure is a function of saturation for the given reservoir rock and
fluids at a constant temperature.

A.2 Relative permeability

If two or more phases are saturating the porous medium the reservoir capacity
to transmit any particular phase i is called the effective permeability to that
phase and denoted by ki. This definition yields that the effective permeability
ki is not greater than the absolute permeability k of the porous medium. The
relative permeability kri to phase i indicates the tendency of the other phases
to block the flow of phase i:

ki = krik.

Typical relative permeability curves for an oil-water system with water
displacing oil are presented in Figure A.1.

The value of Sw at which water starts to flow is termed the connate water
saturation Swc and the value at which oil starts to flow — the residual oil
saturation Sor. Considering the relative permeability to phase i at its critical
saturation of the other phase (i.e. the saturation at which it starts to flow)
we end up with the notion of the end point permeability k0ri.
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Figure A.1: Typical relative permeability curves

A.3 Corey-type two-phase relative permeability
model

Although the values of relative permeability for each particular porous medium
are subject to experimental determination, there exist mathematical models
to describe a relationship between relative permeability and saturation of the
wetting phase. In this study the Corey-type model is used.

Define the normalized saturation value as

S =
Sw − Swc

1− Swc − Sor
,

then Corey-type approximations of the relative permeabilities for water and
oil are

krw = k0rwS
nw , kro = k0ro (1− S)no ,

where nw and no are Corey exponents. In general these quantities can be
obtained from measured data, but in this thesis the simplification nw = no = 2
is used.



B

Mathematical background

B.1 Condition number of a matrix

Consider a system of linear equations Ax = b, where A ∈ R
n×n is a system

matrix, x ∈ R
n×1 stands for a vector of unknowns and b ∈ R

n×1 is a known
vector at the right-hand side. A slight change in the right-hand side of the
equation to e.g. b+∆b for some vector ∆b triggers a change of the solution
to x+∆x, where ∆x satisfies A(∆x) = ∆b.

The relative change in b (or the relative error in b if ∆b represents the

possible error in the entries of b) is given by
‖∆b‖
‖b‖ . Similarly, the relative

change in the solution is
‖∆x‖
‖x‖ . If A is invertible, the condition number of

A, written as cond(A), provides a bound on how large the relative change in
x can be [27]

‖∆x‖
‖x‖ ≤ cond(A) · ‖∆b‖

‖b‖ , (B.1)

where

cond(A) = ‖A‖ · ‖A−1‖. (B.2)

Hence, if the condition number is large, even a small error in vector b may
cause a large error in solution x. To the contrary, if the condition number is
relatively small, the error in the solution x will be comparable to the error
introduced into the vector on the right-hand side.

B.2 Vector and matrix norms

A vector norm on R
n is a function f : Rn → R that satisfies the following

properties [27]:
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• f(x) ≥ 0, x ∈ R
n, (f(x) = 0 if and only if x = 0),

• f(x+ y) ≥ f(x) + f(y), x, y ∈ R
n,

• f(αx) = |α|f(x), α ∈ R, x ∈ R
n.

Such a function is usually denoted with a double bar: f(x) = ‖x‖. One of the
most commonly used vector norms is the so-called Euclidean norm or 2-norm:

‖x‖2 =

√√√√
n∑

i=1

x2i , where xi is the ith coordinate of the vector x.

The definition of a matrix norm is similar to the definition of a vector norm.
In particular, f : Rm×n → R is a matrix norm if the following properties hold
[27]:

• f(A) ≥ 0, A ∈ R
m×n, (f(A) = 0 if and only if A = 0),

• f(A+B) ≥ f(A) + f(B), A, B ∈ R
m×n,

• f(αA) = |α|f(A), α ∈ R, A ∈ R
m×n.

As with vector norms, a double bar notation is used to designate matrix norms,
i.e. ‖A‖ = f(A).

If ‖ · ‖ is a family of vector norms on R
n, then the matrix norm on R

m×n

can be considered in connection to ‖ · ‖ [34]:

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ .

One of the most frequently used matrix norms is a spectral norm or 2-

norm: ‖A‖ =
√

λ(ATA), where λ(ATA) is the largest eigenvalue of ATA.
This norm has the following extra properties:

• ‖Ax‖2 ≤ ‖A‖2 · ‖x‖2 for A ∈ R
m×n, x ∈ R

n,

• ‖AB‖2 ≤ ‖A‖2 · ‖B‖2 for A, B ∈ R
n×n.

B.3 Singular value decomposition of a matrix

A singular value decomposition (SVD) can be performed for any real matrix
A ∈ R

n×m. The SVD factorizes the matrix such that [27]

A = UΣVT,

where U ∈ R
m×m is an orthogonal matrix containing the left singular vec-

tors, Σ ∈ R
m×n is a pseudo-diagonal and positive semidefinite matrix with
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diagonal entries containing the singular values σi, i = 1, . . . ,min(m,n) and
V ∈ R

n×n is an orthonormal matrix containing the right singular vectors. A
common convention is to order the singular values σi, i = 1, . . . ,min(m,n), in
descending order.

If matrix A is viewed as a standard matrix of a linear operator T that
maps vectors from R

m to R
n, then the geometrical interpretation of the SVD

is as follows. One can find orthonormal bases of Rm and R
n such that T maps

the basis vectors of Rm into basis vectors of Rn. These bases contain left and
right singular vectors of A. With respect to the new bases, transformation T
is represented by a diagonal matrix with non-negative real diagonal entries.

One can also interpret the outcome of SVD in terms of oriented ’energy’
[42]. Note that the term ’energy’ is used in a somewhat loose sense. In this
framework the square of singular value σi, i = 1, . . . ,min(m,n), describes
the oriented ’energy’ in the direction of the ith left singular vector. This
explains the extensive use of SVD in applications that involve model reduction
algorithms (see e.g. [12, 41, 84] for illustrations of model reduction performed
for different types of reservoir engineering problems).

When the matrix A is square, i.e. when it corresponds to a transforma-
tion T from one vector space onto itself, the eigenvalues and eigenvectors lead
to a more straightforward interpretation. The transformation T can then be
viewed as a composition of three actions: rotation, scaling and another rota-
tion. However for such a square matrix A an eigenvalue decomposition does
not necessarily exist, although it does exist if A is symmetric. Moreover if
the matrix A is positive semidefinite, the eigenvalues of AAT and of ATA

coincide with the singular values of A squared. In such a case the eigenvec-
tors (singular vectors) of the matrix are the principal axes of the associated
quadratic form which is an n-dimensional ellipsoid centered at the origin of
Euclidean space. In other words, the eigenvectors (singular vectors) indicate
directions of the shrinking or expansion of the unit sphere ordered by the
magnitude of the effect provided by the transformation [47].





Summary

Global energy use is increasing. As societies advance, they will continue to
need energy to power residential and commercial buildings, in the industrial
sector, for transportation and other vital services. To satisfy this rising de-
mand, liquid, natural gas, coal, nuclear power and renewable fuel sources are
extensively developed. Particularly fossil fuels (i.e. oil, natural gas and coal)
remain the largest source of energy for the world. Petroleum exploration and
production companies continuously develop new and enhance current produc-
tion technologies to increase recovery from the existing fields. These com-
panies rely on various tools to support their production and development
decisions. Reservoir modeling is a standard tool used in the decision making
process allowing analysis and prediction of the reservoir flow behavior, iden-
tification of beneficial production strategies and evaluation of the associated
risks.

The models used for reservoir simulation contain a large number of imper-
fectly known parameters characterizing the reservoir flow, e.g. permeability
and porosity of the reservoir rock. Therefore the predictive value of such mod-
els is limited and tends to deteriorate in time. History matching is employed
to update the values of poorly known model parameters in time with the help
of the production data which become available during the production life of
the reservoir, i.e. to adapt parameters such that simulated results are con-
sistent with measured production data. Such an approach generally improves
estimates of the model parameters and the predictive capability of the model.

Remarkably, the information extracted from the measurements in the
history matching phase is repeatedly found as not enough to provide well-
calibrated model with a high predictive value. Hence, consideration of ad-
ditional data can be of particular help. To optimize the costs and effort
associated with collection of new data and computations, up-front selection
of the most influential measurements and their locations is desirable. Meth-
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ods to assess the impact of measurements on model parameter updating are
therefore needed. The research objective of this thesis was to develop efficient
tools for quantifying the impact of measured data on the outcome of history
matching of reservoir models, i.e. tools that provide a meaningful quantifica-
tion of the impact of observations, while requiring limited time and effort to
be incorporated in the history matching algorithms.

This research addressed history matching two-dimensional two-phase reser-
voir model representing water flood with production data (bottom hole pres-
sure at injection well and oil and water flow rates at production wells).

First, the applicability and implementation of a number of history match-
ing algorithms were investigated. The representer method (RM) has been con-
sidered as an example of variational techniques. The algorithm’s key feature is
the computation of a set of so-called representers describing the influence of a
certain measurement on an estimation of the state and/or parameter. The RM
was found to provide a reasonable parameter estimate, although it is compu-
tationally inefficient for dealing with large data sets. This fact yielded testing
of the accelerated representer method (ARM), where direct computation of
representers is avoided. The results indicate that the accuracy of the ARM
can be controlled to provide an outcome of the same accuracy as the RM, and
that the ARM outperforms the classical RM in terms of computational speed
when the number of assimilated measurements increases. In this thesis we
developed a strategy to evaluate the number of operations performed by the
methods to assess the amount of data for which the ARM becomes beneficial
to use.

The RM and the ARM require the model adjoint and are not intended for
continuous (sequential) history matching, namely for incorporating obtained
data in the model on the fly. Instead they perform history matching over a
rather long time window using all available observations.

The ensemble Kalman filter (EnKF) has been discussed as it is the algo-
rithm for continuous history matching. The EnKF schemes do not require
the model adjoint, which makes them very attractive for data assimilation
with complex non-linear models. The use of the EnKF in reservoir engi-
neering however is prone to producing physically unreasonable values of the
state variables. The problem can be overcome by including a so-called con-
firmation step in the algorithm. The EnKF, particularly with a confirmation
step, is often computationally demanding for large-scale applications. The
asynchronous EnKF (AEnKF) is a modification of the EnKF which offers a
practical way to perform history matching in such cases by updating the sys-
tem with batches of measurements collected at the times different to the time
of the update. Hence, all observations collected during a certain time-window
can be history-matched at once at the end of observational period. This al-
lows for comparison of the influence of the observations collected at different
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times. Furthermore, it does not rely on an adjoint model, though it resembles
the approach usually followed in variational methods. Both the EnKF and
the AEnKF demonstrated considerable improvement of the model parameter
estimates compared to the prior and gave acceptable history matches.

Since the AEnKF allows for history matching all the data gathered through-
out the observational period at once, it permits comparison of the effect of ob-
servations collected at different time instances. The equivalence of the AEnKF
to variational techniques (e.g. the RM) yields the possibility to evaluate if en-
semble Kalman filtering and variational methods utilize the observations in a
similar manner. The representer method and the AEnKF were selected to be
used as platforms for quantification of the measurements impact on history
matching.

Secondly, in this thesis we developed a tool to quantify the impact of
measured data on the outcome of history matching. The method has been
inspired by the recent advancements in meteorology and oceanography, and
is based on a so-called sensitivity matrix. This matrix can be used to evalu-
ate the amount of information extracted from available data during the data
assimilation phase and identify the observations that have contributed to the
parameter update the most. In particular, we used the diagonal elements of
the matrix, known as self-sensitivities, as a quantitative measure of the in-
fluence of observed measurements on predicted measurements. Additionally,
we have proposed a way to use the norm of the sensitivity matrix for assess-
ing the magnitude of possible change in the accuracy of the model due to
the respective change in the accuracy of collected observations. The obser-
vation sensitivity matrix is fast and easy to compute both for adjoint-based
and EnKF types of history matching algorithms. The analysis performed with
the aid of the observation sensitivity matrix has confirmed that the RM and
the AEnKF utilize the data with comparable effectiveness. Remarkably, for a
simple test case the global averaged influence of the observed measurements
is only 4%. This is a rather low value compared to the 96% global averaged
influence of the prior. The observation sensitivity matrix can be also used to
investigate the dependency between the measurement location / type and its
importance to history matching.





Samenvatting

Het wereldwijde energieverbruik neemt gestaag toe. Als maatschappijen zich
blijven ontwikkelen, zal de behoefte aan energie groeien om woon- en bedrijfs-
gebouwen van stroom te kunnen voorzien, voor in de industrie, voor in het
vervoer en voor in andere onmisbare voorzieningen. Om aan deze toenemende
eisen te kunnen voldoen, worden de bronnen van aardgas, steenkool, kern-
energie, en vernieuwbare brandstoffen op grote schaal geproduceerd. Daarbij
blijven de fossiele brandstoffen voorlopig de grootste energiebron ter wereld.
Aardolie exploratie- en productiemaatschappijen zijn voortdurend bezig met
het ontwikkelen van de nieuwe en het verbeteren van de huidige productie-
technnologiën om olie- en gaswinning uit bestaande velden te verhogen. Deze
bedrijven gebruiken daarbij diverse middelen voor het ondersteunen van hun
productie- en veldontwikkelingsplannen. Het modelleren van reservoirs is een
veelgebruikt middel in de besluitvorming, omdat het onderzoek en voorspelling
van het gedrag van de stroming in reservoir, identificatie van een voordelig
productiebeleid, en bepaling van verbonden risico’s mogelijk maakt.

Modellen, die voor reservoirsimulatie worden gebruikt, bevatten een groot
aantal onbekende parameters (b.v. de permeabiliteit en de porositeit van het
reservoirgesteente) voor het karakteriseren van de stroming in het reservoir.
Daarom hebben deze modellen een beperkte voorspellende waarde en zijn ze
geneigd op den duur in kwaliteit achteruit te gaan. ”History matching” is
een techniek die wordt gebruikt om de waarden van de onvoldoende beken-
de parameters aan te passen met behulp van productiedata, die in de loop
van de reservoirproductie zijn verkregen. Daarbij worden de parameters zo-
danig aangepast dat het resultaat van de simulatie in de vorm van voorspelde
productiedata overeenkomt met de gemeten productiedata. In het algemeen
verbetert een dergelijke aanpak de schatting van de modelparameters en het
voorspellende vermogen van het model.

Dikwijls is de informatie die uit de metingen in de ”history matching” fase

123



124 Samenvatting

is gehaald, niet voldoende om tot een goed aangepast model met een hoge
voorspellende waarde te leiden. In dat geval kan het meenemen van aanvul-
lende data van bijzonder belang zijn. Om de kosten en de moeite verbonden
aan de verzameling van de nieuwe data en de berekening daarvan te opti-
maliseren, wenst men de meest invloedrijke metingen en hun ligging vooraf
te kunnen bepalen. Er zijn dus methoden nodig voor het schatten van de
invloed van de nieuwe metingen op de aanpassingen van de modelparameters.
Het doel van dit proefschift was om efficiënte methodes te ontwikkelen voor
de kwantificatie van de invloed van metingen op het resultaat van de ”history
matching” van reservoirmodellen. In andere woorden, methodes die een zinvol
getal opleveren terwijl ze in een beperkte tijd en met beperkte moeite kunnen
worden berekend.

Dit onderzoek richt zich op ”history matching” van twee-dimensonale twee-
fase (olie-water) reservoirmodellen met behulp van productiedata (d.w.z. druk-
metingen in de injectieputten en debietmetingen in de productieputten).

Ten eerste werden de bruikbaarheid en de implementatie van aantal
bestaande ”history matching” algoritmen onderzocht. De ”representer method”
(RM) is als een voorbeeld van een variationele techniek in overweging genomen.
Het belangrijkste aspect van het algoritme is berekening van een aantal zoge-
naamde ”representers” die de invloed van bepaalde metingen op de schatting
van de modeltoestand en/of modelparameter beschrijven. De RM is in staat
om een redelijk parameterschatting te kunnen maken, maar is niet efficient
voor grote hoeveelheden metingen. Dat feit leidde tot het testen van ”acceler-
ated representer method” (ARM), waarbij direct berekening van de represen-
ters wordt vermeden. Het onderzoek toont aan dat de vereiste nauwkeurigheid
van de ARM zodanig kan worden gekozen dat de resultaten van dezelfde
nauwkeurigheid zijn als die van de RM, en dat de ARM de klassieke RM
op gebied van rekensnelheid overtreft als de hoeveelheid van de geassimileerde
metingen toeneemt. In dit proefschrift ontwikkelden wij een strategie om het
aantal van de voor elke methode benodigde rekenoperaties te bepalen, zodat
de datahoeveelheid waarvoor het gebruik van de ARM voordelig wordt vooraf
kan worden geschat.

De RM en de ARM hebben het geadjugeerde model van het reservoir-
model nodig en zijn niet bedoeld voor ”continuous history matching”, d.w.z.
voor het onmiddelijk verwerken van data in het model zodra ze beschikbaar
komen. Integendeel, ze voeren ”history matching” doorgaans uit over een lang
tijdsinteval met behulp van alle beschikbare metingen.

Het ensemble Kalman filter (EnKF) is beschouwd, omdat het een algoritme
voor ”continuous history matching” is. De EnKF methodes hebben geen gead-
jugeerd model nodig, en zijn om die reden aantrekkelijk voor dataassimilatie
met gecompliceerde niet-lineaire modellen. Het gebruik van het EnKF in de
reservoirtechniek is echter geneigd om te leiden tot fysisch onrealistisch waar-
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den van de modeltoestand. Dat probleem kan worden opgelost door toevoeging
van een zogenaamde ”confirmatie stap” aan het algoritme. Het EnKF, vooral
me de confirmatie stap, is vaak rekentechnisch veeleisend voor grootschalige
toepassingen. Het asynchrone EnKF (AEnKF) is een variant van het EnKF,
die in zulke gevallen tot een praktische methode voor ”history matching”
leidt door het systeem aan te passen met behulp van metingen verzameld
op de tijdstippen verschillend van het tijdstip waarop de aanpassingen wor-
den gemaakt. Daartoe worden alle metingen, verzameld binnen een bepaald
tijdsinterval, eenmalig aan het einde van het meetinterval gebruikt voor de
”history match”. Dat maakt het mogelijk om het invloed van de op verschil-
lende tijdstippen verzamelde metingen te vergelijken. Bovendien heeft het
AEnKF geen geadjugeerd model nodig, ondanks dat het de reguliere aanpak
van de variationele methoden lijkt te volgen. Zowel het EnKF als het AEnKF
resulteren, in vergelijking met het beginmodel, in aanzienlijke verbeteringen
van de schatting van de modelparameters en een redelijk ”history match”.

Aangezien het AEnKF ”history matching” van de alle gedurende de meets-
periode verzamelde data in één keer mogelijk maakt, laat het een vergelijking
toe van het effect van de op verschillende tijstippen verzamelde metingen.
Gelijkwaardigheid van het AEnKF en de variationele technieken (b.v. de
RM) levert de mogelijkheid op om te bepalen of het EnKF en de variationele
methoden hetzelfde gebruik van de metingen maken. De RM en het AEnKF
zijn daarom als methodes gekozen voor het kwantificeren van de invloed van
metingen op de ”history match”.

Ten tweede ontwikkelden wij in dit proefschrift een middel om de invloed
van de gemeten data op het resultaat van de ”history match” te bepalen. Deze
methode is gëınspireerd door recente ontwikkelingen in de meteorologie en de
oceanografie, en is gebaseerd op de zogenaamde ”gevoeligheidsmatrix”. Deze
matrix kan worden gebruikt om de hoeveelheid van de informatie te bepalen
die uit beschikbare data verkregen is, en om metingen te identificeren, die in
de grootste mate aan parameteraanpassingen bijdroegen. Wij gebruikten met
name diagonaalelementen van de matrix, bekend onder de naam ”zelfgevoe-
ligheden”, als een kwantitatieve maat voor de invloed van de verzamelde
metingen op de door het aangepaste model voorspelde metingen. Bovendien
hebben wij een manier voorgesteld om de norm van de gevoeligheidsmatrix
te gebruiken voor het inschatten van de grootte van mogelijke verandering in
de nauwkeurigheid van het aangepaste model door de respectieve verandering
in de nauwkeurigheid van de verzamelde metingen. De gevoeligheidsmatrix
kan snel en eenvoudig berekend worden voor zowel geadjugeerd-gebaseerd als
EnKF-achtige ”history matching” algoritmen. Het onderzoek gedaan met be-
hulp van de gevoeligheidsmatrix had bevestigt dat de RM en het EnKF met
dezelfde effectiviteit gebruik maken van de data. Het is opmerkelijk dat, voor
een eenvoudige test-situatie, de globale gemiddelde invloed van de verzamelde
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metingen maar 4% is. Dat is een relatief kleine waarde vergeleken met de 96%
globale gemiddelde invloed van het uitgenagsmodel. De gevoeligheidsmatrix
kan ook worden gebruikt voor onderzoek naar het verband tussen de plaats
en/of het type van een meting en zijn waarde voor de ”history match”.
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