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Chapter 1
Introduction

1.1 Background

1.1.1 The demand for energy
The global demand for energy is large, and will only become larger in the future. Figure 1.1
shows that a large part of this energy is provided by fossil fuels, i.e. coal, oil and gas.

oil

coal

gas

hydroelectricity

nuclear energy

oil

coal

gas

hydroelectricity

nuclear energy

Figure 1.1: World consumption of primary energy. Million tonnes of oil equivalent (source: BP Statis-
tical review of world energy)

For environmental reasons there are currently increasing efforts to switch from coal to oil
to gas to renewables. The latter group comprises energy sources like wind, water, solar and
biomass based energy sources. Nuclear energy is another important source of energy but is
controversial, mainly because there are significant issues with the waste products. For most
renewable energy sources technology is still at a too immature stage to make it a serious
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alternative. For these reasons oil and gas will remain essential in meeting global energy
requirements in the decades to come.

It becomes increasingly difficult for oil companies to meet the large demand for fossil fuels.
An increasing number of large oil fields are already at a mature stage, and the number of new
significant oil fields found per year decreases gradually. Smaller fields are still regularly
found, but at the current oil price it is often not economical to exploit them. As a direct result
it becomes more and more difficult to maintain economic reserves at a desirable level, as
reflected in Figure 1.2. Therefore, oil companies are making great efforts to reduce the costs
for developing and maintaining oil fields.

oil

gas

oil

gas

Figure 1.2: Worlds oil and gas reserves-production ratio. (source: BP Statistical review of world
energy)

1.1.2 Oil reservoirs
Oil and gas resources are generally contained in sandstones or limestones beneath the earth
surface, typically at a depth between 1-5 km. The rock containing the oil is generally re-
ferred to as the reservoir rock. It has a relatively high porosity (fraction of the rock that can
be occupied by fluids) and permeability. The latter means that the individual fluid-containing
pores are well connected and that fluids can consequently easily flow through the porous net-
work. The areal coverage of oil fields may range from only a few to a few hundred square
kilometers, whereas the thickness of the reservoir rock may range from only a few to hun-
dreds of meters. Figure 1.3 shows a schematic vertical cross-section of an oil reservoir. In
the figure, overlying the oil-bearing reservoir rock there is a rock formation that is imper-
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meable to fluids, i.e. it acts as a seal for the oil below. This impermeable rock formation
is generally referred to as a cap rock. At the bottom the oil reservoir may be bounded by
rocks having a low porosity and permeability (referred to as non-reservoir rock) and/or by a
water-bearing zone. The interface between the oil- and water-bearing zones is generally re-
ferred to as the oil-water contact. The oil is produced to the surface through production wells
that are drilled and completed in the oil-bearing reservoir rock. A variety of well types can
be distinguished.

cap rock

oil bearing reservoir rock

water bearing reservoir rock

non-reservoir rock

oil-water contact

production well

injection well

cap rock

oil bearing reservoir rock

water bearing reservoir rock

non-reservoir rock

oil-water contact

production well

injection well

Figure 1.3: Schematic vertical cross-section of an oil reservoir bounded by a cap rock at the top and
an aquifer and non-reservoir rock at the bottom.

reservoir rock

non-reservoir rock

vertical well horizontal well

multilateral well

reservoir rock

non-reservoir rock

reservoir rock

non-reservoir rock

vertical well horizontal well

multilateral well

Figure 1.4: Well types
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1.1.3 Well types

Conventional wells

Up to the early eighties mainly vertical wells (Figure 1.4) were used in the industry. Devi-
ated wells have been drilled frequently as of the early seventies to allow multi-well develop-
ments from a single offshore platform. However, these wells still ended vertically, i.e. they
penetrated the reservoir vertically. A drawback of vertical wells is often that their contact
area with the reservoir is small, because in most reservoirs the areal extension is significantly
larger that the vertical extension. At the end of the eighties it became technically possible to
drill horizontal wells (Figure 1.4). They have a much larger contact area with the reservoir,
as a result of which higher production rates can generally be achieved. The development of
multilateral wells (Figure 1.4) enabled a further increase in the contact area between well
and reservoir, generally at lower costs than if separate horizontal wells would be drilled.

Smart wells

In the last few years, the need to produce cheaper and to produce more oil from a reservoir
has resulted in the development of a variety of technologies to better measure and control the
production process through the wells. Typically, these technologies are installed within the
well and can be operated remotely. A well equipped with this type of technology is generally
referred to as a smart, intelligent, or instrumented well. A schematic description of it is given
in Figure 1.5.
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=
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Figure 1.5: Schematic description of a smart well.
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Sensors have been developed for permanent down-hole measurement of for instance tem-
perature, pressure, resistivity, fluid composition, and acoustic velocities. With these sensors
much more and much more detailed information on several processes occurring in the well
and in the near-well reservoir region can be obtained than with conventional wells.

Apart from measurement equipment major progress has been made in the development of
technology to control the production process. This technology comprises down-hole hydro-
cyclones and down-hole valves. The development of down-hole hydrocyclones enables oil-
water separation down in the well. The separated water can then directly be reinjected into
the reservoir for pressure support. This may reduce costs of surface facilities significantly
and reduce problems associated with high (water) production rates. The development of
down-hole valves enables the splitting up of wells into a number of segments, as shown
schematically in Figure 1.6, that can be controlled individually and remotely. They were
initially developed to be able to shut in that part of the production well that produces large
volumes of water, without having to enter the well from the surface. This is particularly
important at sea, where the costs of a well intervention are high. Implementing down-hole
control valves in multilateral wells (Figure 1.4) enables commingled (simultaneous) produc-
tion from different reservoirs, as flow from each branch of the multilateral can be regulated.

Figure 1.6: Smart horizontal well, consisting of three segments, each having a down-hole control valve.

The potential benefits of smart wells over conventional wells become apparent when con-
sidering the oil production process.

1.1.4 The production process
The production process for gas reservoirs generally consists of only one phase. Due to the
low density and viscosity the gas flows relatively easily to the surface, and the pressure
decline in the reservoir, resulting from the extraction of gas, is slow due to the high com-
pressibility of the gas.

Contrary to gas reservoirs, the production process of oil reservoirs generally consists of a
number of phases. During the primary recovery phase the pressure in the reservoir is high
enough to produce the oil through the production well to the surface at sufficiently high rates.
The decrease in reservoir pressure, resulting from the extraction of oil causes this flow to-
wards the surface to occur at a decreasing rate. The decline in reservoir pressure and the



6 Chapter 1

decrease in flow rates are more severe as for gas reservoirs, due to the lower compressibility
and higher density of oil compared to gas. At a certain point in time economic production
rates can only be maintained by installing a pump in the well or by repressurizing the reser-
voir through the injection of gas and/or water. The phase during which fluids are injected for
pressure maintenance is generally referred to as the secondary recovery phase. Injection of
these fluids is generally done through wells at some distance from the production wells, as
schematically depicted in Figure 1.3.

Ideally, as the production process continues the injected fluids will slowly move through
the reservoir in the direction of the producer(s), in the meantime displacing all the oil in be-
tween. In reality, however, that does not happen. Due to spatially varying rock properties
(heterogeneities) there may exist preferential flow paths in the reservoir through which the
injected fluids channel towards the producer. Oil located outside these channels may as a re-
sult be bypassed, and instead production of injected gas and/or water may start at an early
stage. Identification of these preferential flow paths is difficult, because only a small part of
the reservoir can be accessed through the wells. Furthermore, the geological model of the
reservoir, describing the rock properties is constructed based on a restricted number of in-
direct measurements, like well logs, core samples, and seismics. The spatial resolution and
measurement errors generally differ with the type of measurement. Apart from uncertainties
in the rock properties there are also uncertainties in the fluid properties, in the amount of oil
present in the reservoir, in the location of the oil-water contact, and in the size of the commu-
nicating water zone (aquifer) below this oil-water contact. Because of all the uncertainties it
is difficult to define the best location of the wells within the reservoir. A drawback of con-
ventional wells is that there is little that can be done to control the production process if it
evolves differently than expected.

As a result of the uncertainties and the lack of control on the production process with
conventional wells, typically only 20-40% of the oil in place can be recovered economically.
Hence there is potentially large scope for increasing the worlds recoverable oil reserves by
increasing the percentage of oil that can be recovered from the reservoir. The capacity of
smart wells to near-continuously monitor and control the production process may enable
this.

1.2 Closed loop control
Maximum benefit from the measurement and control equipment of a smart well is expected
when used in an integrated monitoring and control approach, as schematically depicted in
Figure 1.7. In this approach measurements obtained from smart well sensors (and other data
sources) are used to construct or update a model describing the dynamic behavior of the sys-
tem. In principle various types of models could be used, the type and complexity depending
on the purpose they serve. In this thesis the model is the numerical representation of the
reservoir and the wells, i.e. a reservoir simulator. Based on these models the production
process can subsequently be optimized, for instance by optimizing the injection and produc-
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tion strategy. As the process continues new measurements are used to update the model,
based on which an update of the optimal injection and production strategy can be calculated.
This thesis primarily focuses on the optimization part of this closed loop, shown in Figure
1.8. Based on a model of the real reservoir the aim is to find the optimum well operating
strategy that maximizes the value from the reservoir.

Identification
and Updating
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input u

OutputSystem
(reservoir & wells)

InputNoise w Noise v

Model
(reservoir simulator)

Sensors

Control
Optimization

Identification
and Updating
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input u
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(reservoir & wells)
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(reservoir simulator)

Sensors

Control
Optimization

Figure 1.7: Schematic representation of model-based closed-loop control.
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Figure 1.8: Model-based open loop control.

In particular optimization of the water flooding process with smart wells like in Figure
1.6 is investigated. Figure 1.9 shows a schematic of a reservoir with a horizontal, smart
segmented injector along the left edge, and a horizontal, smart segmented producer along
the right edge. Upon injection the water moves towards the production well where fluids
are withdrawn from the reservoir, on its way displacing the oil that it encounters. The speed
at which the oil-water front propagates in the direction of the producer generally differs
from one place to the other, as shown schematically by the irregular shape of the oil-water
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interface in Figure 1.9. This is, because the reservoir generally has spatially varying rock
properties. The oil-water front shown in the figure corresponds to a particular injection and
production strategy, i.e. a particular combination of valve-settings. By manipulating the
down-hole valves it is to some extent possible to control the flow direction, and thereby the
movement of this oil-water front in the reservoir. By doing so the flow of fluids through
high permeability zones (channels) may be reduced and flow outside these zones may be
increased, ideally displacing the oil everywhere in the reservoir. The question then is which
combination of valve-settings would give the best displacement. Secondly, the question is
what degree of improvement is possible by optimizing the valve-settings. Both expectedly
depend on the type of heterogeneity in the reservoir. Physical and economical constraints
on the wells and the valves will also affect how much can be improved by valve-setting
optimization.

Figure 1.9: Schematic of horizontal reservoir with two horizontal, segmented smart wells.

1.3 Research objectives and approach
At present it is neither known what the optimum injection and production strategy is for a par-
ticular type of reservoir and operating constraints, nor what improvement could be achieved
under these conditions. Since smart well technology increases the capital expenditure of the
project it is important to know what its added value will be under certain conditions in order
to justify its implementation. One objective of this thesis is to find for various types of reser-
voirs and operating conditions the combination of down-hole valve settings that optimizes
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the water flood. A second objective is to investigate the potential for improvement as func-
tion of reservoir properties and operating constraints. For obvious reasons this study cannot
be done on a real reservoir. Instead, a reservoir simulator is therefore used.

The problem of finding the optimal water flood constitutes an optimization problem where
the objective is to maximize the water flood performance and the parameters to be optimized
are the valve-settings in the smart wells. A major issue in this optimization problem is that
the number of control parameters, i.e. the valve settings, to be optimized may be large. This
is because a valve can, apart from its extreme settings (fully open and fully closed), generally
have a number of intermediate settings. On top of this, the number of down-hole valves itself
can be large, especially if multiple smart wells like the one shown in Figure 1.6 must be
optimized simultaneously. Since these valves can be operated remotely they can in principle
be changed frequently over time, thereby further increasing the number of control parameters
that must be optimized. In addition the function evaluation may be long, as each requires a
forward reservoir simulation. The combination of the large number of control parameters and
the long function evaluation times require efficient algorithms to find the optimal operating
strategy within reasonable computational time.

Roughly two types of optimization methods can be distinguished. Global optimization
methods guarantee a global optimum solution, provided that enough function evaluations are
done. In local optimization methods the optimum nearest to an initial guess will be found.
If the response surface is rough, many local optima exist and in that case the optimum found
generally depends on the initial guess. So, global optimization methods would in principle be
preferable to use. However, global optimization methods are computationally more intensive
than local optimization methods and in that respect less suitable for optimization problems
where the number of control parameters and the computation time for one function evaluation
are large.

The optimization method used in this study is therefore a local optimization method, that
is gradient based. The gradients indicate the sensitivity of the objective function with re-
spect to the controllable parameters. They can be obtained analytically or numerically, either
forward or backward in time. From an implementation point of view the easiest approach
generally is to calculate the gradients numerically. However, for large systems with a lot of
control parameters to be optimized this becomes computationally expensive. With optimal
control theory these gradients can be obtained more efficiently. The gradients are calculated
backward in time with the aid of an adjoint equation. For the optimization problem investi-
gated in this thesis optimal control theory is the only method available sofar that can provide
gradients for the controls with sufficient computational efficiency.

In reality, the rock properties in the majority of the reservoir are unknown. The optimum
water flooding strategy for a real reservoir must then be based on the limited information
that is available. Developing robust algorithms for optimizing the production process at
an early stage with scarce information can expectedly be helped through knowledge of the
characteristics of an optimal water flood. Another aim of this study is therefore to try to
extract (physical) principles behind an optimal water flood.
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1.4 Outline of thesis
In chapter 2 work published in the open literature on optimization of the production process is
discussed. The theory behind numerical reservoir simulation is treated in chapter 3. Optimal
control theory and some properties and characteristics of the adjoint dynamic system will
be treated in chapter 4. When numerically implementing a multi-phase flow optimal control
problem it appeared important to address a number of issues in order to assure stability of
the numerical scheme. Besides that, constraints on the controls must be taken into account.
These issues are treated in chapter 5. In chapter 6 the optimization algorithm is applied to the
optimization of several synthetic reservoir models. In chapter 7 results obtained in chapter 6
are discussed. Chapter 8 contains the main conclusions of this work and recommendations
for future work.



Chapter 2
Optimization of the production process

with smart wells

2.1 Benefits of smart wells from a conceptual viewpoint
One of the main benefits of a smart well is its ability to adapt to unexpected circumstances
in the reservoir. This section describes from a conceptual viewpoint why flexibility is a
beneficial feature in the production process.

Generally there may exist a difference in optimal well location and configuration dur-
ing different stages of the recovery process, with respect to for example fractures. During
the primary recovery phase, where production is due to fluid and rock expansion, the well
should generally intersect as many fractures as possible to maximize its productivity, which
means that the well should be at an angle to the main fracture system direction. During the
secondary recovery phase, where a fluid is injected for pressure support, the well orienta-
tion should preferably be more parallel to the main fracture system direction, to avoid rapid
advance of injected fluids towards the production wells. The optimum orientation for the
primary recovery phase may thus correspond to the worst possible configuration for the sec-
ondary recovery phase. The actual well trajectory to be chosen therefore depends on which
of the recovery phases is expected to be most important. This on its turn depends on factors
like the size and strength of the aquifer and the gas cap, and the direction from which aquifer
influx occurs. These factors are generally poorly known. Because of these uncertainties
the ultimately resulting combination of well type, geometry, size, location, and orientation,
will generally not be optimal. For conventional wells there is nothing that can be done to
change this without significant extra costs. These may comprise costs related to identify-
ing the down-hole conditions and workover costs. Furthermore, what is considered to be the
optimal well location and configuration generally changes with time, as newly incoming in-
formation (seismics, production data, logs from other wells) generally leads to a change in
reservoir description and optimal operating strategy. On top of this the completion of new
wells may affect the performance of existing wells.

Even if the reservoir properties would be known a priori a smart well may still be beneficial.
Contrary to a conventional well, the flexibility of a smart well enables it to adapt to changes
in the oil-water and gas-oil contacts, in the reservoir properties (resulting from scaling, sand
production, injection-induced fracturing, compaction, etc.), the completion of new wells,
failure and maintenance in neighboring wells, maintenance and problems in the facilities, or
maybe even changes in production in other fields (if quotas have to be met).
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2.2 Work done on optimization of the production process
with smart wells

A lot of work has been done on improving the production process in the last decades, both
on the macro-scale (reservoir-scale) and the micro-scale (pore-scale). Improving the macro-
scale displacement efficiency is mainly associated with getting a more uniform displacement
of oil by the injected fluid throughout the reservoir, whereas improvements on the micro-
scale are related to improving the flow of oil relative to that of the injected fluid. Giving a
brief overview of all this work is beyond the scope of this thesis. Therefore the overview is
restricted to optimization studies with smart wells.

Until recently most focus in the industry has been on the hardware aspects of a smart well.
Development of operation strategies has stayed behind [Gai (2001)]. Down-hole valves were
initially developed to be able to cut back unwanted water production, quickly and without
intervention costs. Apart from this remedial, reactive application there may also be consider-
able scope to use smart well technology in a more proactive way. An overview of work done
on both reactive and proactive optimization of reservoir flow with smart wells is given in the
next sections.

2.2.1 Reactive control
The potential benefits of a smart well result from its flexibility to adapt to unexpected geo-
logical features or production conditions. Reactive control is one of the first types of smart
well control investigated in the literature. It generally comprises an action on the down-hole
valves upon water or gas breakthrough.

Yu et al. (2000) studied various types of smart completions in a simple reservoir with an
oil rim bounded by a gas cap and an aquifer. Through reactive control smart wells were
able to partly compensate for underestimated aquifer behavior and unexpected geological
features. For a conventional completion the ultimate recovery was more sensitive to aquifer
behavior and geological features than for a smart completion. For the cases investigated the
improvements obtained with smart completions were attributed to a more efficient use of
gas cap and aquifer energy. An on/off mode of operating the valve settings generally gave
highest improvements.

Several authors studied the scope for using smart completions to counteract localized
gas/water coning towards the heel of the well, caused by frictional pressure losses along
the wellbore [Yeten and Jalali (2001), Sinha et al. (2001), Jansen et al. (2002)]. They pri-
marily investigated homogeneous, thin oil rim reservoirs. The approaches in these studies
generally comprised a proactive control (discussed further on page 14) during the period be-
fore water or gas breakthrough, that resulted in a more uniform inflow into the well. In the
period after breakthrough a reactive control approach was used to control water or gas pro-
duction, in which the down-hole valves were often operated in a cyclic way. Upon gas or
water breakthrough they were closed and only reopened after some time in order to let the
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cone somewhat recede. Hysteresis effects, however, were generally not considered, some-
thing that is expected to negatively affect the improvement [Jansen et al. (2002)]. In practice,
these cyclic operating scenarios would require a coupled monitoring and control approach.
For many synthetic examples the approach resulted in a significant delay of gas and water
breakthrough, with the performance sometimes being close to that of the ideal, frictionless
well (infinite conductivity well) [Sinha et al. (2001), Jansen et al. (2002)]. The prerequisite,
however, is that the increased lift requirements for the instrumented wells do not result in lift
problems. The robustness to improve the process for different geological features and fluid
properties varied with the type of well instrumentation and the operational strategy.

Jansen et al. (2002) found that for the Smart Stinger Completion (SSC) in thin oil rims,
the optimum valve-settings changed over time, due to a drop in reservoir pressure caused
by production. The SSC was both effective in delaying water and gas breakthrough and
in coning control for the post water breakthrough stage. For optimal design of the SSC a
reasonable knowledge on the permeability distribution along the well is required.

In the Oseberg field most horizontal wells, producing from the remaining 20-40 [m] thick
thin oil rim, experienced gas breakthrough near the heel of the well. Smart wells were
deployed in order to be able to choke zones experiencing rapid gas breakthrough. Because
the field production rate was limited by gas handling capacity, a reduction in gas production
from the wells would immediately lead to increased oil production rates. Analysis of the
first 9 months of production of one well showed the benefits of down-hole control valves.
Apart from choking valves upon gas and water breakthrough they were also used for in-
situ gas lift. The controlled commingled production resulted in an estimated acceleration of
production by a factor of about three with respect to a sequential scenario. Comparison of
uncontrolled and controlled commingled production also clearly showed the added value of
reactive control [Erlandsen (2000), van Delden et al. (2001)].

2.2.2 Proactive Control
Proactive control scenarios are well operating strategies that do not start at the moment of gas
or water breakthrough but in an earlier stage in order to prevent or delay it as much as pos-
sible. Typically, these scenarios typically require a greater knowledge of the reservoir than
reactive control scenarios. Within proactive control strategies two main types can be distin-
guished, each requiring different knowledge on the reservoir properties. In the first kind of
strategy, optimization of the valve-settings is done based only on well performance at the cur-
rent time or forecasted well performance for a short period [Saputelli et al. (2003b)]. This
approach requires relatively little information, mainly because the length of the optimiza-
tion window is short. This kind of optimization algorithms will be referred to as short-term
or production optimization algorithms. In the second type of optimization algorithm, the
entire remaining production life span (remaining production window) is considered in the
optimization. In this approach a reservoir model is needed to calculate the production fore-
cast. In the remainder of this section this type of algorithms are referred to as long-term or
recovery optimization algorithms.
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Production optimization algorithms

Production optimization algorithms primarily use well information for instantaneous opti-
mization of production. In a large number of reservoir settings a more uniform flow into the
well results in delayed water or gas breakthrough and an improved macro-scale oil sweep.
Valvatne et al. (2001) developed a semi-analytical solution to calculate the down-hole valve-
settings needed to get a more uniform inflow into wells situated in highly heterogeneous
reservoirs. For a smart well completed in multiple reservoirs with different pressure regimes
they showed that apart from realizing a more uniform inflow, cross-flow between reservoirs
could be avoided by proper choking. Yeten and Jalali (2001), Sinha et al. (2001) and Jansen
et al. (2002) also used algorithms that gave a more uniform inflow into smart wells in the
period before water or gas breakthrough. They investigated situations where a conventional
well would suffer from preferential coning towards the heel due to frictional pressure losses
along the wellbore.

Although the algorithms worked well for the relatively simple examples investigated, they
may give suboptimal results for other, more realistic (thin oil rim) reservoirs. Finding pro-
duction optimization algorithms that can effectively optimize for any kind of reservoir and
any kind of operating conditions still requires significant effort. Furthermore, because the
optimization window is short it is unknown how optimization of production will affect the
long-term overall system performance, since short-term production and long-term recovery
optimization may not be compatible [Yeten et al. (2002), Saputelli et al. (2003a)].

Recovery optimization algorithms

Brouwer et al. (2001) studied water flood optimization under rate-control for simple hor-
izontal, two-dimensional systems with fully penetrating smart wells, each having 19 seg-
ments. Based on the productivity index for each segment the flow rates were redistributed in
order to improve the cumulative oil recovery at the final simulation time. Various redistrib-
ution algorithms were explored. The algorithms resulted in flow profiles that do not change
over time. Improvements in recovery over the base case were between 0-20% with a 7-168%
delay in water breakthrough. Results from this study suggested that larger improvements
would be possible by using more advanced, dynamic flow control algorithms.

There is little published literature on dynamic waterflood optimization. Roughly two
methods can be distinguished in this respect, the defensive control method, developed by
Yeten et al. (2002), and the optimal control method used by other authors [Asheim (1988),
Virnovsky (1991), Virnovsky (1992), Zakirov et al. (1996), Sudaryanto and Yortsos (2001),
Dolle et al. (2002)]. Recently, Yang et al. (2003) studied global optimization of displace-
ment efficiency in hydrocarbon reservoirs at field scale. For the optimization they used a
parallel genetic algorithm, in combination with a gradient-based algorithm to speed up the
computational process. In the field case described, an increase in total oil rate of a few per-
cent was established.
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Optimal Control
A general literature review on applications of optimal control theory in the petroleum in-
dustry is postponed to section 4.2. A literature review of the application of optimal control
theory to water flood optimization starts on page 33 of that section.

Defensive Control
This method was developed by Yeten et al. [Yeten et al. (2002), Yeten (2003)]. Although
named differently it is a proactive control approach. The method uses a conjugate gra-
dient based optimization technique in combination with a commercial reservoir simulator
(ECLIPSE). The first step of the optimization consists of splitting the total simulation time
up into a number of intervals (typically 3-10). Subsequently, the continuously variable valves
are optimized for the first time interval. To this end each valve α is perturbed by ∆α for the
entire remaining simulation period in a separate simulation, and the change in the objective
function ∆J with respect to the nonperturbed case is evaluated. The valves are perturbed
for the entire remaining simulation period to ensure that the settings determined for the early
steps do not have detrimental effects at later times. Based on the gradients ∆J∆α the valve set-
tings are optimized for the entire remaining simulation period with the conjugate gradient
algorithm. After optimizing the first interval the simulation is restarted at the next opti-
mization interval and the procedure is repeated until all intervals are optimized. The overall
optimization may thus be considered as n independent optimization problems, were n equals
the number of time intervals.

The advantage of the method is that it is straightforward to implement in an existing sim-
ulator, and that it can be used for complex reservoirs and complex well types. A drawback
is that the method is computationally expensive if the number of controls to be optimized
(equal to the product of the number of valves and the number of optimization intervals)
is large. (For cases that were investigated with about 5 valves and 5 optimization periods
O (100) simulations were required, although the exact number was quite case-specific.)

The defensive control algorithm of Yeten et al. and the optimal control algorithm used
by Brouwer and Jansen (2002) were compared on a two-phase, two-dimensional example
[Yeten (2003)]. Despite the fact that the number of segments, the number of optimization
steps, and the optimal control policies differed significantly the end results obtained in terms
of cumulative oil and water production were similar.





Chapter 3
The reservoir model

3.1 Introduction
In the reservoir hydrocarbons and water often flow simultaneously. The hydrocarbons com-
prise many different components, that could in theory be considered separately. From a
computational point of view this is however not desirable. On top of this, in practice bulk oil
and gas production is considered rather than the production of each individual component. A
simplified approach to model multi-phase reservoir flow is to consider at most three distinct
pseudo-components. The bulk hydrocarbons are split up in a heavy, nonvolatile hydrocarbon
pseudo-component, and a light volatile hydrocarbon pseudo-component. The light hydrocar-
bon component is assumed (partly) soluble in the heavy hydrocarbon phase, the solubility
being a function of pressure and bulk hydrocarbon composition. The heavy hydrocarbon
component is assumed to be insoluble in the light hydrocarbon component. The third dis-
tinct component that is considered is water. Mutual solubility of heavy hydrocarbon-water
and light hydrocarbon-water is assumed zero. This simplified approach is called a black oil
model.

The multi-phase flow formulation in this study is based on this black oil approach. It is
discussed in section 3.2. Theory and equations behind reservoir simulation are well docu-
mented in a number of standard works on reservoir simulation [Peaceman (1977), Aziz and
Settari (1986), Ertekin et al. (2001)]. Normally it would therefore be sufficient to refer to
these books. The reason for discussing the equations in this thesis is the fact that the optimal
control formulation is directly and entirely based on these equations.1 Section 3.3 discusses
some properties of the dynamic system. In section 3.4 the well model and the control valves
are described.

3.2 The black oil formulation
In this study optimization of the water flooding process was investigated both for two-phase
(oil and water) flow in the horizontal plane, and three-phase, three-dimensional flow. Two
separate reservoir models were used. Since the three-phase, three-dimensional formulation
is the most general, it is the one that will be discussed. The black oil formulation described

1 Another reason for discussing the black oil formulation in some detail is the fact that this study is part of a
larger project involving people from many different disciplines.
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in the following sections is based on the formulation from Aziz and Settari (1986). The
three phases that are distinguished are gas, oil, and water. The three components that are
distinguished are the light and the heavy hydrocarbon pseudo-components and the water
component.

3.2.1 Mass balance equations
In multi-phase flow the mass balance for each individual component (here considered equal
to pseudo-component) per unit rock volume is

−O · ṁ+ q̀ = ∂m
∂t , (3.1)

which states that the difference in mass flowing into and out of a unit volume per unit time,
plus the mass added or extracted through an external source per unit time and volume q̀h
kg
s

1
m3

i
must equal the change in mass per unit time and volume ∂(m)

∂t

h
kg
s

1
m3

i
. ṁ is a

vector comprising the mass flow in x,y,z-direction and has unit
h
kgm
s

1
m3

i
. For a component

c it is equal to the product of its density and the volumetric velocity of the phase l in which
it is present, i.e. ṁc=ρcul. The total mass m of component c per unit rock volume can be
expressed as the product of the component density ρc, the rock porosity φ, and the phase
saturation Sl (The volume fraction of the pore space that is occupied by the phase l in which
component c is present.), i.e. mc = ρcφSl. Substitution into eq. 3.1 then gives

−O · ρcul = ∂
∂t (ρcφSl)− ρcq̃l, (3.2)

where the source term q̃l has unit
£
1
s

¤
, and ul

£
m
s

¤
is a vector with the phase velocities in

x,y,z-direction. The porosity and density are a function of pressure. The component density
is generally assumed to be a function of the phase pressure pl, hence ρc = ρc (pl).

For the heavy hydrocarbon component the mass balance becomes

−O · −ρouo = ∂
∂t

³−
ρoφSo

´
− −ρoq̃o, (3.3)

where −ρo is the density of the heavy hydrocarbon component in the oil phase. For the water
component the material balance is

−O · ρwuw = ∂
∂t (ρwφSw)− ρwq̃w. (3.4)

For the light hydrocarbon component the situation is slightly different since it is present both
in the gas phase and in solution in the oil phase. The total mass equals the sum of the masses
in the individual phases, i.e.

ṁg =
−
ρdguo + ρgug , (3.5)

mg =
−
ρdgφSo + ρgφSg, (3.6)
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where −ρdg is the density of the light hydrocarbon component dissolved in the oil phase. The
mass balance then is

−O ·
³−
ρdguo + ρgug

´
= ∂

∂t

³−
ρdgφSo + ρgφSg

´
− −ρdg q̃o − ρg q̃fg . (3.7)

The source terms −ρdg q̃o and ρg q̃fg represent respectively dissolved and free gas injection or
production.

3.2.2 Constitutive equations - Darcy’s Law
The fluid phase velocity u in permeable media is generally described through Darcy’s law.
For phase l it reads

ul = −kkrl
µl
OΦl, (3.8)

where OΦl
£
Pa
m

¤
is the potential gradient, k

£
m2
¤

the absolute permeability, µ [Pa s] the
phase viscosity. The relative permeability krl represents a reduction in the permeability for
phase l due to interference with others phases. The potential gradient can be expressed as

OΦl = Opl − ρlgOh, (3.9)

where pl is the phase pressure, g is the gravitational acceleration
¡
g = 9.81 m

s2

¢
, and h is the

depth. The density and viscosity are a function of both pressure and temperature. Constant
temperature is assumed in the black model and the density and viscosity are assumed to be
only a function of pressure, i.e. ρl = ρl (pl), and µl = µl (pl). The relative permeability is
assumed to be only a function of saturation. In three-phase flow with a water-wet rock the
relative permeability for the oil phase is typically taken to be a function of both the water
(Sw) and the gas saturation (Sg), i.e. kro = kro (Sw, Sg). The relative permeability for the
water and gas phases is generally assumed to be a function of only their own phase saturation,
i.e. krw = krw (Sw) and krg = krg (Sg) (A more detailed explanation is given in appendix
A ).

3.2.3 Formulation in terms of po, Sw, and Sg

Substituting Darcy’s law into eqs. 3.3, 3.4, 3.7, and dividing by the component density at
standard conditions, gives after some intermediate steps (described in appendix A) respec-
tively

O · (λo (Opo − ρogOh)) = ∂
∂t

³
1
Bo

φSo

´
− 1

Bo
q̃o, (3.10)

O · (λw (Opw − ρwgOh)) = ∂
∂t

³
1
Bw

φSw

´
− 1

Bw
q̃w, (3.11)
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and

O · ¡Rsλo (Opo − ρogOh) + λg
¡
Opg − ρggOh

¢¢
= ∂

∂t

³
Rs
Bo

φSo +
1
Bg

φSg

´
− 1

Bo
Rsq̃o − 1

Bg
q̃fg. (3.12)

In these equations λl is the mobility of phase l, defined as λl = krl
Blµl

k . Bl [−] is the
formation volume factor for component l, describing the relation between the component
volume at reservoir conditions and at surface conditions. The term Rs [−] in eq. 3.12 is the
solution gas oil ratio, describing the amount of light hydrocarbons dissolved in the heavy
hydrocarbons. In this study Bl and Rs are assumed to be only a function of pressure. For
saturated oil, Rs increases with pressure. The bubble point pressure (pbp) is the pressure
at which all light hydrocarbons are just dissolved in the oil phase. It depends on the bulk
hydrocarbon composition in the reservoir. Above this pressure the oil is undersaturated, and
Rs is therefore constant.

With 6 unknowns (po, pw, pg , So, Sw, and Sg), 6 equations are required to complete the
system description. Apart from eqs. 3.10, 3.11 & 3.12 these comprise 3 additional equations.
The first is a closure equation requiring that the sum of all fractional saturations must always
be equal to one, i.e.

So + Sw + Sg = 1. (3.13)
Furthermore, the relation between the individual phase pressures is given by the capillary
pressure equations

pcow = po − pw = fcow (Sw, Sg) , (3.14)

pcgo = pg − po = fcgo (Sw, Sg) , (3.15)
where water is assumed to be the wetting phase, oil the intermediate wetting phase, and gas
the nonwetting phase. Functions fcow and fcgo are generally empirical relations, derived
from core experiments.

In eqs. 3.10, 3.11, 3.12 the primary variables are respectively po, pw, and pg. Generally a
formulation with primary variables being the oil pressure po, the fractional water saturation
Sw and the fractional gas saturation Sg is used in reservoir simulation. This formulation can
be obtained by using eqs. 3.13, 3.14 & 3.15. Substitution of these equations into eqs. 3.10,
3.11, 3.12 then gives, after some intermediate steps (described in appendix A.1.5)

O · (λoOpo − λoρogOh) = ∂
∂t

³
1
Bo

φ (1− Sw − Sg)
´
− 1

Bo
q̃o, (3.16)

O ·
³
λwOpo − λw

∂pcow
∂Sw

OSw − λw
∂pcow
∂Sg

OSg − λwρwgOh
´
= ∂

∂t

³
1
Bw

φSw

´
− 1

Bw
q̃w,

(3.17)

O ·
³
(Rsλo + λg)Opo + λg

∂pcgo
∂Sw

OSw + λg
∂pcgo
∂Sg

OSg −RsλoρogOh− λgρggOh
´

= ∂
∂t

³
Rs
Bo

φ (1− Sw − Sg) +
1
Bg

φSg

´
− 1

Bo
Rsq̃o − 1

Bg
q̃fg. (3.18)
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3.2.4 Discrete formulation
Since the equations can generally not be solved analytically, they must be evaluated numeri-
cally. To this purpose the equations are discretized in space and in time. This is described in
detail in section A.2. After discretization in space the result in matrix form is

B ˙̂p = T̂p̂−T4h+ q̂, (3.19)

where p̂ is the state vector containing the oil pressures (po) and the water and gas saturations
(Sw and Sg ) in all grid blocks, matrix T̂ contains the transmissibility terms, and matrix B
contains storage terms. The product T4h is a vector containing the gravity terms, and q̂ a
vector comprising the injection and production terms. In this formulation q has positive sign
if fluid is injected, and negative sign if fluids are produced. A more detailed description of
the individual terms in these vectors and matrices is given in sections A.2.1 - A.2.3.

For discretization in time the choice was made to calculate all states p̂ implicitly (at time
step n+ 1), and the state dependent coefficients explicitly (at time step n). The main reason
for this choice is that it is easier to implement than a fully implicit scheme. Eq. 3.19 then
becomes

Bn
³
p̂n+1

∆tn − p̂n

∆tn

´
= T̂

n
p̂n+1−Tn

4h+ q̂
n. (3.20)

If injection and production rates are assigned directly without using a well model, the fluid
mobilities are calculated explicitly. This is also the case if a well model is used, but in this
case the grid block pressure used in the well model is calculated implicitly, i.e.

q̂n = −Ŵnp̂n+1 + Ŵnp̂nwf + ŵ
n
pc, (3.21)

where p̂n+1 contains the grid block pressures and p̂nwf the well flowing pressures at locations
where a well is present, and zeros otherwise. The terms Ŵn and ŵn

pc in eq. 3.21 contain
well geometric factors and fluid mobilities. They are discussed in more detail appendix B.
Substitution of eq. 3.21 into eq. 3.20 gives, after some rearranging

p̂n+1 =
h
I 1
∆tn − (Bn)−1 T̂n + (Bn)−1 Ŵn

i−1 " (Bn)−1
³
−Tn

4h+ Ŵ
np̂nwf + ŵ

n
pc

´
+I p̂

n

∆tn

#
,

(3.22)
which can also be written as

gn = 0 (3.23)

=
h
−I 1
∆tn + (B

n)
−1
T̂n − (Bn)

−1
Ŵn

i
p̂n+1

+(Bn)−1
³
−Tn

4h+ Ŵ
np̂nwf + ŵ

n
pc

´
+ I p̂

n

∆tn .

Eq. 3.23 is used in the remainder of this thesis. In this formulation the system is uncondition-
ally stable in the implicitly calculated states, but only conditionally stable in the explicitly
calculated transmissibility terms. Because of this conditional stability in the transmissibility
terms there is an upper limit to the time step size, determined by the Courant-Friedrich-Levy
(CFL) condition [Aziz and Settari (1986), Hoffman (1992)].
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3.2.5 Spatial weighting of parameters
In the discretized numerical scheme described above, average values for various coefficients
are calculated at the grid block interfaces. Since a block centered discretization is used these
coefficients are defined in the grid block center, and therefore they have to be converted to
effective values at the grid block interface. For the permeability k this is done by taking the
weighted harmonic average. With constant grid block size this is equal to

k1 12=
1

1
2k1

+ 1
2k2

. (3.24)

Generally the values for the weakly nonlinear pressure dependent coefficients at the grid
block boundaries are approximated by taking the weighted arithmetic mean [Ertekin et al.
(2001)]. With constant grid block size this yields for example for the oil viscosity µo

µo,1 12 =
µo,1 + µo,2

2
. (3.25)

The weighted arithmetic mean was used to calculated average values at the grid block inter-
face for the fluid viscosities µl, the formation volume factorsBl, and the solution gas oil ratio
Rs. The strongly nonlinear coefficients are the saturation dependent relative permeabilities
krl , and capillary pressures pcow & pcgo. They were calculated according to the upstream
weighting principle, i.e. the interface value is equal to the value in the grid block from where
the flow is coming. For example, for the relative permeabilities krl this becomes

krl,1 12 = krl,1, if Φ1 = Φ2,
krl,1 12 = krl,2, if Φ1 < Φ2. (3.26)

3.3 Some properties of the dynamic system
In multi-phase flow in the reservoir different dynamic processes are occurring. One is related
to the reservoir pressure dynamics. The potential gradient in the reservoir forms the driving
force for the transport of fluids, which constitutes a second type of process.

The two types of processes show distinct dynamic behavior. A disturbance in the reservoir
pressure at some location induces a pressure transient in the reservoir through which the
system goes towards a new dynamic equilibrium pressure distribution. The (steep) pressure
gradients induced by the disturbance quickly decay towards this new dynamic equilibrium
pressure distribution. Contrary to disturbances in the reservoir pressure, disturbances in the
saturation may not decay quickly, since the fluids are immiscible.

The differences in pressure and saturation dynamics are reflected in the eigenvalues of the
reservoir simulator system matrix A. In the discrete dynamic system formulation (eq. 3.22)
the system matrixA equals

A =
h
I− (Bn)−1 T̂n∆tn + (Bn)−1 Ŵn∆tn

i−1
. (3.27)
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In the reservoir model formulation in this study, matrix A is taken constant during a time
step, assuming that the states p̂ do not drastically change per time step. Eigenvalues of
A were calculated for a simple two-dimensional, horizontal reservoir, containing 25 grid
blocks. A random permeability field was used, shown in Figure 3.1. Furthermore, zero
capillary pressures were used.
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Figure 3.1: Top view of permeability distribution. Values along the axes correspond to the grid block
number.

Since there are three unknowns per grid block (po, Sw, Sg) A has dimensions 75×75.
Figure 3.2 shows the eigenvalues of A. It shows a distinct distribution in the magnitude of
the eigenvalues. Eigenvalues 1-50 all have value of 1 and will be referred to as group I .
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Figure 3.2: Eigenvalues for dynamic system of 25 grid blocks at time step n = 20. Eigenvalues are
sorted on magnitude
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Eigenvalues 51-75, shown in more detail in Figure 3.3, are of much smaller magnitude,
and will be referred to as group II .
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Figure 3.3: Eigenvalues 51-75 at time step n = 20. Eigenvalues are sorted on magnitude

The distinct magnitudes for eigenvalues of group I and II suggest they correspond to
different types of processes. Group I , containing 50 eigenvalues, correspond to the water and
gas saturation states, Sw and Sg respectively. The 25 eigenvalues of group II correspond to
the oil pressure states po. Since A contains coefficients that are nonlinear functions of the
states, it would be more appropriate to do the eigenvalue analysis on the linearized equations.
This is, however, outside the scope of this research.

3.4 The well model

3.4.1 General
A general formulation for the well model is

qt = w (pwf − pgb) , (3.28)

where parameter w contains well geometric factors and rock and fluid properties of the reser-
voir directly around the well, pwf is the well flowing pressure, and pgb is the grid block
pressure. A more detailed description of the well model is given in appendix B.
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Through injection wells generally either only water or gas is injected. The amount of water
or gas that is injected can thus be controlled directly and only depends on the total fluid
mobility in the reservoir directly around the well and on pwf . In this case the injection rate
of the component equals the total injection rate, i.e. qlinj = qtinj . In a producer, however,
the amounts of oil, water and gas that will be produced are determined by their mobilities
directly around the well and by pwf . So, although it is possible to control the total flow rate
from the reservoir into the well by changing pwf , the produced fluid composition cannot be
controlled directly.

Reservoir 2

Reservoir 1

p2

p1

pw2

pw1

p2 > pw2

pw1 > p1

Reservoir 2

Reservoir 1

p2

p1

pw2

pw1

p2 > pw2

pw1 > p1

Figure 3.4: Cross-flow in a producer. Fluids produced from reservoir 2 are partly cross-flowing into
reservoir 1.

3.4.2 Back- / cross-flow
The driving force for fluid flow into or out of the well is the difference in pressure between the
wellbore and the reservoir. In case of a producer the pressure is highest in the reservoir and
therefore fluids flow into the well. It may however sometimes occur that locally the pressure
in the well is highest, inducing fluid flow from the wellbore into the reservoir. This could for
example occur if the well is completed in multiple reservoirs, each having a different pressure
regime. The result of this can be that fluids that are produced at some point along the well
flow back into the reservoir at some other point, as schematically depicted in Figure 3.4.
With smart wells, equipped with down-hole control valves this back-flow can in principle be
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remedied by closing the valve. A prerequisite then of course is that the occurrence of it can
be detected by the down-hole sensors. The valve could be reopened if the potential difference
is again favorable. Because including back- and cross-flow in the optimization may lead to
numerous (numerical) difficulties, the well model parameters are for each simulation chosen
such that back-flow does not occur.

3.4.3 Control valves
An additional parameter needed in the well model is a down-hole valve to manipulate the
flowrate per segment. This effect can be added to eq. 3.28, yielding

qt = aicvw (pwf − pgb) . (3.29)

In eq. 3.29 aicv is simply a multiplication factor that has a value between 0 and 1. In this
model the well rate can be changed by tuning of the interval control valve aicv, if the well
flowing pressure pwf is kept constant. This valve multiplication factor represents a non-
physical choke model. This approach is called the modeling of a choke as a pseudodevice
[Holmes (2001)]. An additional valve that could in principle be controlled is the choke at the
well head αwh. Including its effect in eq. 3.29 yields

qt = awhaicvw (pwf − pgb) , (3.30)

where αwh is again a multiplication factor. The well head choke could be formally included
as a separate control in the optimization problem. If a wellbore flow model is used (possibly
in the form of lift tables) there may be a difference between choking down-hole or at the
surface. Furthermore, if the rates in all segments need to be cut back proportionally it may
be preferable to do this by adjusting the well head choke awh, because an increased pressure
drop over the valves may lead to increased wear and a quicker need for replacement, which
can be done cheaper and more easily for the well head choke. In this study, however, instead
of treating the two types of valves separately only the effective valve multiplication factor
αeff = awhaicv is used as a control parameter. The final form of the well model is therefore

qt = aeffw (pwf − pgb) . (3.31)
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Optimal control theory

4.1 Introduction
The methods used for finding optimal control strategies for dynamic systems are similar to
those used for static optimization problems, but the implementation is generally more com-
plex. One reason is that instead of a fixed control value a dynamic control trajectory must be
calculated. With optimal control theory it is possible to calculate the control strategy which
forces the state from its initial value to its final value along a physically feasible trajectory,
which at the same time minimizes or maximizes the value of the objective function. The re-
sulting state trajectory is an optimal trajectory [Stengel (1994)]. Translated to the problem
investigated in this thesis, the optimal control problem can be read as the problem of find-
ing the injection and production strategy that directs the fluids through the reservoir in a way
that gives best displacement efficiency or best economic performance. This optimal trajec-
tory is affected both by the objective function and by the physical constraints of the dynamic
system.

An overview of published work on optimal control theory in the petroleum industry is
given in section 4.2. In sections 4.3, 4.4 & 4.5 the theory itself is discussed. Sofar, optimal
control applications in the oil industry have primarily focused on the gradients obtained with
the adjoint equation. Possibly, additional information can be extracted from the magnitudes
of the adjoint states, i.e. the Lagrange multipliers, by considering their (physical) meaning.
This is briefly treated in section 4.6. Section 4.7 treats the eigenvalues of the adjoint dynamic
system matrix. Section 4.8 discusses how results obtained with the adjoint equation can be
verified. Apart from constraints related to the dynamic system there are also constraints
on the controls that must be taken into account in the optimization. These are discussed
in section 4.9. A gradient based optimization algorithm is required to calculate the optimal
control function, based on the gradients calculated in the adjoint equation. Section 4.10 gives
a brief overview of experiences with various algorithms in optimal control applications in the
oil industry. It also discusses the steepest descent algorithm used in this thesis.
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4.2 Literature review of optimal control theory in the oil
industry

Optimal control theory has been used for decades in various disciplines. Applications to
large scale systems occur for instance in the area of meteorology, oceanography, hydrology,
and petroleum engineering. In the petroleum industry, optimal control theory has a history
going back to the 1970’s. Sofar, there have mainly been applications in history matching,
in optimization of enhanced oil recovery (EOR) methods, and in water flood optimization.
These will be treated in some detail in the literature overview below. The application of
optimal control theory to history matching and dynamic process optimization seem to have
evolved largely independently. Few papers published on one of these areas have references
to work done in the other area. Other applications are in the control of water injection into a
layered formation, where optimal control theory was used to calculate the injection pressure
that keeps injection at the prescribed rate in the presence of hydrofracture growth [Silin and
Patzek (2000), Silin and Patzek (2001)]. Furthermore, it was used in aquifer [Zakirov and
Zakirov (1999)], and reservoir geometry estimation [Palatnik and Aanonsen (1994)].

4.2.1 History matching

Single-phase flow

Chavent et al. (1973) studied history matching in single phase oil reservoirs. The ob-
jective was to minimize the difference between observed and actual pressures at the wells
with the permeability-thickness product kh [mD ft] and porosity-thickness product φh [ft]
as adjustable parameters. Although the intergridblock transmissivities found by the history
matching procedure matched reasonably, within the grid blocks they locally deviated signif-
icantly from the actual values, and were not unique. They also found a local imprint of the
initial guess on the final results. A steepest-descent algorithm was used to find the optimum.

Dougherty and Khairkhah (1975) used optimal control theory for history matching a gas
reservoir. As in Chavent et al. (1973) the objective was also to minimize the difference
between actual and observed pressure at the wells, by adjusting kh and φh. The optimum
values kh and φh found were not unique, and different initial guesses for these parameters
resulted in different final values found. Furthermore, the starting profile for the parameter
combination φh appeared to be preserved in the optimum profile. The calculated pore vol-
umes were in good agreement with the actual pore volume. Just like Chavent et al. (1973), it
was found that although the average kh value was often in good agreement with the average
value for the actual case, they locally often differed significantly from the actual value. Hard
bounds on the allowed range for this parameter combination were required to keep the spread
from being even larger. A rapid decrease in objective function value was found for early it-
erations, followed by a small or marginal decrease for subsequent iterations. In some case,
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however, instead of becoming smaller, the objective function value actually became larger,
when the control parameters were changed too much in one iteration.

Fasanino et al. (1986) studied single-phase history matching of 2D gas reservoirs using
the adjoint method in combination with geostatistical information and the pilot point tech-
nique. The extra information was included in order to prevent non-plausible solutions in the
permeability and porosity distributions from being found. Reportedly, they obtained reliable
estimates for the transmissibility and porosity thickness product distributions.

Bi et al. (2000) studied the conditioning of three-dimensional stochastic channels to pres-
sure data in single-phase reservoirs. At early iterations the change in model parameters often
needed to be dampened to avoid slow convergence or convergence to unacceptable local
optima, especially if the mismatch between observed and estimated model parameters was
large. A Levenberg-Marquardt algorithm was used to provide this damping. The algorithm
typically required in the order of 5 iterations to obtain convergence.

Zakirov et al. (1998) used optimal control theory for history matching a dual porosity gas
reservoir. The paper does not address any details of the method.

Multi-phase flow

Wasserman et al. (1974) were among the first to use optimal control theory in history-
matching multi-phase simulator models. However, instead of using a multi-phase optimal
control formulation, they used an adjoint equation only for the pressure equation. The mo-
tivation for this simplified approach was that they were only history matching the pressures
at the wells. They were also among the first to derive the optimal control algorithm using a
spatially discretized formulation. Similarly to previous studies they found non-smooth solu-
tions for the porosity-thickness distribution that locally deviated significantly from the actual
values. They concluded that smoothing of the reservoir properties of the history-matched
model in accordance with known geology was needed in order to avoid physically unrealis-
tic solutions from being found. They empirically smoothed the distributions, which still gave
a good history match despite increased standard deviations in many grid blocks. The irregu-
larities found in the porosity-thickness distributions were attributed to the existence of many
local minima.

Watson et al. (1979) studied history matching in two-phase petroleum reservoirs. Dis-
placement in the reservoir model was unfavorable with a viscosity ratio µo

µw
= 5. The poros-

ity and absolute permeability distributions found locally deviated from the actual values,
although the average values found matched reasonably well with the actual averages. They
also history-matched the relative permeability coefficients for a one-dimensional case. (This
may be because they used one relative permeability model for all the grid blocks, and thus
only one average value had to be found.) Increased convergence rates were observed when
the end-points of the relative permeability curves were specified. They also simultaneously
history-matched porosity, absolute and relative permeability for a one-dimensional and a
two-dimensional reservoir where absolute and relative permeability, and porosity where rep-
resented by a single zone. In the two-dimensional reservoir they also corrupted the observed



30 Chapter 4

data with Gaussian distributed noise, but found no effect on the performance of the algo-
rithm.

Chavent and Cohen (1980) used optimal control theory to estimate relative permeability
curves and the capillary pressure function from drainage and imbibition experiments. Flu-
ids were considered incompressible. The optimal control technique was applied to the dis-
cretized equations in order to get an exact calculation of the gradients. A discontinuous finite
element approach was used to reduce the effects of numerical diffusion. To overcome prob-
lems associated with ill conditioning, the physical unknowns (relative permeabilities and
capillary pressures) were replaced by functions that appeared as coefficients in the model
equations. For each function one value was estimated.

Yang and Watson (1987) used optimal control theory in history matching simple two-
phase reservoirs. In a one-dimensional example with homogeneous rock properties they
simultaneously estimated absolute and relative permeabilities, and porosities. Constraints
on the relative permeability functions were required to avoid physically unrealistic, non-
monotonic curves from being found. Adding constraints also improved the efficiency of the
method since it prevented the algorithm from searching ranges of parameter values that are
not physically realistic. They also compared various gradient optimization methods. These
will be briefly discussed in section 4.10.

Wu et al. (1999) studied the conditioning of geostatistical models to two-phase produc-
tion data. The system investigated was a two-phase, two-dimensional, isotropic reservoir.
Gravity and capillary effects, as well as rock compressibility were neglected. They derived
a discrete adjoint method to calculate the sensitivities of wellbore pressure and water-oil ra-
tio to reservoir simulator grid blocks permeabilities and porosities. This was applied to the
problem of estimating the most probable reservoir model consistent with measurements of
the water-oil ratio and the pressure data and to the problem of generating realizations that are
conditioned to the production data. A different formulation was used for the forward sim-
ulator (standard finite-difference IMPES) as for the adjoint simulator (fully implicit). They
found a good agreement between sensitivities obtained with numerical perturbation and with
the adjoint method.

Wu (2000) used optimal control theory for integrating production data into reservoir mod-
els with a Newton-Raphson iterative scheme. The objective was to minimize the production
mismatch while honoring the geostatistical data. (Reportedly the adjoint formulation differed
from that used in previous studies [Wu et al. (1999)].) He expressed concerns about unique-
ness and existence of the solution in the scheme. If the initial values were not sufficiently
close to the true model, the solution could sometimes not be obtained (without regularization
terms).

Li et al. (2001) studied history matching of three-dimensional, three-phase flow production
data. The objective was to minimize the mismatch in flowing wellbore pressure, producing
gas oil ratio (GOR) and water oil ratio (WOR). They found that conditioning to all production
data (pressure, WOR, and GOR) gave a greater reduction in the uncertainty of the reservoir
properties than obtained by only conditioning to pressure, only pressure and GOR or only
pressure and WOR. Similar to Wu et al. (1999) they used the adjoint method to generate the
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sensitivity coefficients. They found a good agreement between sensitivities obtained with
numerical perturbation and with the adjoint method.

Wu and Datta-Gupta (2001) used optimal control theory to obtain sensitivity coefficients
of the travel time with respect the permeability and porosity field for history matching pur-
poses. They included a priori information in the history matching problem to avoid problems
associated with solving an underdetermined problem. They applied it to history matching
a reservoir model with 27 producers and 15 injectors thereby indicating the viability of the
method for large-scale field applications. They found a good match in the water-cut produc-
tion response, and a reasonably good match for the permeability field.

4.2.2 Production process optimization
First published work on the application of optimal control theory to production process opti-
mization dates from the early eighties. Some of these studies addressed optimization of the
production process at the micro-scale, others primarily focused on macro-scale optimization.

On the micro-scale the production process efficiency can be manipulated by for example
manipulating the interfacial tension between fluids and/or the viscosity and/or relative per-
meability of fluids. The purpose is to improve the flow of oil with respect to the flow of gas
and/or water, and to reduce the residual oil saturation. In general these kind of processes
are addressed in tertiary, enhanced oil recovery projects. Optimization at the macro-scale
involves maximizing the areal and vertical sweep of oil and/or gas in the reservoir.

Micro-scale optimization

The earliest applications of optimal control theory to production optimization were stud-
ied by Ramirez and his co-workers. They primarily investigated optimization of enhanced
oil recovery (EOR) processes on the micro-scale. Various EOR processes were studied, like
surfactant , polymer, and caustic flooding. The controls they optimized were the concentra-
tions of the injected fluids, the total injection rates and the producer bottom hole pressure.
In early work they used a partial differential formulation of the optimal control problem
[Ramirez et al. (1984)], in later work they used a discrete formulation [Mehos (1986), Fathi
and Ramirez (1987), Liu et al. (1990)].

Fathi and Ramirez (1984) applied optimal control theory to find the optimum injection
policy of a surfactant slug for a one-dimensional chemical flood. The objective function
was to maximize the oil recovery while minimizing the costs for the chemicals. Fluids were
considered incompressible. In addition to the convective and dispersive mechanisms of mass
transfer their model allowed for the irreversible adsorption of surfactant onto the solid matrix
and surfactant partitioning between the fluid phases. They considered two different interfa-
cial tension functions. The oil-phase viscosity was assumed constant and the water-phase
viscosity was postulated to be an exponential function of the surfactant concentration. The
irreducible water and residual oil saturations were taken to be a function of the capillary
number. The uniqueness of the solution depended on the type of interfacial tension func-
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tion used. Whereas the shape of the optimal injection function was not unique for every
interfacial tension function, the amount of surfactant needed appeared to be unique. They
also reported the difficulty of solving the adjoint partial differential equations backwards in
time. The difficulty arose from the existence of discontinuities in the coefficients, result-
ing from two saturation shocks that form during a low tension flood (the first being the
Buckley-Leverett shock at the oil-water front, the second being at the surfactant front where
the surfactant slug contacts the connate water). Because of the difficulties associated with
solving this adjoint system with discontinuities, they developed a similar but simpler quasi-
linear adjoint formulation. In later work they studied surfactant flooding optimization using
a streamtube reservoir simulator [Porzucek (1988)].

Fathi and Ramirez (1987) applied optimal control theory to optimize micellar/polymer
flooding. They used a compositional model with 7 components, and investigated both the
continuous and the discrete formulation. As an optimizer they used both a steepest descent
and a conjugate gradient algorithm that was modified and extended to include bounds on the
controls. The advantage of the conjugate gradient method was rapid convergence near the
optimum, the drawback was that a good initial starting condition was needed for solution
stability. Although generally less efficient the steepest descent algorithm always worked sat-
isfactorily. In general, the convergence performance depended on the initial control strate-
gies. Regularization was applied to increase the convergence rate. Although the optimal
injection policies varied with the initial guess for the control parameters, the optimum per-
formance was in some cases very similar. They also reported that the mathematical com-
plexity of the equations describing immiscible flow had proven to be a serious obstacle for
the application of optimal control theory. They also addressed the issue of numerical dis-
persion. If the numerical dispersion represented the physical dispersion, it could be used
to replace the physical dispersion and simplify the calculations. This should also help in
cancelling some computational difficulties they had in previous studies [Fathi and Ramirez
(1984), Fathi (1986)].

Mehos (1986) and Mehos and Ramirez (1989) studied the optimization of the carbon diox-
ide miscible flooding process using optimal control theory. They considered slug, simulta-
neous injection, and WAG policies. For pragmatic reasons, they used a three-component,
two-phase, two-dimensional, modified black oil model to describe the miscible displacement
of oil by carbon dioxide. No free gas was assumed to exist, and gravity and capillary effects
were ignored. The reservoir was taken to be homogeneous. Injection rates of CO2 and wa-
ter and the producer bottom hole pressures were taken as control parameters. In the optimal
policies they often found a clear imprint of the starting policy. Although the optimum injec-
tion policy was found to be not unique the total volume injected was. Furthermore, all three
optimum control policies gave approximately the same cumulative oil recovery, and the same
value for the objective function. In the optimal control policy the production well was ini-
tially shut in. This was in agreement with results from other authors who suggested to shut
in the production wells at the beginning in order to reduce the CO2 mobility and increase
the efficiency of the displacement.

Liu et al. (1990) studied the problem of steam flood optimization with optimal control the-
ory using a discrete optimal control formulation. The objective was to maximize oil recovery
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while minimizing the steam injection costs. The control parameters for optimization were
the injection rate of steam and water, the steam quality, and the bottom-hole pressure in the
production well. Upper and lower bounds on the controls were considered in some examples.
The examples considered were simple two-dimensional models consisting of 28 grid blocks.
Improvements obtained with respect to the base case were significant. Reportedly, they were
due to higher injection and production rates, and a better sweep due to reduced oil viscos-
ity. Trends found in the optimal control policies were considered to be important principles
behind an optimal steam flood. They also studied the sensitivity of the individual controls,
and found injection rate and bottom hole pressure to be the most sensitive. The scope for op-
timization was found to decrease for more restrictive constraints on the controls. They also
found that the optimal profitability increased with decreased kv

kh
ratio, which was attributed to

reduced steam override. Different optimal control functions were found for different initial
control policies. Regularization of the calculated optimal control policies did not signifi-
cantly affect the end-results. They too reported that finding a stable adjoint solution in itself
could be a major mathematical problem. Especially for complicated EOR problems this was
reported to be an important consideration. In later work Liu and Ramirez (1994b) inves-
tigated three-dimensional steamflood optimization for reservoir models that were matched
to data from some real steamflooding projects. Improvements between 12-20% were real-
ized. The time step size ∆t in the forward simulation was automatically regulated by limits
on the maximum changes in the states allowed. The time step size of the adjoint equation
was regularized to a small constant value because the variation in the distributed states might
not correspond to the variation of the distributed adjoint states. A quadratic interpolation
was used in calculating the adjoint coefficients for unmatched time points. The non-smooth
shapes of the optimal control policies were attributed to the time step size used. A further
reduction in the time step size should smooth the resulting policies.

Macro-scale sweep optimization

Asheim (1986) and Asheim (1988) studied optimization of water flooding with two ver-
tical injection wells, and a single vertical production well (artificial water drive). He also
studied a scenario with two vertical production wells and a natural aquifer (natural water
drive). The objective was to maximize the net present value (NPV) of the water flood. As
a reference case he used rate-allocation in wells based on the permeability-thickness prod-
uct. Improvements in NPV ranging from 2-11% were found, realized by improved sweep
efficiency and delayed water breakthrough. He also found that the performance of an opti-
mized water flood depended less on reservoir heterogeneity than a conventional water flood
(the reference case), indicating that negative effects of reservoir heterogeneity could to some
extent be compensated for by dynamic flow control. The optimization algorithm used was a
commercially available nonlinear search program, based on the Generalized Reduced Gra-
dient Method. Convergence of this optimizer was efficient with the optimal solution being
found in only a few iterations.



34 Chapter 4

Birnovskii (1988)2 and Virnovsky (1991) investigated the optimization of both two-phase
and three-phase flow in two-dimensional reservoirs. Gravity effects were not considered.
Furthermore, fluids were taken to be incompressible, and mutually insoluble. They optimized
both for well location, well type, and water flood efficiency and allowed wells to change from
injector to producer and vice versa. To this end they started out with a large number of injec-
tion and production wells. In subsequent iterations a number of these wells were removed.
(These were probably the wells with the lowest flow rates, although this is not clearly men-
tioned in the paper.) Distinct stages in the optimized production process were found, corre-
sponding to drainage of the low permeable part of the reservoir, followed by a stage during
which the main goal was to get a uniform displacement front. For two-dimensional water
flood optimization the optimum distribution of flow rates among the wells was to assign low
flow rates to wells in the high permeability areas. Significant improvements of up to 50% in
cumulative oil recovery were achieved.

Zakirov et al. (1996) studied optimization of allocation of available gas and water handling
capacity between individual wells against a common production platform, while including
(in)equality constraints on the production in the optimization. They used a fully-implicit,
three-dimensional, black oil simulator. The control parameters were the bottom hole pres-
sures in the wells. In the optimum scenario production was such that the gas-oil-ratio (GOR)
in both wells was equal at all times. This was interpreted to correspond to an equal gas-front
movement through the reservoir. The evolution of the water-oil ratio was not similar in both
wells. Improvements of 5-10% were obtained for the two-producer scenarios. An important
observation was that maximizing plateau production may not necessarily be optimal with re-
spect to obtaining the best economy over the fields life time. Similar observations were done
in other studies [Virnovsky (1991), Yeten et al. (2002), Yeten (2003)].

Sudaryanto (1998), Sudaryanto and Yortsos (2000), and Sudaryanto and Yortsos (2001)
studied optimization of water flooding at the time of water breakthrough. They considered
two-dimensional reservoirs with two vertical injection wells and a single vertical production
well. Fluids were taken to be incompressible. A “bang bang” optimal control formulation
was used in which wells operate only at the extremes (fully open or closed). The displace-
ment process was optimized by optimizing the switch times for opening or closing the in-
jection wells. As a reference case they used a control scenario in which the injection rates
remain constant throughout the displacement process and are chosen such as to get simulta-
neous breakthrough at the producer. Results obtained from simulations, were compared with
experiments conducted with a Hele-Shaw cell3, giving good agreement.

In most of the examples considered the permeability field was assumed to be known. In
some cases however they assumed the permeability distribution to be unknown and simply
treated those cases as homogeneous. For virtually all these cases they found improvements
with respect to their base case. Only for 2 out of 400 cases they found a slight decrease in

2 The name of the author is not spelled correctly in the article. His real name is G.A. Virnovsky.
3 A Hele-Shaw cell is sometimes used in experiments to study laminar flow, the flow occurring in between two

closely-spaced parallel plates.
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performance (order 1%). These slight decreases both occurred for reservoir models where the
true permeability field had a random distribution, i.e. the grid block values were uncorrelated.

In most cases they studied the production rate was constant. However, they also studied
optimization with constraints on well injection rates. For these cases they found both im-
provement in displacement efficiency and acceleration of production compared to the con-
stant base case, partly due to the fact the total injection rates in the optimized case were
sometimes higher than in the base case. For some initial control policies no switch time
could be calculated; in those cases the optimization had to be restarted with a different initial
policy.

Dolle et al. (2002) studied dynamic water flood optimization with optimal control theory
on simple two-dimensional reservoirs. In their approach the Jacobian was calculated numeri-
cally. Results were compared to those obtained with a static optimization algorithm [Brouwer
et al. (2001)], in which optimization was done with time-independent injection and produc-
tion rates. For most cases results obtained with optimal control theory were found to be an
improvement over the static optimization algorithms. In some cases, however, the static op-
timization algorithm performed better. This was attributed to local optima and to problems
with the stability of the adjoint equation.

4.3 Moment of discretization in optimal control problem
In principle the optimization could be approached in two ways. One is to use a continuous
optimal control formulation in which the discretization for the dynamic system, the adjoint
equations, and the objective function is only done as the last step. This is generally referred
to as the differentiate-then-discretize approach. The other possibility is to start directly with
a discrete optimal control formulation. This is generally referred to as the discretize-then-
differentiate approach.

Differentiate-then-discretize approach
In this approach discretization is done separately for the objective function, the dynamic
system, and the adjoint equation. Upon discretization truncation errors will be introduced
since the discrete formulation is generally a low order approximation. These truncation
errors may be different for the different components in the optimization problem, and the
resulting derivatives may therefore not be exact [Ulbrich (2001)].

Discretize-then-differentiate approach
This approach starts with a discrete formulation of the optimal control problem, and thus with
a discrete description of the dynamic system and the objective function. Since the adjoint
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is derived from this discrete description it yields the exact gradient of the discrete objective
function.

According to several studies [Chavent (1979), Chavent et al. (1980), Mehos (1986), Ul-
brich (2001)] it is better to apply optimal control theory according to the discretize-then-
differentiate approach if a discrete, numerical approximation of the dynamic system is to be
optimized. In this study we therefore followed this approach. It must be noted, however, that
this issue still subject of recent research [Li and Petzold (2003)].

4.4 General theory
Optimal control theory exists both for continuous as well as discrete problems [Luenberger
(1979)]. Which formulation should be used is dependent on the problem investigated. In
addition, the optimal control formulation itself can also vary with the problem that is studied.
In this thesis a fixed terminal time, free terminal state formulation was used. It means that
the time interval for which optimization is conducted is fixed. Furthermore, it means that
there is no constraint on the final states, i.e. the oil pressures, the water saturations, and the
gas saturations. The formulation will be discussed in detail in section 4.4.1.

Alternatively, the optimal control problem could be formulated as a free terminal time
problem, as was done by Sudaryanto and Yortsos (2001). In such a formulation the end time
is part of the optimization problem. The optimal control problem could also be formulated
as a fixed terminal state problem. The problem with this formulation, however, is that the
constraints on the final states may not be feasible, i.e. it may not be possible to achieve them
by any combination of controls. Especially for a complex system as a reservoir it may be
difficult to assess in advance the feasibility of final constraints on the states.

4.4.1 The optimal control problem - Fixed terminal time, free
terminal states

Optimal control is a gradient-based optimization technique that allows one to find those
values of the input (control) variables u that minimize or maximize a certain scalar objective
function J , subject to the constraints on the states x imposed by the dynamic system. In this
study, an objective function is used that accumulates over time, i.e.

J =
N−1X
n=0

J n (xn,un), (4.1)

where n is the time step, and N is the final time step. Because J is a function of the states x
which in turn is a function of u, the influence of changes in u on the magnitude of J cannot
be derived directly. Furthermore, the optimal value of J depends on which x are feasible.
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This problem can be approached as a constrained optimization problem, where the constraint
is formed by the dynamic system, that has the general form

gn
¡
xn+1,xn,un

¢
=0, (4.2)

and initial state vector xo. The dynamic system (eq. 4.2) is formally included as a constraint
by adding it to the objective function J with a set of Lagrange multipliers λ (different from
λ used for mobility in chapter 3). The resulting equation is called the modified objective
function J̄

J̄ =
N−1X
n=0

h
J n (xn,un) +

¡
λn+1

¢T
gn
¡
xn+1,xn,un

¢i
. (4.3)

Next an auxiliary function, Ln, is defined as

Ln ¡xn+1,xn,un,λn+1¢ = J n (xn,un) +
¡
λn+1

¢T
gn
¡
xn+1,xn,un

¢
. (4.4)

Substitution into eq. 4.3 gives

J̄ =
N−1X
n=0

Ln ¡xn+1,xn,un,λn+1¢. (4.5)

A first order approximation of the sensitivity of J̄ with respect to xn+1, xn, un, and λn+1

is obtained by taking the first variation of J̄ (noting that δx0 = 0),

δJ̄ =
N−1X
n=1

µ
∂Ln
∂xn

¶
δxn +

N−1X
n=0

µ
∂Ln
∂xn+1

¶
δxn+1 +

N−1X
n=0

µ
∂Ln
∂un

¶
δun

+
N−1X
n=0

µ
∂Ln
∂λn+1

¶
δλn+1, (4.6)

where ∂Ln
∂xn , ∂Ln

∂xn+1 , ∂Ln
∂un , and ∂Ln

∂λn+1
are row vectors. By changing the index of summation,

the second term in the right hand side of eq. 4.6 can be written as
N−1X
n=0

µ
∂Ln
∂xn+1

¶
δxn+1 =

NX
n=1

µ
∂Ln−1
∂xn

¶
δxn

=

µ
∂LN−1
∂xN

¶
δxN +

N−1X
n=1

µ
∂Ln−1
∂xn

¶
δxn. (4.7)

Substituting eq. 4.7 into eq. 4.6 gives

δJ̄ =
N−1X
n=1

µ
∂Ln−1
∂xn

+
∂Ln
∂xn

¶
δxn +

N−1X
n=0

µ
∂Ln
∂un

¶
δun

+
N−1X
n=0

µ
∂Ln
∂λn+1

¶
δλn+1 +

µ
∂LN−1
∂xN

¶
δxN . (4.8)
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From eq. 4.8 it is not directly obvious what the effect of a change in the control u is, since
a change in it will also lead to a change in the states x. Eq. 4.8 can, however, be simplified
in a number of steps. The third term in the right hand side of eq. 4.8 is zero because
∂Ln
∂λn+1

= (gn)T = 0T . Further simplification of eq. 4.8 can be obtained by a proper choice
of the Langrange multipliers. The last term in eq. 4.8 is always zero if the following is
imposed:

∂LN−1
∂xN

= 0T . (4.9)

This condition is called the Final Condition, which after substitution of eq. 4.4 can be written
as ³

λN
´T ∂gN−1

∂xN
=0T . (4.10)

On top of this, the first term in the right hand side of eq. 4.8 can be set to zero by imposing

∂Ln−1
∂xn

+
∂Ln
∂xn

= 0T (4.11)

for n = 1, 2, .., N − 1. Substitution of eq. 4.4 into eq. 4.11 gives, after some rearranging

(λn)
T

µ
∂gn−1

∂xn

¶
= − ¡λn+1¢T ∂gn

∂xn
− ∂J n

∂xn
. (4.12)

Eq. 4.12 is known as the adjoint or co-state equation. Using the Final Condition (eq. 4.10)
to give initial condition λN , eq. 4.12 can be integrated backwards in time. After all Lagrange
multipliers have been calculated eq. 4.8 simplifies to

δJ̄ =
N−1X
n=0

µ
∂Ln
∂un

¶
δun =

N−1X
n=0

·
∂J n

∂un
+
¡
λn+1

¢T ∂gn

∂un

¸
δun. (4.13)

Eq. 4.13 shows the first order change in the objective function resulting from a change in
the control vector u. In the optimum this first order variation is zero. If the controls u are
unconstrained this yields

∂Ln
∂un

= 0T . (4.14)

If the control is constrained the optimal control policy optimizes (maximizes or minimizes)
Ln. Thus for a maximization problem

Ln ¡xn+1,xn,unopt,λn+1¢ ≥ Ln ¡xn+1,xn,un,λn+1¢ . (4.15)

This is called the Pontryagin Maximum Principle [Luenberger (1979)].

4.4.2 Optimization procedure
The optimization problem is a two-point boundary value problem, since initial conditions
for the dynamic system and the adjoint are specified at opposite sides of the time interval
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[Stengel (1994)]. Solution of the optimization problem consists of repeating the following
steps until the optimal control vector u has been found for each time step:

1. Numerical simulation of the dynamic system behavior by numerical solution of eq. 4.2
from time interval 0 to N , with an initial choice for u, using x0 as initial conditions

2. Evaluation of the objective function

3. Calculation of the Lagrange multipliers by backward numerical solution of the adjoint
equation (eq. 4.12), using the Final Condition (eq. 4.10) as initial condition

4. Computation of the gradients ∂Ln
∂un :

5. Computation of an improved control vector u, using the gradients ∂Ln
∂un

6. Repetition of steps 2-5 until no further improvement can be found

Because the process is gradient-based, a local optimum may be computed and therefore the
results may depend on the initial choice of u. The partial derivatives ∂Jn

∂xn , ∂g
n

∂xn , ∂g
n−1

∂xn , ∂gn

∂un ,
and ∂Jn

∂un depend on the discretization of the dynamic system and the objective function.

4.5 Application to water flood optimization
In the previous section the general formulation of the optimal control problem was discussed.
In this section a brief summary of its application to the water flood optimization problem is
given. In this study the objective is to maximize the Net Present Value (NPV) of the water
flooding process. It generally comprises costs of water injection and water production, and
revenues of oil and gas production. In this study separate water injection costs were not
considered. Instead, the oil production price and the water production costs were assumed
to be a net price and cost respectively, including costs of associated water injection. The
objective function J is thus evaluated only at the production wells and is defined as

J =
N−1X
n=0

NprodX
k=1

−ro (q∗o)nk − rw (q
∗
w)

n
k − rg

¡
q∗g
¢n
k¡

1 + b
100

¢τn ∆tn

=
N−1X
n=0

J n, (4.16)

where ro is the oil price
h
$
m3

i
and has positive sign, rw is the water cost

h
$
m3

i
and has a

negative sign, and rg is the gas price
h
$
m3

i
. q∗o , q∗w, and q∗g are rates at surface conditionsh

m3

s

i
, which are negative for production. ∆t is the time step size [s], b is the discount rate
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per year [%], τ is the number of years [−], n is the time step, N is the final time step, and
Nprod equals the number of production wells. The dynamic system is the reservoir simulator,
discussed in detail in chapter 3 and appendix A. Its most general form is

gn=0. (4.17)

It is a function of the states p̂ and the control parameters. If the control parameters are the
total liquid injection and production rates q in the wells (The scenario described in section
4.9.1.), eq. 4.17 equals

gn
¡
p̂n+1, p̂n,qn

¢
=0. (4.18)

If a well model is used (sections 3.4 & 4.9.2), the control parameters may be the effective
valve settings αeff in the wells, which will be referred to as α. Eq. 4.17 is in that case

gn
¡
p̂n+1, p̂n,αn

¢
=0. (4.19)

For the remainder of this section the control is taken to be α. With Ln defined as

Ln ¡p̂n+1, p̂n,αn,λn+1
¢
= J n (p̂n,αn) +

¡
λn+1

¢T
g
¡
p̂n+1, p̂n,αn

¢
, (4.20)

the Final Condition (eq. 4.10) in the water flood optimization problem equals

∂LN−1
∂p̂N

= 0T , (4.21)

and the adjoint equation equals

(λn)
T
=

·
− ¡λn+1¢T ∂gn

∂p̂n
− ∂J n

∂p̂n

¸µ
∂gn−1

∂p̂n

¶−1
. (4.22)

After the Lagrange multipliers have been calculated the gradients ∂Ln
∂αn can be calculated.

These gradients form the input for the steepest descent optimizer, that will be discussed in
section 4.10. A summary of the derivatives in eq. 4.22 is given in appendix C.

4.6 Interpretation of the adjoint equation
In the oil industry, the optimal control method is primarily used to calculate gradients with
respect to the controllable parameters. The meaning of the Lagrange multipliers has, to our
knowledge, not yet been addressed in the petroleum industry.

4.6.1 Lagrange multipliers
Lagrange multipliers are used to find a function’s extremum under constrained conditions.
They integrate the constraints into the objective function that is to be optimized. If the value
of the Lagrange multiplier equals zero under optimized conditions, the constraint does not
affect the value of the objective function (the constraint is not active). If it has a nonzero
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value the constraint does affect the optimal objective function value (the constraint is active).
The larger the magnitude of the multiplier the larger the effect of the constraint is on the
value of the optimized function [Strang (1986)]. In the optimum, the Lagrange multiplier
value is thus an indication of the cost of the associated constraint, reflecting the sensitivity
of the objective function with respect to a change in the constraint [Fletcher (1987)]. In the
optimum this sensitivity of the objective function J with respect to a constraint gj−1 can be
expressed as [Kraaijevanger (2004)]

dJj = −
¡
λj
¢T

dgj−1, (4.23)

in which Jj represents the cost-to-go objective function which is evaluated from the time
step of perturbation to the end time step (see also eq. E.2). The cost-to-go objective function
and the derivation of eq. 4.23 are described in more detail in sections E.1 & E.2 of appendix
E.

4.6.2 Adjoint equation
In optimal control theory the dynamic system is added to the objective function as an equal-
ity constraint with (a set of) Lagrange multipliers. This constraint must be satisfied for each
point in space and time that is to be optimized. Therefore, there is a separate Lagrange multi-
plier for each constraining equation at each time step. Largely analogous to section 4.6.1 the
Lagrange multipliers in an optimal control problem represent the objective function’s sen-
sitivity to dynamic effects on the optimal trajectory [Stengel (1994)]. After evaluating the
adjoint equation, the first variation in the cost-to-go objective function at some arbitrary time
step j is given by

dJj = −
¡
λj
¢T ∂gj−1

∂xj
dxj . (4.24)

The derivation of eq. 4.24 is given in section E.1 of appendix E. In systems where ∂gj−1
∂xj = 1

(see appendix E for more detail), eq. 4.24 reduces to

dJj = −
¡
λj
¢T

dxj (4.25)

In eq. 4.25 the Lagrange multiplier directly gives the sensitivity of the objective function
with respect to small changes in the state.

4.6.3 Other potential applications of Lagrange multiplier values
Eqs. 4.24 & 4.25 indicated that, along the optimal trajectory, the values of the Lagrange mul-
tipliers λ reflect the sensitivity

³
a scaled sensitivity if ∂gj−1

∂xj 6= 1
´

of the objective function
with respect to slight changes in the corresponding states. The value of the Lagrange multi-
pliers may thus give an estimate of how much the optimum objective function value would
change if constraints on the states could be changed. Constraints on the pressure at a location
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close to existing wells may be manipulated by stimulation or water shutoff methods. In more
distant areas in the reservoir this may be achieved by completing new wells. A more detailed
discussion on the physical meaning of the Lagrange multipliers is postponed to section 5.7.
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Figure 4.1: Eigenvalues of adjoint system matrix at time step n = 20.
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Figure 4.2: eigenvalues 51-75 for adjoint at time step 20. Eigenvalues are sorted on magnitude.
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4.7 Eigenvalues of the adjoint equation
In section 3.3 the eigenvalues of the dynamic system were briefly discussed. In this section
the eigenvalues of the adjoint equation are discussed. Figure 4.1 shows the absolute magni-
tude of the eigenvalues at time step n = 20 for the adjoint, corresponding to the dynamic
system described in section 3.3. The complex modulus was plotted since a few eigenval-
ues were complex, although the imaginary part was very small (O

¡
10−9

¢
). Just as was the

case for the dynamic system, the eigenvalues of the adjoint can be split up in distinct groups.
Eigenvalues 1-25 are approximately 1. Some of them are slightly larger than one, and some
of the eigenvalues in this group have a very small imaginary part. The fact that some of
the eigenvalues are larger than 1 suggest that the adjoint is strictly spoken not stable. The
fact that the difference is very small suggests that it is related to numerical round-off er-
rors. Eigenvalues 26-50 are within the range 0.90-1. Eigenvalues 51-75 are close to zero, as
shown in Figure 4.2. Overall, the eigenvalue distribution of the adjoint resembles that of the
dynamic system, the main differences are found for eigenvalues 26-50.

4.8 Verification of gradients obtained with optimal control
theory

The validation of a numerical scheme is generally done by comparison with a reference
solution. For simple systems the results obtained with a numerical reservoir simulator can be
compared with results from analytical solutions, laboratory experiments or other numerical
reservoir simulators. This cannot be done so easily for the adjoint scheme. First of all
there are not yet any reference solutions for the adjoint. Secondly, its behavior is not only
determined by the dynamic system to which it is adjoint, but also by the objective function
which derivatives with respect to the states ∂J

∂x form the source for the adjoint equation (see
eq. 4.12 in this respect).

Validation of the gradients obtained with optimal control theory can be done by comparison
with gradients obtained with numerical perturbation. Eq. 4.13 describes the relation between
a change in the control δu and a change in the objective function δJ̄ if the appropriate
Lagrange multipliers have been calculated. It is repeated below

δJ̄ =
N−1X
n=0

µ
∂Ln
∂un

¶
δun. (4.26)

For a single control at time n this relation is

δJ̄
δuin

=
∂Ln
∂uin

. (4.27)

Eq. 4.27 states that a change in the objective function due to a change in the control at point
i and time n is equal to the gradient ∂Ln

∂uin
at that point i and time n. The gradient on the left
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hand side can be obtained by numerically perturbing the forward simulation. This is done
with the aid of two reservoir simulations. In the first, a reservoir simulation is run with a
particular control function and the objective function is calculated. In the second simulation
the control i is perturbed at time step n, and the objective function for this run is evaluated.
The ratio of the difference in objective function over the difference in the control must then
be (approximately) the same as the gradient ∂Ln

∂uin
, i.e.

∆J̄
∆uni

=
J̄2 − J̄1
uni,2 − uni,1

≈ ∂Ln
∂uni

. (4.28)

It must be kept in mind that the value of the numerically obtained gradient ∆J̄∆uni may depend
on the size of the perturbation. The perturbation should therefore be sufficiently small. A
perturbation that is too small, however, may lead to inaccurate gradients due to numerical
round off errors. Comparison of the gradients is discussed in some more detail in section
5.4.

4.9 Constraints on the controls
Sections 4.4 & 4.5 discussed how the dynamic system is included as a constraint in the
optimization procedure. In addition, constraints on the control function must be taken into
account. In the water flood optimization problem these constraints are the well operating
constraints. In this study, two types of well operating scenarios are investigated. In the
first scenario no well model is used, instead total liquid injection and production rates q are
controlled directly. In this scenario the field injection and production rate is kept constant and
balanced, therefore it is referred to as the rate-controlled scenario4. The constraints on the
controls for this scenario are described in section 4.9.1. In the second scenario a well model
is used. It has been described in section 3.4. In this scenario the well flowing pressures in
the injector and producers are fixed, and the injection and production rates are controlled
by the valve-settings αeff in the wells. The constraints on the controls for this scenario are
described in section 4.9.2.

There are a number of ways to include these constraints into the optimization procedure.
Equality constraints on the controls could be included in the optimization in the same way
as the dynamic system. For inequality constraints, however, this becomes more complex.
Instead, we will follow a more ad hoc approach in including the constraints on the controls.
Its discussion is postponed until section 5.8.

4 This operating scenario was only used in two-phase flow (oil and water) cases with very low (numerical)
compressibility. In these cases constant liquid density was assumed, although compressibility was not zero. The
resulting error in the mass balance was found to be very small (<10−4 %).
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4.9.1 Constant field injection and production rate
In this scenario the field injection and production rates are constant and balanced, i.e.¯̄

qtinj
¯̄
=
¯̄
qtpr

¯̄
= qfield = constant. (4.29)

The controllable parameters are the liquid injection and production rates q in the individ-
ual wells. Since the total injection and production rates are constant this scenario can be
considered a purely rate-controlled scenario. It is implicitly assumed that well injection and
production pressures will never become a limiting factor. In this formulation, injection rates
have positive sign, and production rates negative sign. For injectors the constraints are

0 ≤ qinji ≤ qfield, (4.30)
NinjX
i=1

qinji = qfield, (4.31)

where qinji is the injection rate in well i, qfield is the total injection rate, and Ninj equals
the number of injectors.

For the producers the constraints are

−qfield ≤ qprodj ≤ 0, (4.32)
NprodX
j=1

qprodj = −qfield, (4.33)

where qprodj is the production rate in well j, and Nprod equals the number of producers. In
chapters 6 & 7 this scenarios is referred to as the rate-controlled scenario.

4.9.2 Constant well flowing pressure
In this scenario a simple well model is used (described in section 3.4 and appendix B). The
well flowing pressure pwf is equal and constant for all injection wells, and for all production
wells. Of course, it is different for injection and production wells. They are taken constant
because control on the flow rates is done through manipulation of the valve-settings αeff
in the wells, i.e. the valve-settings αeff are the controllable parameters. In this scenario
we only considered purely pressure constrained operating conditions, i.e. the well flowing
pressures in the injector and the producer are always the factor limiting the injection and
production rates. Any change in valve-setting will lead to a change in the field injection
and production rates. For both injectors and producers the effective valve-settings aeff must
satisfy

0 ≤ aeff ≤ 1. (4.34)



46 Chapter 4

For the injectors the rates should be nonnegative and the well flowing pressure is equal and
constant for all injection wells

0 ≤ qinji , (4.35)
pwf = pwfinj . (4.36)

For the producers the rates should be nonpositive and the well flowing pressure is equal and
constant for all production wells

qprodj ≤ 0, (4.37)
pwf = pwfprod . (4.38)

To satisfy constraints in eqs. 4.35 & 4.37 requires backflow to be avoided. Section 3.4.2
described how this was achieved. In chapters 6 & 7 this scenario is referred to as the pressure-
constrained scenario.

4.9.3 Mixed-operating constraints
The purely rate controlled and purely pressure constrained scenarios represent the extremes
in well operating conditions that are possible. In general, however, there may be distinct
stages in the production process during which different constraints are active. If the total
injection or production rates exceed the maximum field rates the wells need to be cut back.
During this stage the production is rate constrained. In practice this is generally done by
choking at the well head. In a simulator this may be done by choking at the well head
if a wellbore flow model is used, or by adjusting the well flowing pressures to reduce the
drawdown. In this study, however, the well flowing pressure is not taken to be a control
variable. Therefore the cutting back of production should be realized by partially closing the
valves αeff . If the desired field injection and production rates are higher than can be realized
with the injector and producer well flowing pressures, the production becomes pressure-
constrained.

For optimization under mixed operating conditions the valve settings should again satisfy

0 ≤ aeff ≤ 1. (4.39)

The constraints on the injectors are

0 ≤ qinji ≤ qfield, (4.40)
NinjX
i=1

qinji ≤ qfield. (4.41)

Since control of the injection rate is done by the valve-settings the well flowing pressure is
fixed, i.e.

pwinj = pwfinj . (4.42)
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Similarly for the producers

−qfield ≤ qprodj ≤ 0, (4.43)

−qfield ≤
NprodX
j=1

qprodj , (4.44)

pwprod = pwfprod . (4.45)

4.10 Gradient based optimization algorithms
Figure 4.3 shows a flow chart of the optimization procedure. The adjoint only serves to
calculate the gradients of L with respect to the control. A gradient-based optimization algo-
rithm must subsequently be used to calculate the optimal control function. There are various
gradient-based methods that can be used to this end. In section 4.10.1 a brief literature
overview of experiences with various gradient-based optimization methods in previous op-
timal control studies is given. In section 4.10.2 the steepest descent algorithm used in this
study is described.
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Figure 4.3: Flow chart for dynamic water flood optimization

Convergence to the optimum was assumed if the objective function value hardly increased
for a number of subsequent iterations. If the optimal controls are unconstrained, the existence
of the optimum may be assessed based on the gradients ∂Ln

∂un , since eq. 4.14 showed that
these should then be zero in the optimum. In that case the flowchart in Figure 4.3 would
change slightly, with the adjoint simulation being done prior to assessing convergence to the



48 Chapter 4

optimum. The difficulty with the latter approach, however, is it only holds if the controls are
unconstrained.

4.10.1 Literature overview
Various methods were used and compared in previous optimal control studies on history
matching and dynamic process optimization. A comparison between the steepest descent
method, a conjugate gradient method, a quasi-Newton Method and a Fixed Direction Set
method was done by Jacobs (1993). He compared the four methods and concluded that the
quasi-Newton method performed best for his test case. For the case he considered, the num-
ber of iterations required to achieve an optimum was about a factor 2-3 lower for the quasi-
Newton method than for the steepest descent method. Yang and Watson (1987) used optimal
control theory in history matching simple two-phase reservoirs. They compared performance
of the steepest descent, a conjugate gradient, and two types of quasi-Newton methods. The
quasi-Newton methods were generally most efficient and accurate, and could best be used
in combination with parameter inequality constraints. Their performance was often an order
of magnitude better than the steepest descent methods. Only for (near) quadratic objective
functions they found the conjugate gradients method to be more efficient. From the quasi-
Newton methods they investigated the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the
Self-Scaling Variable Metric (SSVM) formulations, the latter being more efficient when the
number of unknown parameters was large.

Wu et al. (1999) and Wu (2000) studied the conditioning of geostatistical models to two-
phase production data, using Gauss-Newton and Newton-Raphson methods. Although gen-
erally efficient for quickly locating local minima of the objective function, convergence and
local minima problems were sometimes encountered when the data mismatch was large, re-
sulting in a poor match of the observed production data. Bi et al. (2000) reported that at early
iterations in the history match optimization, the change in model parameters often needed to
be dampened to avoid slow convergence or convergence to unacceptable local optima, es-
pecially when the mismatch between observed and estimated model parameters was large.
They used a Levenberg-Marquardt algorithm to provide this damping. Their algorithm gen-
erally required on the order of 5 iterations to obtain convergence.

Fathi and Ramirez (1987) applied optimal control theory to optimize a micellar/polymer
flooding enhanced oil recovery system. As an optimizer they used both a steepest descent
and a conjugate gradient algorithm that was modified and extended to include bounds on
the controls. The conjugate gradient method appeared not always superior in performance,
it often showed tendencies toward instability, especially in situations where the initial con-
trol strategy was far from optimal. Although generally less efficient, the steepest descent
algorithm always worked satisfactorily.

Asheim (1986) and Asheim (1988) studied the optimization of natural water drive and
water drive by injection for a two-dimensional oil-water system for constant total injection
and production rates. The optimization algorithm he used was a commercially available
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nonlinear search program, based on the Generalized Reduced Gradient Method. The optimal
solution was typically found in only a few iterations.

4.10.2 Method used in this study
In this study only a steepest descent based method was used. Since its performance was
satisfactory with an optimum typically being found within 5-15 iterations, a more advanced
algorithm was not investigated. In the steepest descent method the controls u are updated
according to

(unnew)
T = (unold)

T + ε
∂Ln
∂un

, (4.46)

where ε is a weighting factor, and (unnew)
T , (unold)

T , and ∂Ln
∂un are row vectors. If the weight-

ing factor ε is chosen small, it takes a large number of evaluations before the optimum is
reached. A too large value, on the other hand, can cause spurious results if the new control
function is beyond the optimum. A choice for the weighting factor was determined empir-
ically. At first, the weighting factor ε∗ was calculated that maximizes ∆J̄ , based on the
gradients ∂Ln

∂un . This was done based on the method described by Ray (1981). Its determina-
tion requires a number of trial runs in which

∆J̄ =
N−1X
n=0

µ
∂Ln
∂un

¶
∆un (4.47)

is optimized. The weighting factor ε∗ optimizes eq. 4.47. The actual weighting factor εr
chosen for iteration r was at most half of the weighting factor ε∗r , i.e.

εr =
1

2
ε∗r . (4.48)

However, this approach sometimes gave too large changes in the controls, especially at early
iterations. An additional restriction on the change in controls per iteration was therefore
imposed by not allowing L to change by more than a certain percentage ζ per iteration. This
maximum allowable change∆Lr was increased for each subsequent iteration r according to
the relation

∆Lr = rζ, (4.49)
up to some preset maximum ∆Lmax, with an associated weighting factor εmaxr . The small-
est of the two weighting factors εmaxr and εr was used in 4.46 to calculate the new control
function. The result of all this is that the controls are not changed drastically at early it-
erations where the solution is generally still far from the optimum, the gradients ∂Ln

∂un are
generally large, and the shape of the control function may still change significantly, but al-
lowed to change more when the solution comes closer to the optimum, in order to speed up
convergence. Instead of using the gradients ∂Ln

∂un directly, they were rescaled first. This will
be discussed in section 5.8.





Chapter 5
Issues related to numerical implementation

5.1 Introduction
The previous chapter discussed the theoretical background of optimal control theory and its
application to water flood optimization. Upon numerical implementation of the optimal con-
trol problem some problems were encountered, mainly with the adjoint equation. These as-
pects are discussed in sections 5.2, 5.3, and 5.4. To investigate some of the issues mentioned
in section 5.4, some tests were done on a simple one-dimensional fractional flow problem.
They are described in sections 5.5 & 5.6. Section 5.7 discusses the physical meaning of the
Lagrange multipliers for this simple system. Section 5.8 describes how constraints on the
controls were implemented. Some preliminary observations on how the computation time
for calculating the adjoint may be reduced are briefly mentioned in section 5.9.

5.2 Difficulties in adjoint applications - Literature overview
This section gives a literature overview of problems reported in adjoint applications in mete-
orology, oceanography and the petroleum industry.

Meteorology and oceanography

Issues with adjoint applications have been reported in the area of meteorology and oceanog-
raphy [Li and Droegemeier (1993), Xu (1996)]. Li and Droegemeier (1993) investigated the
influence of diffusion, and errors associated with its representation, on the adjoint data as-
similation technique. They investigated how diffusion influences the retrieval of the initial
state given a set of observations at later times. If the model diffusion is represented incor-
rectly or if numerical diffusion is exceedingly large, the retrieved fields could be substantially
distorted, especially for small scale features. They argued that because the two models as-
sociated with the adjoint methodology (forward-in-time prediction model and its associated
backward-in-time adjoint) contain irreversible diffusive effects, which can be both physical
and numerical in nature, information contained in the initial state may be damped, and in
some cases even lost completely, as the physical system evolves. In such cases it may be
difficult or even impossible to infer the initial field from observations at later times. They
conducted some numerical tests on a constant diffusion model. It was observed that in cases
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where the diffusivity of the observations was identical to that used in the assimilation runs,
the cost function showed similar convergence behavior for various diffusivities. However,
the number of iterations required to achieve a certain accuracy increased with increasing dif-
fusivity. This was attributed to the increasing difficulty of retrieving small scale features
when larger diffusivities are used. In cases where the diffusivity in the adjoint model was
larger than that in the observations (obtained with forward model with low diffusivity), am-
plification of the estimated initial state occurs. For early iterations the error between real
and retrieved initial state decreased but started to increase again for subsequent iterations.
The increase in error was attributed to spurious amplification of small-scale features (noise).
This effect increased with diffusivity mismatch and length of the assimilation window. In
cases where the diffusivity for the observations was larger than that for the forward and ad-
joint model smoothing of the retrieved initial states occurred. Initially, the error between real
and retrieved initial state decreased rapidly, but at large iteration numbers it increased again,
due to the spurious damping induced by the diffusion process. Finally the error converged
to some higher-than minimum level. From this they concluded that for the cases considered
there existed an optimal number of iterations for the minimization process.

Derber (1989) developed a variational continuous assimilation approach for dealing with
various sorts of errors that may be related to both the data and the model itself. He added a
correction term to the governing equations to serve as a control variable, obtained forecasts
superior to those obtained with a more traditional adjoint approach.

In meteorology and oceanography instead of the formal adjoint approximate adjoints are
generally used. It is not clear if all problems reported in adjoint applications are referring to
approximate or exact adjoints.

Petroleum engineering

Fathi and Ramirez (1987) reported the mathematical complexity of the equations describ-
ing immiscible flow to be a serious obstacle for the application of optimal control theory in
this area. They reported that non-smooth coefficients in the adjoint, arising from the physi-
cal nature of the system may lead to difficulties in getting a stable numerical adjoint scheme.
They investigated many numerical schemes for the solution of the continuous adjoint equa-
tion in their surfactant flooding optimization study, but none of them resulted in a stable
solution [Ramirez (1987)]. The difficulty was in the existence of discontinuities in the co-
efficients, that occur because two saturation shocks form during a surfactant flood, the first
being the Buckley-Leverett shock, the second shock being at the surfactant front where the
surfactant slug contacts the connate water. Smooth approximations of these coefficients were
required to get a stable scheme. This work was all based on a continuous optimal control
formulation, in later work they went to a discrete formulation. They also addressed the is-
sue of numerical dispersion. If the numerical dispersion represents the physical dispersion,
it can be used to replace the physical dispersion and simplify the calculations. This should
also help in cancelling some computational difficulties they encountered in previous studies
[Fathi and Ramirez (1984), Fathi (1986)].
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Liu et al. (1990) investigated optimization of the steam flooding process with optimal
control theory. They reported that finding a stable adjoint scheme in itself could be a major
mathematical problem. Especially for complicated EOR problems this was an important
aspect to consider. For the examples considered they found nonsmooth shapes of the optimal
control functions. Reportedly smaller time steps should result in smoother control functions.

Sudaryanto (1998) encountered computational problems in calculating the optimum switch
time for the case of miscible, variable mobility displacements, in which a finite difference
method was used to simulate the forward and adjoint equations. They found that the objective
function reached a maximum at a switch time that was different than the switch time at
which the derivative ∂L

∂u was zero. As a result, the optimization stopped at a suboptimal
value in a number of cases. This problem did not occur in their streamtube formulation.
They attributed the computational problems in the finite difference formulation to numerical
(round off) errors in solving the large system of linear state and adjoint equations. They also
had to use small time steps in order to avoid stability problems with the adjoint equation
(Sudaryanto, personal communication).

5.3 Stability aspects of the adjoint equation
Some problems concerning the stability of the adjoint were encountered in this study. Analy-
sis of the stability of the adjoint equation was done with the matrix method. The stability was
assessed based on the eigenvalues of the adjoint amplification matrixGadj, which is defined
as:

λn = −
"µ

∂gn

∂xn

¶µ
∂gn−1

∂xn

¶−1#T
λn+1 −

"µ
∂J n

∂xn

¶µ
∂gn−1

∂xn

¶−1#T
(5.1)

= Gadjλ
n+1 − qadj.

In this equation matrixGadj is the amplification matrix and vector qadj is the source/sink to
the adjoint dynamic system.

5.3.1 Spatial weighting
In section 3.2.5 spatial weighting of various parameters in the discrete dynamic system was
discussed. The relative permeabilities krl and capillary pressures pcow and pcgo are calcu-
lated according to the upstream weighting principle. The adjoint equation inherits this up-
stream weighting. Using this formal adjoint gave good results for simple, small dynamic sys-
tems (small number of grid blocks) with a small number of time steps, but for larger systems
it resulted in stability problems in the adjoint equation. Applying the upstream weighting
principle to the adjoint itself, noting that in the adjoint flow is in the direction of increasing
potential, resulted in a more stable scheme. The parameters that were upstream-weighted in
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the adjoint were the same parameters for which upstream weighting is used in the original
dynamic system, including their derivatives. It must be stressed that whether or not this up-
stream weighting should be done separately is subject of debate, the opinions differing from
one expert to the other. It should therefore be considered in conjunction with the stability
of the adjoint scheme, and with validation of the gradients obtained against those obtained
with numerical perturbation methods (section 4.8). Further research in this area is, however,
definitely necessary.

5.3.2 Time weighting
In this section the effect of time weighting on the stability of the adjoint equation is dis-
cussed. Two different time discretizations for the adjoint were investigated. One adjoint
formulation was based on the semi-implicit dynamic system equations, as described in chap-
ter 3. Secondly, an adjoint formulation based on a fully-implicit discretization of the forward
dynamic system was investigated. The calculation of the forward problem was for both done
with a semi-implicit reservoir simulator as discussed in chapter 3, assuming that for small
time steps the results obtained with a semi-implicit and fully implicit reservoir simulator are
sufficiently similar. In general, however, numerical dispersion is larger in a fully-implicit
formulation.

Adjoint resulting from a semi-implicit dynamic system formulation

This adjoint formulation results from a time discretization of the dynamic system according
to eq. 3.23. For the dynamic system this means that the scheme is unconditionally stable in
its states, but only conditionally stable with respect to the transmissibility terms. For the latter
the Courant-Friedrichs-Lewy (CFL) condition holds, which states that a fluid particle should
not move more than one spatial step-size∆x in one time step∆t [Peaceman (1977), Fletcher
(1987)].

Adjoint resulting from a fully-implicit dynamic system formulation

This adjoint formulation results from a fully-implicit dynamic system formulation. For the
dynamic system itself this means that the scheme is unconditionally stable in the states and
in the implicitly calculated transmissibility terms.

Comparison of results obtained with different adjoint formulations

The gradients ∂L
∂q̃ obtained from the semi-implicit and fully-implicit adjoints were com-

pared for two different time step sizes at which dynamic system and adjoints were integrated
forward and backward in time respectively. The total simulation time was fixed and equal for
both cases. The reservoir model on which the comparison was done, was a horizontal reser-
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voir with dimensions of 450 by 450 [m], consisting of 45 by 45 grid blocks, with 45 injectors
and 45 producers. The permeability field is shown in Figure 5.1.
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Figure 5.1: Top view of permeability [m2] distribution in reservoir. 45 injectors are aligned along the
left edge, 45 producers along the right edge.
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Figure 5.2: Time step size versus time step number for Case II.

In the forward simulation the injectors and producers were operated at equal rate. Since,
the controls were the injection and production rates, the gradients with respect to the controls
were ∂L

∂q̃ . In Case I the time step size was small and constant to ensure stability in the
reservoir simulation. The total number of time steps for the simulation in this case was 1800.
In Case II, the time step size was much larger, varying in time, and chosen such as to cause



56 Chapter 5

local instabilities in the reservoir simulation5. The total number of time steps in this case was
111. Figure 5.2 shows the time step size versus time step n for Case II.

Case I: small, constant time step size

Figure. 5.3 & 5.4 show the improved injection and production rates as function of time
step n for all injectors and producers in Case I, calculated after the first iteration. Each row in
the left graph of Figure 5.3 shows the injection rate as function of time step for one injection
well. Thus row 15 shows the injection rate as function of time step for injector number 15.
The grey-scale shows the value of the flow rate, where black is a low, and white a high rate.
The injection and production rates in Figure 5.3 & 5.4 were calculated from the gradients
∂Ln
∂q̃n . Since these gradients are directly calculated from the Lagrange multipliers they are
a good way of comparing both formulations. Differences in the Lagrange multipliers will
result in different gradients ∂Ln

∂q̃n and thus into a different control function for the injectors
and producers. Figure 5.3 & 5.4 show that in Case I the resulting control functions are similar
for the semi-implicit and fully-implicit adjoints, suggesting that the adjoints are also similar.
For small time steps this suggests that, although only the semi-implicit adjoint formulation is
formally adjoint to the dynamic system, for practical purposes the fully-implicit adjoint can
also be considered compatible/adjoint to the semi-implicit dynamic system description. This
is attributed to the fact that for small time steps a semi-implicit and fully-implicit formulation
of the forward problem give similar results. Therefore, we expect their adjoints also to give
similar results.

This is in agreement with results obtained independently by Wu (1999) and Wu et al.
(1999). For the forward problem they used a standard IMPES scheme whereas the adjoint
was based on a fully-implicit form of the difference equations. This was done under the
assumption that the pressures and saturations obtained with the IMPES procedure are for
small time steps sufficiently similar to those obtained with a fully-implicit scheme. Results
they obtained suggested this to be a fair assumption.

The fact that one adjoint formulation seems compatible to different forward schemes is
an important result when considering implementation in commercial simulators. The latter
may use different degrees of implicitness for different grid blocks, depending on time step
and stability requirements. If the formal adjoint would be required for each grid block and
time step, implementation would be significantly more complicated. Another important fact
in this respect is that, contrary to the forward simulation, a fully-implicit formulation of the
adjoint does not necessarily require more calculation time than a semi-implicit formulation.
No iterating is required because the coefficients in the adjoint are known at all time steps,
and because the adjoint equations are linear in the Lagrange multipliers.

5 The maximum stable time step size exists because in the formulation in this study the transmissbilities were
calculated explicitly. In a fully implicit scheme these instabilities would not occur.
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Figure 5.3: Improved injection & production rates for the injectors (left) and the producers (right)
obtained with the semi-implicit formulation of the adjoint. Results for Case I.
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Figure 5.4: Improved injection & production rates for the injectors (left) and the producers (right)
obtained with the fully-implicit formulation of the adjoint. Results for Case I.
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Case II: large, variable time step size

Figure 5.5 & 5.6 show the improved injection and production rates as function of time step
n for the injectors and producers in Case II, calculated after the first optimization loop. Figure
5.5 shows that with the semi-implicit adjoint formulation oscillating injection and production
rates are calculated for a large number of time steps. The rates are in no way comparable
to those in Figure 5.3. The oscillating rates result from an unstable adjoint equation. The
instability could be due to the large time step size that was used, or it could be due to the
instabilities in the reservoir simulation, or due to a combination of the two. Figure 5.6 shows
the improved rates obtained with the fully-implicit adjoint formulation. The rates are similar
to those in Figure 5.4 (and Figure 5.3). The absolute values are slightly different, which is
attributed to the fact that on average much larger time steps were used, affecting the accuracy
of the calculation. The reason why Figure 5.6 looks a little ‘blocky’ is related to the fact it
was generated from only 111 time steps, compared to 1800 for Figure 5.3 & 5.4.

So the fully-implicit adjoint remained stable and only seemed to suffer from reduced ac-
curacy due to the larger time step size. It even remained stable for a partly and temporarily
unstable forward simulation. The semi-implicit adjoint was only stable for small time steps.
For the objective function used, the stability properties of the adjoint formulations thus seem
to reflect those of the corresponding dynamic system formulations.
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Figure 5.5: Improved injection & production rates for the injectors (left) and the producers (right)
obtained with the semi-implicit formulation of the adjoint. Results for Case II.
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Figure 5.6: Improved injection & production rates for the injectors (left) and the producers (right)
obtained with the fully-implicit formulation of the adjoint. Results for Case II.

5.4 Gradients obtained with optimal control theory
A few papers on the application of optimal control theory to history matching discuss the
comparison between gradients obtained by numerical perturbation and the gradients ∂L

∂u ob-
tained with optimal control theory, as described in section 4.8.

Wu (1999) and Wu et al. (1999) found differences between numerically obtained gradients
and adjoint-based gradients smaller than 1%. Wu and Datta-Gupta (2001) also compared
sensitivities obtained with the perturbation and the optimal control method, finding similar
gradients. The small differences were attributed to the fact that sensitivities obtained with
the perturbation method depend on the magnitude of the perturbation.

In this study, however, the agreement between numerically obtained gradients and gra-
dients ∂L

∂u varied from case to case. A number of tests were conducted on a simple three
dimensional reservoir with two-phase flow (oil and water). The dimensions of the reservoir
were 100×100×30

£
m3
¤

modelled by 10×10×3 grid blocks. In the upper layer a simple
high permeability streak is located, as shown in Figure 5.7. The other two layers were homo-
geneous with a permeability of 10−13

£
m2
¤
. The injectors and producers are located along

the left and right edge in the upper layer respectively, each grid block containing a separate
injector/producer. In this comparison the valve-settings α were taken to be the control vari-
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able. The simulation was run for a short period in which water breakthrough in the producer
did not occur, with 72 time steps in total. Numerical gradients ∆J

∆αeff
(with J being the ob-

jective function) were calculated for time steps 5-65 in increments of 5. Figure 5.8 shows the
gradients ∆J

∆αeff
and ∂L

∂αeff
for injector 4.
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Figure 5.7: Permeability in upper layer (top view). Labels along y-axis correspond both to grid block
and well number.
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The maximum difference in gradients in this case was 0.54 % at time step k = 5. The
change in magnitude of the gradients for time steps 5, 10, and 15 is due to a change in
time step size of integration. Similar results were obtained for the producer with the error
being slightly smaller. Often, however, larger differences between gradients obtained with
numerical perturbation

³
∆J
∆αeff

´
and the adjoint method

³
∂L

∂αeff

´
were observed. Generally

close to the end time the agreement in gradients is good, but closer to the starting time a
growing discrepancy in gradients was often observed. The fact that a combination of a semi-
implicit dynamic system description and a fully-implicit adjoint formulation were used may
introduce errors in the gradients obtained with optimal control theory. However, results from
section 5.3 suggests these differences to be rather small. Furthermore, experiences from other
studies do not suggest significant problems in this respect [Wu (1999), Wu et al. (1999)]. A
number of other possible reasons for this discrepancy are discussed below.

Numerical errors

Sudaryanto (1998) found errors in the gradients ∂L
∂u when optimizing a miscible, variable

mobility displacement, with a finite difference method. These were attributed to numerical
(round off) errors in solving the large system of state and adjoint equations. Since both for-
ward and adjoint equations are typically integrated over hundreds of time steps the build-up
of numerical errors may become significant, especially since a large number of eigenvalues
of both the forward system and the adjoint are close to or equal to unity. Numerical errors
introduced at any stage may as a result hardly or not decay.

Fathi and Ramirez (1987) discussed the effect of numerical diffusion/dispersion in optimal
control applications. They mentioned that, if the numerical dispersion represents the physical
dispersion, it can be used to replace the physical dispersion and simplify the calculations.
This treatment should aid in obviating the computational difficulties encountered in earlier
studies [Fathi and Ramirez (1984), Fathi (1986)]. Li and Droegemeier (1993) reported that
a misrepresentation of diffusion in the forward and adjoint models could lead to a spurious
amplification or smoothing of the retrieved initial state, an effect that increased drastically
with the number of time steps, and with mismatch between real and modeled diffusion.
Their paper was discussed in some detail in section 5.2. The effect of numerical dispersion
is investigated for a simple one dimensional fractional flow problem in section 5.5.

Time step size.

For accuracy reasons there are in the forward simulation generally upper limits to the al-
lowed change in the states per time step. The time step size is controlled to prevent changes
in for instance pressure and saturations to exceed these maximum allowed changes. Liu and
Ramirez (1994a) suggested in their steam flood optimization study that, because changes in
the states may not necessarily coordinate with changes in the adjoint states, a different time
step size control may be required for the adjoint as for the forward simulation. To this end,
they reduced the time step size in the adjoint equation to a small, constant value. In comput-
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ing the adjoint coefficients they used quadratic interpolation of the states for unmatched time
points. They found nonsmooth shapes of the optimal control functions. Reportedly, smaller
time steps should result in smoother control functions. The effect of time step size on the
smoothness of the gradients will be briefly discussed in section 5.6.

Formulation of the dynamic system

The forward problem was formulated with po, Sw, Sg as primary variables. Resultingly,
the adjoint contains derivatives like

∂krl
∂Sl

,
∂Pclk
∂Sl

, (5.2)

which are generally still nonlinear
³
∂krl
∂Sl

= ∂krl
∂Sl

(Sl) and ∂Pclk
∂Sl

= ∂Pclk
∂Sl

(Sl)
´

. Further-
more, abrupt changes in these derivatives may occur, in particular at the saturation extremes
(Swc, Sor, Sgc, Sgmax). It may be interesting to investigate other formulations of the dy-
namic system in which the primary variables are for example po, pw, and pg. The derivatives
for the capillary pressure and the relative permeabilities are simpler in the latter formulation,
i.e.

∂pcow
∂po

=
∂ (po − pw)

∂po
= 1, (5.3)

∂pcow
∂pw

=
∂ (po − pw)

∂pw
= −1, (5.4)

∂pcow
∂pg

=
∂ (po − pw)

∂pg
= 0, (5.5)

∂krl
∂pl

= 0, (5.6)

which are all constants. In addition, there are slightly different requirements for different
dynamic system formulations. If po, Sw, Sg are the primary variables, a simulation can be
run with zero capillary pressure, whereas for a formulation with po, pw, pg formulation at
least a small (dummy) capillary pressure must always be used [Aziz and Settari (1986)].
Similarly, there may be different requirements for the corresponding adjoints.

Sensitivities for the controls as function of time

A complicating factor in the optimization may arise from the fact that the magnitude of the
gradients can for a single control vary by orders of magnitude over time, as shown in Figure
5.9.
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Figure 5.9: Numerical gradients for injector and producer, obtained with perturbation method. Mag-
nitude of perturbation was 10−7. Permeability in the matrix is 10−13 m2 , in the high permeability
zone 1.3×10−12. Contrast factor between high and low (matrix) permeability zone: 13. Total number
of time steps: 72.

It shows the gradients, obtained with numerical perturbation, for injector number 4 and
producer number 4 as a function of time. In the waterflood considered, with a permeability
field similar to the one in Figure 5.7, significant water breakthrough occurred around time
step 30. Apart from the large change in gradient magnitude, the figure shows that the trends
in gradients are opposite for injector and producer. Going forward in time an increase in
producer sensitivity, and a decrease in injector sensitivity are observed, which is attributed
to the movement of the water front from injector towards the producer. Going backwards
in time, the increase in sensitivity for the injector may require non-diffusive behavior of the
adjoint equation, which may from a computational point of view be difficult.

5.5 The effect of numerical dispersion
Some studies reported issues with the adjoint method that are related to numerical dispersion
[Fathi and Ramirez (1987), Li and Droegemeier (1993)]. The effect of numerical dispersion
on the optimal control method was investigated for a simple, one-dimensional fractional
flow example with incompressible fluids and zero capillary pressure. A comparison between
the gradients obtained with optimal control theory (in this section defined as ∆H∆qnt ) and the
gradients obtained with numerical perturbation (in this section defined as ∆J

∆qnt
) was done to

explore this effect, assuming that, if present, it will show up as errors in the gradients ∆H∆qnt .
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The one dimensional fractional flow equation for incompressible fluids without capillary
pressure is, after Aziz and Settari (1986),

∂Sw
∂t

= −ut
φ

∂fw (Sw)

∂x
− qw

φ
+

fw (Sw) qt
φ

, (5.7)

where Sw is the water saturation [−], ut the total fluid velocity
£
m
s

¤
, φ the porosity [−],

fw (Sw) the fractional flow of water [−], x the distance in the x-direction [m], and qw and qt
are respectively the water and total injection rates

£
1
s

¤
.

The term ∂fw
∂x is discretized with an upstream weighting scheme, assuming the flow is from

i to i+ 1 (from left to right), i.e. ·
∂fw
∂x

¸
i

≈ fwi − fwi−1
∆x

. (5.8)

Substituting eq. 5.8 into eq. 5.7 and discretizing explicitly in time (and replacing ≈ with =)
gives, after some rearranging

Sn+1wi =
∆t

φ

·
−unti

µ
fwi − fwi−1
∆x

¶
− qnwi + fnwiq

n
ti

¸
+ Snwi

= fni . (5.9)

The time step size ∆t is taken to be constant and the porosity φ is the same in every grid
block. The left boundary (i = 0) is a no-flow boundary, hence unt0 = 0. All flow at this
location is due to the injection of water. The initial saturation at this boundary equals the
connate water saturation, just as in all other grid blocks. The connate water saturation Swc
and the residual oil saturation Sor were taken zero. The objective function to be optimized
is again the net present value (NPV) objective function, which for this problem is defined as

J =
N−1X
n=0

µ
−Vgb [(1− fnw) ro + fnwrw] q

n
t ∆t

n

(1 + b)
τn

¶

=
N−1X
n=0

Jn, (5.10)

where Vgb is the grid block volume
£
m3
¤
, ro is the unit oil revenue

h
$
m3

i
which is of positive

sign, rw is the unit water cost
h
$
m3

i
which is of negative sign, b is the discount factor per

year [%], τ is the cumulative time in number of years [−]. The total production rate equals
the total injection rate qnw, since flow is incompressible. Parameter n represents the discrete
time step, and N the final time step. The objective function is evaluated from the rates at the
right boundary (i = r). Parameter Jn represents the cash flow for time step n [$].

The optimal control formulation, and the derivatives are given in appendix D. The control
parameter in this case is the total rate qt which has negative sign.
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5.5.1 First order relative permeability model, zero numerical
dispersion

If a first order relative permeability model (straight lines), constant total mobility, unit vis-
cosity ratio for the fluids, and first order upstream weighting are used, the displacement is
non-dispersive if there is no numerical dispersion. This can be realized by choosing the time
step size such that the CFL-condition

CCFL =
ut∆t

φ∆x
(5.11)

is equal to 1 [Aziz and Settari (1986), Hoffman (1992)]. It means that with every time step,
the front moves by one grid block. To achieve this the parameter values ut = −0.02× 10−2£
m
s

¤
, ∆x = 10 [m], φ = 0.2 [−], and ∆t = 104 [s] were used. Furthermore, the number of

grid blocks equals 20, ro is 80
h
$
m3

i
, and rw is -20

h
$
m3

i
. Figure 5.10 shows the fractional

flow of water fw as function of water saturation.
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Figure 5.10: Fractional flow as function of saturation for first order powerlaw model with unit viscosity
ratio, constant total mobility. Swc = Sor = 0.

The total simulation time is 2.5 × 105 [s], which is longer than the breakthrough time of
2×105 [s]. As a result the entire x-interval is completely water saturated at the end time (not
shown). The gradients ∆J∆qnt and ∂Hn

∂qnt
are shown in Figure 5.11. The upper picture shows that

gradients are exactly equal. The gradients are of positive sign, indicating that an increase in
the magnitude of the flowrate will lead to a decrease in the value for the objective function.
The values of the gradients do not change with time step, indicating that a unit increase in
the flow rate at any time step will have the same effect.
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The lower picture in Figure 5.11 shows the cash flow Jn versus time step n. It shows that
water breakthrough occurs between n = 20 and n = 21. In one time step production goes
from pure oil to pure water production.
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Figure 5.11: Gradients ∆J
∆qnt

(numpert) and ∂Hn

∂qnt
(dhdqt) and cash flow [$ per time step].

Figure 5.12 shows the Lagrange multipliers for all grid blocks and time steps. Each row
in the figure contains the Lagrange multipliers for all grid blocks at one time step. In this
example there are only two values for the Lagrange multipliers. All Lagrange multipliers
that are depicted white have a value of zero, all multipliers indicated in gray have a value of
-20000. A discussion of the values of the Lagrange multipliers is postponed to section 5.7.
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Figure 5.12: Lagrange multipliers for all grid blocks and time steps. (First order powerlaw model,
zero numerical dispersion)

5.5.2 First order relative permeability model, nonzero numerical
dispersion

Results from section 5.5.1 suggest that in the absence of numerical dispersion the computed
gradients are correct. In the present section numerical dispersion is introduced by reducing
the time step size to 5× 103 [s] (∆t = 0.5×∆tCCFL=1).

Gradient comparison was done for three examples. In the first example, with a total sim-
ulation time of 1 × 105 [s], no water breakthrough occurred. Gradients ∆J

∆qnt
and ∂Hn

∂qnt
had

identical values. In the second example, with a total simulation equal to 2.5×105 [s], a mix-
ture of oil and water was produced at the end time. The gradients ∆J

∆qnt
and ∂Hn

∂qnt
were the

same within numerical precision, with a maximum difference in gradients of O
¡
10−9

¢
[%].

In the third example, with a total simulation time equal to 4 × 105 [s], only water was pro-
duced at the end time, as shown by the cash flow curve in Figure 5.13. Again, the gradients
∆J
∆qnt

and ∂Hn

∂qnt
were the same within numerical precision.
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Figure 5.13: Gradients ∆J
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(dhdqt) and cash flow [$ per time step].

The results for the three examples considered suggest that numerical dispersion is not a
problem if a first order relative permeability model is used.

5.6 The effect of the time step size
The previous section showed that for a straight-line relative permeability model the gradi-
ents obtained with numerical perturbation and optimal control theory were the same within
numerical precision. In this section gradient comparison is done for a system with a second
order relative permeability model. As in the previous section the fluid viscosities are taken to
be the same. Figure 5.14 shows the fractional flow curve as function of saturation. Contrary
to section 5.5.1 the derivative ∂fw

∂Sw
is now a function of saturation. Gradient comparison was

done for three cases, one with a total simulation time shorter than the time of water break-
through and two with a total simulation time longer than the water breakthrough time. The
latter two only differed from eachother in the time step size of integration.
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Figure 5.14: Fractional flow as function of saturation for second order powerlaw model with
krw|Sw=1−Sor = kro|Sw=Swc = 1, unit viscosity ratio, and Swc = Sor = 0.
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Figure 5.15: Gradients ∆J
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(numpert) and ∂Hn

∂qnt
(dhdqt) and cash flow [$ per time step].

No water breakthrough

The end simulation time in this case was 1 × 105 [s], which is less than the breakthrough
time, as the cash flow curve in Figure 5.15 shows. The time step size∆t was 4×103 [s]. The
figure also shows that the gradients are identical. In this example the Lagrange multipliers
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were zero for all grid blocks and time steps, indicating that the system dynamics do not
influence the value of the objective function.

Water breakthrough

The end simulation time in this case was 2.2×105 [s], which is more than the breakthrough
time. Figure 5.16 shows the results for∆t equal to 4× 103 [s]. The gradients ∆J∆qnt and ∂Hn

∂qnt
are not identical for all time steps, although differences are small (1.94 %). Contrary to those
in section 5.5.1, the gradients are not of constant magnitude, and furthermore the change in
gradient magnitude is nonsmooth for a number of time steps.
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Figure 5.16: Gradients ∆J
∆qnt

(numpert) and ∂Hn

∂qnt
(dhdqt) and cash flow [$ per time step].

Figure 5.17 shows the results for ∆t equal to 2 × 103 [s]. Differences between gradients
∆J
∆qnt

and ∂Hn

∂qnt
are smaller with a maximum absolute difference of 0.11 %. Again the magni-

tude of the gradients is not constant, the change in magnitude, however, is smoother than in
Figure 5.16. The values of the Lagrange multipliers are shown in Figure 5.18.
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The fact that the error is smaller for smaller time steps size may be due to differences
in numerical dispersion. However, a decreased time step size in this case also means the
derivative ∂fw

∂Sw
is calculated more frequently, yielding a more accurate sensitivity.
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Figure 5.18: Lagrange multipliers for all grid blocks and time steps. ∆t = 2× 103 [s]

The time step size may thus affect the smoothness of the gradients, and thereby the smooth-
ness of the optimal control functions. This is in agreement with observations from Liu
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and Ramirez (1994a), who found nonsmooth shapes of the optimal control functions in
their steamflood optimization study. They reported that smaller time steps should result
in smoother optimal control functions. Figure 5.16 & 5.17 also show that regularization of
the gradients may sometimes be desirable.

5.7 Meaning of the Lagrange multiplier values
Figure 5.12 showed that the Lagrange multipliers for case with a first order relative perme-
ability model and zero numerical dispersion either had a value of zero or a value of -20000.
These values are discussed in some more detail in this section.

For the fractional flow problem the Lagrange multipliers have the same units as the NPV
objective function [$], as can be derived from eqs. 5.7 & D.11. Section 4.6 discussed that
the Lagrange multipliers in the adjoint equation reflect the objective function’s sensitivity
to perturbations in the constraint on the optimal trajectory. Because for the fractional flow
example ∂gj−1

∂xj = 1, they directly give the sensitivity with respect to perturbations in the
states. For the one dimensional fractional flow problem eq. 4.25 can be written as (leaving
out the time indices)

dJ = −λdSw. (5.12)
Eq. 5.12 shows that if a Lagrange multiplier has a value of zero, a change in the water
saturation does not influence the objective function value. In Figure 5.12 the value of the
nonzero Lagrange multiplier found was −20000 [$], hence

dJ = +20000dSw [$] . (5.13)

Eq. 5.13 states that the maximum value of the objective function J would increase by 20000
$ if a unit increase in the constraint on the maximum water saturation (S∗w = 1− Sor) in the
corresponding grid block would be possible. For the one dimensional example considered,
a unit increase in the maximum possible water saturation would lead to a shock front at
saturation Sw = 2 − Sor in the associated grid block. As a result, the production of water
would be delayed by one time step, instead oil production would occur. With Swc = Sor = 0,
the total fluid volume Vf in one grid cell is

Vf = ∆x∆y∆zφ = 10× 10× 10× 0.2 = 200
£
m3
¤

. (5.14)

The value of the liquid in a grid block filled with water (J∗w) is equal to the product rwVf ,
hence with rw = −20

h
$
m3

i
J∗w = −20× 200 = −4000 [$] . (5.15)

With an oil price ro of 80
h
$
m3

i
the value of the liquid in a grid block filled with oil (J∗o ) is

J∗o = 80× 200 = 16000 [$] . (5.16)
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Since production of a volume Vf of water is replaced by production of a volume Vf of oil,
the change in the value for the objective function ∆J upon a unit change in the maximum
water saturation is

∆J = J∗o − J∗w
= 16000−−4000 = +20000 [$] . (5.17)

Comparison shows that, for ∆Sw = 1, eqs. 5.13 and 5.17 are the same. For this example
the Lagrange multiplier value thus reflects the cost of the physical constraint on Sw. In
this case nothing can be done to change this constraint. However, in other cases it may be
possible to influence constraints on the states. Constraints on the reservoir pressure may
at some locations for instance be manipulated by completing new wells at that location, or
by stimulation or water shutoff methods. The values of the Lagrange multipliers may then
provide information on suitable locations for new wells, as well as information on the optimal
well trajectory for either these new wells or side tracks from existing wells. Constraints on
for instance the residual oil saturation may be changed by injecting gas instead of water.

The (physical) meaning of the Lagrange multipliers changes with the objective function
that is used. By proper choice of the objective function it may be possible to let the Lagrange
multipliers provide information regarding constraints/costs that one wants to investigate.

5.8 Constraints on the controls
Upon calculating the optimal control function the constraints on the controls must be taken
into account. Equality constraints could be included in the same way as the dynamic system.
Including inequality constraints is, however, more complex. Instead of formally including the
constraints, a more ad hoc approach was followed in the present study. It involved rescaling
of the gradients before using them in the steepest descent optimizer (discussed in section
4.10.2). The scaling was done in two steps. In the first step, the gradients were rescaled
into modified gradients, referred to as ∂L∗

∂u , that include information on the constraints on
the controls. This rescaling was different for the rate-controlled case where no well model is
used (section 4.9.1) , and the pressure constrained case where a well model is used (section
4.9.2). Secondly, the gradients were scaled between +1 and −1 by dividing them by the
largest absolute gradient value.

5.8.1 Constant total injection and production rate
In the rate-controlled scenario no well model was used. The controls are the injection and
production rates qt per well segment. Eqs. 4.29-4.33 showed the constraints for this sce-
nario. Since the total injection and production rates must remain constant the optimization
comes down to optimal allocation of injection and production over the individual injector
and producer segments. More flow should go to the favorable injectors/producers and less
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to the unfavorable injectors/producers. At time step n injectors/producers are considered fa-
vorable if their associated gradients ∂L

∂u are higher than the average of all injectors/producers
at that time step, and unfavorable is their gradient is lower than this average. All favorable
gradients will have positive sign and all unfavorable gradients will have negative sign, if at
each time step n the mean injector gradient value is subtracted from the individual injector
gradients and the mean producer gradient value from the individual producer gradients. The
advantage of this approach is that the amplitude of the (differences in) gradients is preserved.
The resulting gradients will be referred to as modified gradients. The modified gradients ∂L∗

∂u
for the rate-controlled case are then:³

∂L∗
∂uinj

´n
i
=
³

∂L
∂qtinj

´n
i
− 1

Ninj

NinjX
i=1

³
∂L

∂qtinj

´n
i

(5.18)

for the injectors, and

³
∂L∗

∂uprod

´n
j
=
³

∂L
∂qtprod

´n
j
− 1

Nprod

NprodX
j=1

³
∂L

∂qtprod

´n
j

(5.19)

for the producers. In eqs. 5.18 & 5.19 n is the time step, Ninj the number of injectors,
and Nprod the number of producers. As a second step, the modified gradients were scaled
between −1 and +1.

5.8.2 Constant well flowing pressure
In this scenario a well model is used and the controls are the effective valve settings αeff in
the injectors and producers. The operating constraints are given in eqs. 4.34 - 4.45. Positive
gradients indicate that the valve should be opened further. However, if the valve is already on
its maximum setting it cannot be opened further. In a modified gradient ∂L∗

∂u it is desirable to
include the capacity to further open or close the valve, in order to make the gradients more
directly interpretable.

For controls with positive gradients this can be achieved by multiplying the original gradi-
ent by the potential to further open the valve. This was done in the following way³

∂L∗
∂upos

´n
l
=
¡
amaxeffl

− aeffl
¢n ³ ∂L

∂αpos

´n
l

, (5.20)

where amaxeffl
is the maximum valve aperture (with amaxeffl

= 1 in this study), and aeffl is the
current valve position (value between 0 and 1). If the original gradient is positive, but the
valve aperture is already at its maximum, the modified gradient ∂L∗

∂upos
is zero. Similarly, for

a negative gradient ³
∂L∗
∂uneg

´n
r
=
¡
aeffr − amineffr

¢n ³ ∂L
∂αneg

´n
r

, (5.21)

where amineffr
is the minimum valve aperture (with amineffr

= 0 in this study), and aeffr is the
current valve position (value between 0 and 1). This means that if the original gradient is



5.9. Computational efficiency of the adjoint 75

negative, but the valve aperture is already at its minimum, the modified gradient ∂L∗
∂uneg

will
be zero.

The result of the rescaling is that controls that can be significantly changed are weighed
heavier in the steepest descent method than controls that are already close to their limits. As
a second step the modified gradients ∂L∗

∂u were scaled between −1 and +1.

5.9 Computational efficiency of the adjoint
One drawback of the adjoint method is that all states from the forward simulation must be
stored. Furthermore, although the adjoint method is efficient in calculating the gradients, the
adjoint simulation generally still is computationally demanding. For the cases considered in
this study, the computation time for calculating the adjoint is about twice that of the forward
system.

The similarity in control strategy for case 1 and 2 in section 5.3, shown in Figure 5.4 &
5.6, suggests that for that example a reduction in the number of time steps of integration
of the adjoint equation may be possible without affecting the calculated control strategy. A
few other studies also observed that the adjoint may be simulated with larger time step size
than the forward scheme [Wu (1999), Dolle et al. (2002)]. It is then easiest to calculate the
adjoint for a subset of the forward time steps as it avoids the need of having to interpolate the
states for unmatched time points. Preliminary tests from this study suggest that in some cases
calculating the adjoint for a subset of the forward time steps gave similar improvements per
iteration as an adjoint calculated for the full set of time steps, at least for early iterations. In
other cases however, the adjoint based on a full set of time steps gave a steeper improvement.
Further investigation in this respect is required.





Chapter 6
Optimization results

6.1 Introduction
The optimal control based optimization, described in chapters 3, 4 & 5, was applied to a num-
ber of synthetic reservoir models. In section 6.2 a number of two-dimensional, two-phase
models containing one smart injector and one smart producer are considered. The scope for
improvement is investigated for various permeability distributions, well operating conditions,
fluid viscosities, lengths of the optimization window, and discount rates. In reality the reser-
voir model is of course largely unknown. Optimization should in that case be done based on
the most likely reservoir description, which is expected to change as more information, from
for example production data, becomes available. In section 6.3 the optimal control based op-
timization algorithm is combined with a data assimilation method that regularly updates the
description of the system based on production data. In sections 6.2 & 6.3 optimization was
done from the start of the production process, i.e. for virgin reservoirs. Since a large num-
ber of oil fields already have a production history it is also important to consider the scope
for water flood optimization in mature reservoirs. This is done in section 6.4. In section 6.5
optimization of a two-dimensional reservoir model with multiple smart injectors and pro-
ducers is considered. Water flood optimization is not necessarily restricted to smart wells.
In section 6.6 the optimization of a two-dimensional field scale pattern flood with vertical
wells is considered. Since the wells are not segmented they could be controlled from the sur-
face. In section 6.7, a two-phase, three-dimensional example is discussed. Finally, in section
6.8 optimization of a simple three-phase, three-dimensional reservoir is considered. For the
examples in sections 6.2 - 6.6, a two-phase, two-dimensional dynamic system and adjoint
formulation was used. For the examples discussed in sections 6.7 & 6.8 a three-dimensional,
three-phase formulation for the dynamic system and adjoint was used.

Since the optimization is gradient based it may find a local optimum. Furthermore, the
optimization procedure used may not always have converged completely to the absolute local
optimum, due to the restricted number of optimization cycles allowed, or due to difficulties
with the adjoint equation described in chapter 5. The optimum results obtained in this study
therefore represent the lower limit of possible improvement.
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6.2 Two-phase flow: 1 smart injector and 1 smart producer

Figure 6.1: Schematic of water flooding with smart, horizontal wells.

Figure 6.1 shows a schematic of a horizontal, two-dimensional reservoir. A smart injector,
consisting of a number of segments, is located along the left edge. Similarly, a smart producer
is located along the right edge. In this section the scope for water flood optimization for a
setting similar to the one shown in the figure is investigated.

Reservoir model

The reservoir model considered in this section is horizontal, square, and two-dimensional.
The dimensions are 450×450×10

£
m3
¤
, modeled with 45×45×1 grid blocks. The reservoir

boundaries are no-flow boundaries, and the liquids in the reservoir are oil and water, having
a viscosity of 1 [mPa s]. The relative permeabilities are straight such that the total liquid
mobility is independent of saturation. Since only water and oil are present, low liquid com-
pressibilities of 1 × 10−10 £Pa−1¤ were used. The capillary pressure was taken to be zero.
As in Figure 6.1, the injector is located along the left and the producer along the right edge.
Each well was divided in 45 segments such that each grid block penetrated by a well repre-
sents one segment. Each segment was modeled as a separate well. Optimization was done
for three permeability fields, top views of which are shown in figure 6.2. The porosity dis-
tribution is homogeneous with φ = 0.2. Figure 6.2 also shows the well locations. In all
cases, the principal axes of the high permeability zones are aligned with the main flow direc-
tion. These types of heterogeneities have a large impact negative on the macro-scale sweep
efficiency, and on early water breakthrough and are in consequence important to investigate
[Brouwer et al. (2001), Brouwer and Jansen (2002)]. The main difference between the het-
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erogeneity types is in the relative amount of oil present in the high permeability zones, in the
position of these zones with respect to the wells and the no-flow boundaries, and in the con-
trast between high and low permeability zones. In heterogeneity type 1 the streak contains
about 5-15 % of the oil in place. The contrast in permeability between high permeability
streak and the rest of the reservoir is about a factor 20-40. In heterogeneity type 2 the streaks
contain about 15-25 % of the oil in place. The contrast in permeability between high per-
meability zones and the rest of the reservoir is about a factor 25-40. The high permeability
zones in heterogeneity type 3 contain about 30-40 % of the oil in place. The contrast in per-
meability between high and low permeability zones is about a factor 10-30. The initial water
saturation in all reservoirs was 0.101.
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Figure 6.2: Permeability distribution and well locations for heterogeneity type 1 (left), type 2 (centre),
and type 3 (right). Top view.

Economic parameters

The relative prices for oil and water production determine the maximum water cut for
which the cash flow is positive, i.e. the maximum profitable water cut. In this study, a
maximum profitable water cut of 80% was used. To this end the revenue of oil produced
was set to $80 per m3, the total cost of water produced was set to $20 per m3. These are net
prices that include costs of associated water injection, which was not considered separately.
Both discounted and non-discounted cases were considered. For the discounted cases, the
discount factor b was chosen per case such as to obtain a 50% reduction in the oil value and
the water costs at the end of the production period.
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Approach

For each reservoir the optimized results are compared with results from the corresponding
reference case. These reference cases reflect a conventional water flooding scenario. They
also served as initial guess for the optimal control function in the optimization procedure.
The optimization was done for both rate-controlled operating conditions, in which no well
model was used, and pressure-constrained conditions in which a well model was used. In
the rate-controlled cases the total injection and production rate was constant and balanced
for the entire simulation period. In the pressure-constrained case, total injection rates are
approximately equal to total production rates, because of the low liquid compressibilities.
The total production time was fixed per case.

6.2.1 Pressure-constrained optimization, one pore volume
In this case the total production time was set such that in the reference case cumulative
injection was the equivalent of about one pore volume (PV ) of liquids in place. With Swc =
0.1 and Sor = 0.1 this corresponds to the equivalent of about 1.25 mobile oil volume in
place. For an ideal displacement this would thus be sufficient to sweep all the oil. The final
oil-water saturation distributions for the reference cases are shown in Figure 6.9. It shows
significant areas that are still oil saturated.

Scope for improvement

Tables 6.1 shows the results for reference case and the pressure-constrained optimized
case, with zero discounting. Table 6.2 shows the results for the discounted cases. The shaded
areas indicate where an improvement with respect to the reference case was obtained. For
all cases considered an improvement in NPV with respect to the reference case was found,
ranging from 10 – 53% .

For heterogeneity types 1 and 3 the increase in NPV resulted from a slight to moderate de-
crease in oil production combined with a large decrease in water production. This can also
be derived from Figure 6.3, which shows the (cumulative) reference and optimized produc-
tion rates for heterogeneity type I. The decrease in cumulative oil production is due to the
maximum profitable water cut of 80%. Allowing a higher maximum profitable water cut
(i.e. lower relative water costs) will cause a smaller decrease in cumulative oil production,
but also a smaller decrease in cumulative water production.
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Type 1
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.19 0.21 0.41 1.26 11.36
opt case 0.18 0.04 0.22 0.68 13.97
diff(%) -5.5 -82.5 -45.7 -45.7 23.1

Type 2
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.19 0.22 0.41 1.27 10.98
opt case 0.22 0.05 0.27 0.85 16.81
diff(%) 16.2 -76.4 -33.2 -33.2 53.0

Type 3
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.243 0.178 0.421 1.30 15.93
opt case 0.236 0.041 0.276 0.85 18.12
diff(%) -2.9 -77.1 -34.3 -34.3 13.7

* units: million m3 ** units: million $

Table 6.1: Results reference and pressure-constrained optimized cases. No discounting.

Type 1
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.19 0.21 0.41 1.26 9.14
opt case 0.18 0.03 0.21 0.63 10.58
diff(%) -8.5 -87.1 -49.5 -49.5 15.7

Type 2
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.19 0.22 0.41 1.27 9.20
opt case 0.22 0.07 0.29 0.91 12.65
diff(%) 16.5 -68.0 -28.6 -28.6 37.4

Type 3
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.243 0.178 0.421 1.30 13.01
opt case 0.239 0.065 0.304 0.94 14.33
diff(%) -1.4 -63.4 -27.7 -27.7 10.1

* units: million m3 ** units: million $

Table 6.2: Results reference and pressure-constrained optimized cases. Discounting.
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Figure 6.3: Heterogeneity type 1. (Cumulative) production rates for reference and pres-
sure-constrained optimized cases. No discounting.
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Figure 6.4: Heterogeneity type 1. (Cumulative) production rates for reference and pres-
sure-constrained optimized cases. Discounting.
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Figure 6.5: Heterogeneity type 2. (Cumulative) production rates for reference and pres-
sure-constrained optimized cases. No discounting.

Figure 6.3 shows that for heterogeneity type 1 the length of the oil plateau production
period is similar to the one in the reference case, but plateau production rates occur later in
time. Water production is also delayed but in addition drastically reduced. Resultingly, total
liquid production rates as well as water injection rates are reduced significantly. The delay
in early oil production is largely compensated for in a later stage. Similar observations were
made by Yeten et al. (2002) and van Delden et al. (2001) on a synthetic and a real field
example respectively.

Contrary to heterogeneity type 1 and 3, the improvement in NPV for heterogeneity type 2
resulted from both an increase in cumulative oil production and a decrease in water produc-
tion, as also shown in Figure 6.5. The reason for this difference in scope for improvement
will be discussed in section 7.3.3. The results for heterogeneity type 2 will be discussed in
more detail on pages 143 - 144.

Tables 6.1 & 6.2 show that for all cases the improvement in NPV with respect to the
reference case is lower for the discounted cases than for the undiscounted cases. This is due
to the increased importance of accelerated oil production, as for heterogeneity type 2 can be
seen by comparison of figs 6.5 & 6.6, and for heterogeneity type 1 by comparison of Figure
6.3 & 6.4. The increased need for high early production rates negatively affects the capacity
to reduce water production.
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Figure 6.6: Heterogeneity type 2. (Cumulative) production rates for reference and pres-
sure-constrained optimized cases. Discounting.

Optimum valve-settings

In the reference case all valves are fully open. Figure 6.7 shows the optimum valve-settings
for the undiscounted optimized cases. For most of the time there is at least one injector or
producer segment closed. Figure 6.8 shows the optimum valve-settings for the discounted
case. The increased need for high early oil production rates is reflected in the fact that fewer
injector valves are closed compared to the non-discounted case. In most pressure-constrained
cases the optimum valve-settings take one of the two extremes possible: open or closed. This
type of control in which the controls only operate on the extremes, is sometimes also referred
to as a ‘bang-bang’ control [Sudaryanto (1998), Sudaryanto and Yortsos (2000), Sudaryanto
and Yortsos (2001)]. For these examples simple on/off valves may be sufficient to optimize
water flooding. A more detailed discussion on the type of control is postponed to section
7.4.1. The optimal control functions, shown in fig 6.7, resulted in significantly different
oil-water distribution in the reservoir, than for a conventional water flood, as comparison of
Figure 6.9 & 6.10 shows.
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Figure 6.7: Optimum valve-settings for heterogeneity type 1 (left), type 2 (middle) and type 3 (right).
The top row shows the optimum settings for the injectors, the bottom row for the producers. The
segment number, shown along the vertical axis corresponds to the row number of the grid block in
which the segment is completed. No discounting.
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Figure 6.8: Optimum valve-settings for injector and producer segments. Discounting.
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Figure 6.9: Oil-water saturation distribution in reservoir for reference (not optimized) cases after
production of about one PV of liquid. Oil-saturated areas are depicted in white, water saturated areas
in black.
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Figure 6.10: Final oil-water saturation distribution in reservoir for optimized, pressure-constrained
cases without discounting. Oil-saturated areas are depicted in white, water saturated areas in black.
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Figure 6.11: Final oil-water saturation distribution in reservoir for non-discounted optimal
rate-controlled cases after one PV of liquid production. Oil-saturated areas are depicted in white,
water saturated areas in black.

6.2.2 Pressure-constrained optimization, two pore volumes
In the cases considered so far the optimization was done for one PV of liquid production (see
tables 6.1 & 6.2). The improvement obtained varied considerably from case to case. This
is mainly due to the fact that the main benefit is in cutting back unprofitable water produc-
tion, i.e. water production that does not carry significant amounts of oil. The chance of this
happening is generally larger when the total number of PV’s injected/produced is larger. As
a result, the scope for optimization should improve for longer production periods. To ver-
ify this, the optimization was done for two PV’s of production for heterogeneity types 1 &
2. Results for undiscounted reference and optimized cases are shown in table 6.3. Improve-
ments in NPV with respect to the reference case are 46 % and 63 % for heterogeneity type
1 and 2 respectively, indeed higher than the improvements obtained for one PV of produc-
tion (respectively 21 % and 53 % , table 6.1). Table 6.3 also shows that now in both cases
the improvement is realized by a moderate decrease in cumulative oil production, and a large
decrease in water production.

6.2.3 Pressure-constrained optimization, variable end time
Results from the previous sections showed that under pressure constrained operating condi-
tions with fixed end time, NPV optimization often resulted from a large decrease in water
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Type 1
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.30 0.52 0.81 2.51 13.29
opt case 0.26 0.07 0.33 1.03 19.34
diff(%) -11.8 -85.6 -58.8 -58.8 45.5

Type 2
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.28 0.54 0.82 2.53 11.68
opt case 0.25 0.05 0.30 0.94 19.01
diff(%) -10.6 -90.1 -62.9 -62.9 62.8

* units: million m3 ** units: million $

Table 6.3: Results for reference and pressure-constrained optimized cases for 2 PV production in the
reference case. No discounting.

production and a slight decrease in oil production. Figure 6.3, 6.4, 6.5 and 6.6 also show that
contrary to the reference cases, the optimized cases still produce at a low water cut at the end
time. If the end time would be determined by the moment at which the cash flow becomes
negative, this would expectedly be reached earlier in the reference case. In the optimized
case, increased cumulative oil recovery may then result from extension of the production pe-
riod with positive cash flow. The scope for optimization may thus be different if the end time
is flexible. Table 6.4 and Figure 6.12 illustrate this for heterogeneity type 1. In the reference
case the cash flow becomes zero at about 1672 days. In the optimized case the production
period with positive cash flow is significantly longer, yielding a 5.8 % higher ultimate oil re-
covery at 2895 days. At this point the cash flow was still positive, although very small (86
$
day ). For a more accurate estimate of the scope for improved with free terminal time, a free
terminal time optimal control formulation should be used. This is beyond the scope of this
research.
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Type 1
Pressure constrained optimization

cum oil* cum water*cum liq* mob PV NPV** t_end***
base case 0.279 0.437 0.715 2.2 13.65 1672
opt case 0.295 0.139 0.434 1.3 20.91 2895
diff(%) 5.8 -68.2 -39.3 -39.3 53.2

* units: mill** units: million $ *** units: days

Table 6.4: Results for reference and pressure-constrained optimized cases with variable time.
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Figure 6.12: Heterogeneity type 1. (Cumulative) production rates for reference and pres-
sure-constrained optimized case. No discounting

6.2.4 Rate-controlled optimization, one pore volume
Section 6.2.1 discussed water flood optimization for one PV production under pressure-
constrained well operating conditions. In this section optimization under rate-controlled
operating conditions is investigated.

Scope for improvement

Tables 6.5 and 6.6 show results for reference and optimized cases under rate-control. The
shaded areas again indicate where improvement with respect to the reference case was ob-
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Type 1
Rate controlled optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.193 0.213 0.406 1.25 11.25
opt case 0.295 0.111 0.406 1.25 21.46
diff(%) 52.8 -48.0 0.0 0.0 90.8

Type 2
Rate controlled optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.201 0.209 0.410 1.27 11.94
opt case 0.287 0.123 0.410 1.26 20.58
diff(%) 42.9 -41.4 -0.1 -0.1 72.3

Typ 3
Rate controlled optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.242 0.177 0.420 1.30 15.91
opt case 0.293 0.126 0.420 1.29 21.00
diff(%) 21.0 -28.8 0.0 0.0 32.0

* units: million m3 ** units: million $

Table 6.5: Results for reference and rate-controlled optimized cases. No discounting.

tained. For all cases an improvement in NPV was found, ranging from 32-91% . In all cases
the improvement in NPV was achieved by a combination of an increase in cumulative oil
production and a decrease in cumulative water production. Figure 6.11 shows the final satu-
ration distributions in the reservoir for the optimized cases. It is clear that the sweep is much
better than in the reference cases (Figure 6.9).
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Type 1
Rate controlled optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.193 0.213 0.406 1.25 9.06
opt case 0.297 0.109 0.406 1.25 17.06
diff(%) 53.8 -48.9 0.0 0.0 88.3

Type 2
Rate controlled optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.201 0.209 0.410 1.27 9.84
opt case 0.291 0.119 0.410 1.26 16.55
diff(%) 44.9 -43.2 -0.1 -0.1 68.2

Typ 3
Rate controlled optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.243 0.177 0.420 1.30 12.99
opt case 0.305 0.115 0.419 1.29 17.51
diff(%) 25.5 -35.2 -0.1 -0.1 34.8

* units: million m3 ** units: million $

Table 6.6: Results for reference and rate-controlled optimized cases. Discounting.
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Figure 6.13: Reference and rate-controlled optimized (cumulative) production rates. Heterogeneity
type 1. No discounting.
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Figure 6.14: Reference and rate-controlled optimized (cumulative) production rates. Heterogeneity
type 1. Discounting.

Figure 6.13 shows the reference and optimized production rates for heterogeneity type 1.
The plateau production is extended with respect to the reference case, and the oil production
rate remains higher for most of the subsequent period. At the end of the production period
cumulative oil production is approximately 53% higher than in the reference case, and re-
duction in cumulative water production is about 48%. Figure 6.14 shows production results
for the discounted case. The main difference with the undiscounted case is that the plateau
production period is extended somewhat more. The extension of the plateau production pe-
riod relative to that in the undiscounted cases was observed for all discounted cases. The
reason for this is that due to the discounting there is more emphasis on high, early oil pro-
duction rates and low early water production rates. Tables 6.5 & 6.6 show a weak trend in
NPV between the undiscounted and discounted cases. The tables show that cumulative oil
production is higher for the discounted cases, although the differences are small. Applying
the optimal control functions obtained for the discounted cases to the non-discounted cases
would give slightly better results for the latter. The differences could result from the exis-
tence of local optima. Alternatively, the differences in the results may be within the accuracy
of the optimizer.

Tables 6.5 & 6.6 also show that the performance of the conventional water flood varies
more with the permeability field than the performance of the optimized water flood. For the
non-discounted reference cases the NPV range is 11.25 - 15.91

£
106 $

¤
, for the optimized

cases it equals 20.58 - 21.45
£
106 $

¤
. This indicates that by optimized flow control the

negative impact of geological features can to some extent be eliminated.
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Optimum injection and production rates

The reference injection and production rates per segment for heterogeneity type 1, 2 and 3
are shown in Figure 6.15. The high flow rates in a number of the segments in the reference
case coincide with zones of high permeability (Figure 6.2). The optimum injection and
production rates per segment are shown in Figure 6.16 for the undiscounted case. They
differ significantly from the reference case. The general difference for the producers is that
whereas production is mainly from the high permeability zones in the reference cases, it is
much more from the low permeability zones in the optimized cases. The optimum injection
rates for heterogeneity type 1 and 2 show that injection switches frequently from one (group
of) injector(s) to another, especially at the early stage. The optimum injection rates for type 3
do not show this frequent switching. The switching frequency may thus vary with the type of
heterogeneity. It may, however, also be a numerical artefact of the optimization procedure, as
will be discussed in section 7.4.1. The principles behind optimum injection and production
policies are in agreement with those observed in earlier studies [Asheim (1988), Virnovsky
(1992), Zakirov et al. (1996), Brouwer et al. (2001)]. They will be discussed in more detail
in chapter 7.
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Figure 6.15: Injection rates (top row)and production rates (bottom row) for each well segment for
reference (not-optimized) cases. The segment number, shown along the vertical axis corresponds to the
row number of the grid block in which the segment is completed. Dark colors indicate high rates, light
colors low rates. Rate units 1

s
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Figure 6.16: Optimal injection rates (top row) and production rates (bottom row) as function of time
for non-discounted, rate-controlled cases. Rate units 1

s
.

6.2.5 Pressure- versus rate-constrained optimization
The results from the previous sections show that the scope for optimization depends strongly
on the well operating constraints. The two types of constraints investigated represent the
extremes of what is possible in practice. It is unlikely that wells can entirely be completely
operated on rate constraints, because a too high injection pressure may induce fractures in
the reservoir, or a too high drawdown in the producer may for instance cause excessive sand
production. It is also unlikely that wells are operated purely on pressure constraints during
the entire production process. In the well there may be lift problems causing a decrease
in gross production rates as soon as water breaks through or well die-out (zero flow) at a
particular water cut. In these situations a reduction in water cut increases the total well rate.
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Another possibility may be that field injection or production rates are restricted by surface
facilities, rather than flowing well bore pressures. In that case reducing the cycling of water
from injectors to producers may directly increase the oil production rate.

6.2.6 Non-unit mobility ratio: Unfavorable displacement
In a non-unit mobility ratio reservoir the total mobility varies with saturation. The rock-fluid
and fluid parameters determining the fluid mobility of a phase are the relative permeabili-
ties and the fluid viscosities. Under purely rate-controlled well operation the field injection
and production rates are independent of the total mobility in the reservoir. The optimal
fluid trajectory and hence the optimal control policy will however change. If production is
pressure-constrained the situation is different since a change in the total mobility in the reser-
voir causes a change in the total injection and production rates. A decreasing fluid mobility
may cause the production to go from rate-constrained to pressure-constrained. An increas-
ing fluid mobility in the reservoir will result in increasing well rates and production may as
a result go from pressure- to rate-constrained. A third possibility is that the total mobility is
minimal at some intermediate water saturation. In this case the production may go from rate-
to pressure- to rate-constrained.

In this section the scope for water flood optimization under unfavorable displacement con-
ditions (with a viscosity ratio µo

µw
= 10) and rate-controlled well operating conditions is

investigated for heterogeneity types 1 and 3. As for the unit mobility case, the optimization
was done for production, equivalent to 1.25 mobile oil volume in place (MOIP) for hetero-
geneity type 1, and 1.30 for heterogeneity type 3. For both reference and optimized cases,
however, the cash flow became negative before the end time. For the optimized cases this
happened close before the end time, for the reference cases this happened earlier. Resultingly,
large improvements in NPV were found (170% and 54 % for type 1 and 3 respectively), be-
cause the NPV at the end time was lower than the maximum, occurring at an earlier stage).
Since production would in reality be stopped at a negative cash flow the results are shown
for the production period in which the cash flow is positive.

Table 6.7 shows the results for the reference and optimized cases. Compared to unit mobil-
ity displacement conditions (table 6.5) the water flood efficiency is in an absolute sense much
worse if displacement conditions are unfavorable, because of the much higher cumulative
water production and the much lower cumulative oil production. Comparison of the tables,
however, shows that the relative improvement in NPV obtained by water flood optimization
is larger under unfavorable displacement conditions. These findings are in agreement with
results from Sudaryanto (1998) who found that the absolute displacement efficiency at water
breakthrough decreases with increasing mobility ratio µo

µw
, but the efficiency ratio (improve-

ment of optimized water flood with respect to the reference case) increases with increasing
mobility ratio.

For these examples no reduction in water production was achieved because the production
periods were not the same. For heterogeneity type 1 the cash flow in the reference case
became negative at about 538 days of production. In the optimized case this only happened
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Type 1
Unfavorable displacement (muo/muw=10)

cum oil* cum water* cum liq* mob PV NPV**
base case 0.078 0.152 0.230 0.71 3.25
opt case 0.151 0.246 0.397 1.22 7.21
diff(%) 93.2 62.1 72.7 72.7 121.7

Type 3
Unfavorable displacement (muo/muw=10)

cum oil* cum water* cum liq* mob PV NPV**
base case 0.114 0.175 0.289 0.89 5.64
opt case 0.162 0.246 0.408 1.26 8.06
diff(%) 42.2 40.6 41.2 41.2 43.0
* units: million m3 ** units: million $

Table 6.7: Water flooding results under unfavorable displacement conditions.

at 927 days. For heterogeneity type 3 the cash flow in the reference case became negative at
1196 days, and only at approximately 1687 days in the optimized case.

Figure 6.17 & 6.18 show reference and optimized production rates for heterogeneity type 1
and 3 respectively. Little delay of water breakthrough is realized with respect to the reference
case, which is due to the unfavorable viscosity ratio. The figures show that the scope for
improvement is both in acceleration of production and extension of the production period.
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Figure 6.17: Reference and optimized (cumulative) production rates for heterogeneity type 1, under
unfavorable displacement conditions.
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Figure 6.18: Reference and optimized (cumulative) production rates for heterogeneity type 3, under
unfavorable displacement conditions.

For these cases, rather than delaying water breakthrough the optimization seemed to be in
minimizing the fractional flow of water. Here too the performance of the conventional water
flood depends more on the permeability field than the performance of the optimized water
flood. The NPV’s for the reference cases are 3.25 and 5.64 [million $] for heterogeneity type
1 and 3 respectively, and 7.21 & 8.06 [million $] for the optimized cases.

The saturation distributions at the time at which production was stopped due to a negative
cash flow are shown for reference and optimized cases in respectively Figure 6.19 & 6.20.
They show that the reservoir is swept better in the optimized cases.
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Figure 6.19: Final saturation distribution for reference cases, heterogeneity types 1 and 3 at the day
the cashflow becomes negative.
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Figure 6.20: Final saturation distribution for optimized cases, heterogeneity types 1 and 3 at the day
the cash flow becomes negative.
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The optimal control functions for heterogeneity types 1 and 3 are shown in Figure 6.21.
They look similar to those for the unit mobility case (Figure 6.16), although a more frequent
switching between injectors is observed for heterogeneity type 3. The high frequent switch-
ing and very detailed control functions may be due to the fact that near the end time there
are few areas left where the fractional flow of water is below 0.8, as a result a detailed con-
trol strategy is required to keep the produced water cut below the maximum profitable of
80%. However, the frequent switching may also be a numerical artefact of the optimization
procedure, as will be discussed in section 7.4.1.
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Figure 6.21: Optimal well rates under unfavorable displacement conditions.

6.3 Optimization under uncertainty in reservoir properties
In the previous section optimization was done for a known reservoir model. In reality, how-
ever, the reservoir properties are largely unknown, particularly at the early production stage.
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In those cases the reservoir properties must be estimated from the data that is available with
the aid of a parameter identification method (Figure 1.7).

In this section the optimization of the water flooding process is considered for a synthetic
reservoir model that has an initially unknown permeability distribution. To this end, the
water flooding optimization algorithm is combined with a parameter identification method,
in a closed loop approach (Figure 1.7). As the water flooding process progresses an update
of the permeability distribution is calculated at various points in time, based on production
data. After the update the optimal injection and production strategy is (re)calculated for the
remainder of the production process. A flow chart of the closed-loop optimization procedure
is shown in Figure 6.22.
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Figure 6.22: Flow chart of closed loop optimization procedure.

As the permeability in the reservoir is initially assumed unknown, the initial optimal con-
trol function must be calculated for the initially estimated permeability field. In this example,
at the start of the production process the permeability field was assumed to be homogeneous,
as shown in the upper left picture of Figure 6.23. The reason for this choice is the follow-
ing: Sudaryanto (1998), Sudaryanto and Yortsos (2000) and Sudaryanto and Yortsos (2001)
found for the examples they considered that if the permeability field is unknown, some im-
provement can often still be achieved by assuming the permeability distribution to be homo-
geneous and to calculate the optimal control function for this homogeneous reservoir model.
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Similar findings were done in this study for rate-controlled well operating conditions. In the
absence of any information on the permeability field a good initial guess for it may there-
fore be a homogeneous permeability distribution, and a good initial guess for the optimal
control function may then be the control function that gives optimal displacement for this
homogeneous field.

After start of the production process an improved estimate of the permeability distribution
was obtained from production data, with the aid of the ensemble Kalman filter data assimila-
tion method from Naevdal et al. (2003)6. Naevdal et al. (2002a), Naevdal et al. (2002b) and
Naevdal et al. (2003) used the ensemble Kalman filtering technique to update the reservoir
model description by assimilating the production data. Both dynamic variables, such as pres-
sures and saturations, and static parameters, such as the permeabilities, were updated in the
reservoir model, giving improved forecasts. For the examples considered, the main trends in
the permeability field could often be estimated quickly with the filter method, in some cases
already after a few days.

The Kalman filter computations are based on an ensemble of realizations of the reservoir
model. The filter consists of sequentially running a forecast step, followed by an analysis
step. The forecast step consists of running a reservoir simulation for each of the model
realizations up to the time at which new measurements are to be assimilated, yielding the
forecasted states snf for the analysis step. At the analysis step, the analyzed state sna of each
ensemble member is computed according to

sna = s
n
f +K

n
¡
dn −Hsnf

¢
, (6.1)

where matrixH gives the correspondence between the state vector snf and the measurements
in vector dn. MatrixKn is the Kalman gain matrix, which at time n is

Kn = PnHT
¡
HPnHT +Rn

¢−1 . (6.2)

Matrix Pn in eq. 6.2 is the error covariance matrix for the states of the system at time step
n, and matrix Rn is the covariance matrix for the measurement errors at time step n. The
method is described in detail in Naevdal et al. (2003).

The size of the ensemble was taken to be 100. An initial constant pressure and connate
water saturation distribution were assumed for each ensemble member. The 100 realizations
for the permeability field were generated based on the initial homogeneous estimate, using a
mean correlation length of 20 grid blocks with a standard deviation of 1 grid block.

The initial optimum injection and production strategy was applied to the real reservoir
(in this study replaced by a numerical reservoir model representing the true reservoir), and
to the 100 realizations in the ensemble. At t1 the first analysis step was conducted. The
forecasted and the measured pressures were compared, and an update of the analyzed state
of each ensemble member was computed. From the updated ensemble an update of the
mean pressure, saturation, and permeability distribution was calculated, based on which the

6 This work was done in close cooperation with Geir Naevdal from Rogaland Research (Norway) during his
three-month stay as a visiting scientist at Delft University of Technology.
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Initial permeability estimate 202 (mD)
Mean correlation length 20 (grid blocks)
St. dev correlation length 1 (grid block)
Size of ensemble 100
Variance in ln perm field* 1.5

* In the Kalman filter all permeability related parameters were expressed in 
millidarcies

Table 6.8: Values used in the Kalman filter.

optimum injection and production strategy was recalculated for the remaining producing
period. This cycle was repeated at various points in time.

The production data were the pressures in the grid blocks in which a well was completed.
The error in the pressure measurements was taken to be low, with a standard deviation of 0.2
Bar. In addition, liquid injection and production rates were assumed known without error in
all wells. The total simulation time was fixed at 949 days. The true permeability field for
this example was heterogeneity type 1, shown in Figure 6.2. It also shows the locations of
the injection and production wells. Apart from the permeability all rock, fluid and rock-fluid
properties were assumed known. They are described in section 6.2. Table 6.8 shows values
for some of the parameters used in the Kalman filter.

The mean forecasts for the permeability field at the measurement times are shown in Figure
6.23. Already after a few days a reasonable estimate of the trend in the permeability field
was obtained. Although the exact permeability field was not retrieved, the main large scale
variations in the permeability field were and this may be most important for water flood
optimization purposes.

After each update (Figure 6.23) the optimal control function was recalculated for the re-
maining producing period. Upon recalculating the optimal control function, only three it-
erations were done instead of iterating until convergence was obtained, mainly to reduce
computational time. In addition, however, a too detailed optimal control function may not
be desirable at an early stage, because the estimated states might change considerably at the
next assimilation time. Since there were 10 assimilation times at which the control function
was recalculated, the total number of iterations equalled 30. This was expected sufficient,
since for the examples discussed in section 6.2 typically 5-20 iterations were required for
convergence.

Figure 6.24 shows the resulting production rates. The production rates for the reference
case and the optimized production rates, based on an a priori known permeability distribution
(section 6.2), are included for comparison. The production rates resulting from the combined
optimization-assimilation (closed-loop) approach are significantly better than those for the
reference case. Furthermore, the figure shows that they are quite close to the optimal pro-
duction rates that would result if the permeability field would have been known in advance.
Figure 6.25 shows the final saturation distributions in the reservoir for the reference case,
for the rate-controlled optimized case with an a priori known permeability field, and for the
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closed-loop optimized case. The final saturation for the closed-loop optimized case is close
to that of the optimized case with an a priori known permeability field.
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Figure 6.24: Production rates for the reference case, the optimized case for a known permeability field,
and the closed-loop optimized case.
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Figure 6.25: Final saturation for the reference case, the rate-controlled optimized case for a known
permeability field, and the closed-loop optimzed case.

The early results in this section show that significant improvement in the water flooding
process may in principle be feasible with a closed-loop approach, even if the permeability
distribution in the reservoir is initially unknown. However, significant effort is still required
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to test its feasibility for various geological features, for three-dimensional reservoirs, and
larger measurement errors.

6.4 Optimization in mature reservoirs
In section 6.2 optimization was done for reservoirs that do not yet have any production his-
tory. Since a large number of oil fields already have been producing for many years it is also
important to consider the scope for water flood optimization in these mature reservoirs. If
the scope is significant it may be worthwhile to equip existing conventional wells with smart
well instrumentation in order to improve the remainder of the production process.

In this section the scope for water flood optimization in mature reservoirs is discussed. The
reservoir model considered was heterogeneity type 1, discussed in section 6.2. In that section
the results are shown for optimized flow control, starting at t = 0 days, i.e. 0 PV production.
In this section optimization starting at a later time is investigated, i.e. at 189 days (0.2PV),
378 days (0.4 PV), 568 (0.6 PV), and 757 days (0.8 PV). The end time was kept fixed at 949
days, corresponding to about 1 PV of production.

6.4.1 Scope for improvement
The results for pressure- and rate-constrained optimization are shown in table 6.9 & 6.10,
and in Figure 6.26. They show that significant improvement can still be realized if optimized
flow control starts at a later stage of the waterflooding process. The scope for improvement
reduces with later deployment of optimized flow control, but only significantly if its time
as fraction of the total production time is very short, i.e. if it starts close to the end time.
The reduction in scope with decreased dynamic flow control time, with the scope ultimately
reducing to zero, partly results from the fact that the end time was fixed in this example. The
results in table 6.9 and in Figure 6.26 thus actually represent the scope for improvement as
function of the fractional optimized flow control period (the optimized flow control period
tdf as fraction of the total production period ttot), with control starting at ttot − tdf . If the
end time would be flexible, the scope for improvement would be higher, as will be explained
later in this section.
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Rate Control
time (days) time step k PV rec. moboil @ start* impr. NPV (%)

1 0.0PV 0.0 1 0 0 90.8
2 0.2PV 189.1 176 0.2 0.21 88.6
3 0.4PV 378.1 339 0.4 0.32 83.5
4 0.6PV 567.2 503 0.6 0.42 69.2
5 0.8PV 756.2 666 0.8 0.51 38.6
6 1.0PV 945.3 829 1 0.60 0

Pressure Control
time (days) time step k PV rec. moboil @ start* impr. NPV (%)

1 0.0PV 0.0 1 0 0 23.1
2 0.2PV 189.3 176 0.2 0.21 18.3
3 0.4PV 378.5 339 0.4 0.32 18.3
4 0.6PV 567.8 503 0.6 0.42 16.3
5 0.8PV 757.0 667 0.8 0.52 11.1
6 1.0PV 946.3 830 1 0.60 0.0

*cumulative oil production as fraction of total mobile oil in place at start of dynamic control

Table 6.9: Improvement with respect to reference case for rate and pressure controlled well operating
conditions, with flow control starting after 0.2, 0.4, 0.6, and 0.8 PV of production.

Type 1, Pressure constrained optimization
cum oil* cum water* cum liq* mob PV NPV**

base case 0.195 0.212 0.407 1.26 11.36

0 PV
cum oil* cum water* cum liq* mob PV NPV**

opt case 0.184 0.037 0.221 0.68 13.97
diff(%) -5.5 -82.5 -45.7 -45.7 23.1

0.2 PV
cum oil* cum water* cum liq* mob PV NPV**

opt case 0.185 0.069 0.254 0.78 13.44
diff(%) -5.0 -67.6 -37.6 -37.6 18.3

0.4 PV
cum oil* cum water* cum liq* mob PV NPV**

opt case 0.185 0.069 0.254 0.78 13.44
diff(%) -5.0 -67.6 -37.6 -37.6 18.3

0.6 PV
cum oil* cum water* cum liq* mob PV NPV**

opt case 0.194 0.115 0.309 0.95 13.20
diff(%) -0.6 -45.7 -24.1 -24.1 16.3

0.8 PV
cum oil* cum water* cum liq* mob PV NPV**

opt case 0.198 0.163 0.361 1.11 12.61
diff(%) 1.8 -23.1 -11.2 -11.2 11.1

* units: million m3 ** units: million $

Table 6.10: Results for pressure-constrained optimization.
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Figure 6.26: Improvement in NPV with respect to the reference case versus the time of start of optimized
flow control (expressed in PV already produced).

For pressure-constrained optimization starting at the beginning of the production process,
the improvement is realized by a moderate decrease in cumulative oil recovery and a large
decrease in water production. With control starting at a later stage the scope changes more
towards a combined increase in cumulative oil recovery and decrease in water production, as
shown in table 6.10.

Figure 6.27 shows that at the start of control the water production rates go down, and the
oil production rates go up. This is due to a change in the flow paths along which fluids move
through the reservoir, induced by closing a number of the producer segments. For optimized
control starting at 0.2 PV no improvement was found compared to the case where control
starts at 0.4 PV. Various strategies were found that gave approximately (within 0.1%) the
same results as for the 0.4 PV control function, however with a different strategy. The reason
for this is likely to be due to local optima, or inaccuracies in the optimization method. Figure
6.30 shows that the control strategy changes significantly between 0 and 0.4 PV, which may
cause difficulties as the local optima may also change quickly in this interval. Finally, it was
decided to use the same control function for the 0.2 PV and the 0.4 PV case.
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Figure 6.27: Results for reference and pressure-constrained optimized case with optimized control
starting at 0, 0.4, 0.6, and 0.8 PV production. Vertical bars indicate start of optimization.

Figure 6.28 & 6.29 show the reference and optimized production rates under rate-controlled
well operating conditions. For all, the oil production rates go back to (almost) the plateau
rate, and water production back to almost zero upon start of optimized flow control. The
figures show that in all cases there is accelerated production, increased cumulative oil recov-
ery and reduced water production. The scope for improvement decreases with decreasing
dynamic flow control time, but only significantly if the optimization starts at a late stage.
Besides, Figure 6.29 shows that for the cases where the optimization starts late, the oil pro-
duction rates are still high at the end time. Extra improvement could be realized for these
cases by extending the production period.
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Figure 6.28: Results for reference and rate-controlled optimized case, with optimized control starting
at 0 PV production.
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Figure 6.29: Results for reference and rate-controlled optimized case with optimized flow control start-
ing at 0.2, 0.4, 0.6, and 0.8 PV production. Vertical bars indicate start of optimization.

6.4.2 Optimal control functions
Figure 6.30 shows the optimum valve-settings in the wells for the pressure-constrained opti-
mized cases. Only for optimization starting at t = 0, choking occurs at the injection side. In
all other cases choking only occurs at the producer wells. This may be attributed to the fact
that for all other cases the optimization started at a time at which water breakthrough had al-
ready occurred. Furthermore, as optimized flow control starts later the optimization becomes
more local, because relative to the remaining control time there is more oil in the reservoir.
The optimum rates per segment for the rate-controlled scenarios are shown in Figure 6.31 &
6.32. The figures show that control is occurring both in injectors and producers. For opti-
mization starting at 0.2 PV, the improvement in NPV is close to that of optimization starting
at the beginning, i.e. at 0 PV. Comparison of the control functions for these two cases, how-
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ever, shows that especially the injection strategy is different. This suggests that there may be
multiple, significantly different control functions giving similar end results. One reason for
the difference in control strategies may be that if optimization starts at 0 PV, the reservoir is
almost completely depleted of oil close to the end time. The frequent switching at the injec-
tors may in that case be required to produce the last (relatively small) amount of oil left in
the reservoir. The high frequent switching may, however, also be a numerical artefact of the
optimization procedure, as will be discussed in section 7.4.1.
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Figure 6.30: Valve-settings for optimization starting at 0.0, 0.4, 0.6, and 0.8 PV of production.
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Figure 6.31: Optimal injection and production rates for rate-controlled optimization starting at 0 PV.
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Figure 6.32: Optimum well rates with flow control starting at 0.2, 0.4, 0.6 and 0.8 PV production.

6.5 Multiple smart injectors and producers
In this section the optimization of a system with multiple injection and production wells,
each consisting of 30 segments, is considered. Again, each segment is modeled as a separate
well. A top view of the permeability field and the well locations are shown in Figure 6.33.
The reservoir dimensions are 300×1200×10 m3, modelled with 30×120×1 grid blocks.



116 Chapter 6

Pressure constrained optimization
cum oil* cum water* cum liq* mob PV NPV**

base case 0.390 0.474 0.864 1.50 21.93
opt case 0.365 0.170 0.535 0.93 25.86
diff(%) -6.5 -64.1 -38.1 -38.1 17.9

Rate controlled optimization
base case 0.382 0.481 0.863 1.50 21.34
opt case 0.529 0.334 0.864 1.50 36.57
diff(%) 38.4 -30.5 0.0 0.0 71.4
* units: million m3 ** units: million $

Table 6.11: Results for reference and optimized cases.
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Figure 6.33: Top view of permeability field with 3 smart producers and two smart injectors, called
respectively P.A.1, P.A.2, P.A.3, I.A.1, and I.A.2.

Other rock fluid properties are the same as in section 6.2. The optimization was done
for cumulative production equivalent to 1.5 pore volumes of mobile oil in place, with zero
discounting. As injection and production occur at different locations, multiple oil-water
fronts are formed that move in different directions. The final saturation distribution for the
reference case is shown in Figure 6.35.

6.5.1 Scope for improvement
The results for the reference case and for the pressure- and rate-controlled optimization are
shown in table 6.11. Under pressure-constrained well operating conditions the improvement
is realized by a moderate decrease in oil production and a significant reduction in water
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production. The final saturation distribution is shown in Figure 6.36. For the rate-controlled
case, there is an improvement in both cumulative oil and water production, as well as in
acceleration of production. Figure 6.34 shows that in the optimized case water breakthrough
occurs slightly earlier than in the reference case. Between day 60 and 850, however, the
oil production rates are significantly higher in the optimized case. After 850 days the oil
production rate is again lower, which is attributed to the fact that the reservoir is almost
depleted of oil, as shown in Figure 6.37.
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Figure 6.34: Production rates for reference and rate-controlled optimized case.
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Figure 6.35: Final saturation for reference case.
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Figure 6.36: Final saturation for pressure-constrained optimized case.
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Figure 6.37: Final saturation for rate-controlled optimized case.

6.5.2 Optimal control functions
Figure 6.38 shows the optimum valve-settings for the pressure-constrained optimized case.
Reduction of water production is entirely realized by choking at the production wells. All
injectors remain open. Figure 6.39 shows the optimal well rates for the rate-controlled case.
Flow control occurs both at the injectors and the producers. At the early stage injection and
production switch frequently between wells, followed by a period during which changes in
well rates are more gradual.
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Figure 6.38: Optimum valve-settings for pressure-constrained optimization.
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6.6 Field-scale pattern flood optimization
Dynamic water flood optimization can also be done with (conventional) vertical wells, as
long as they can be controlled individually. In this situation control may be the surface. In
this two-dimensional, horizontal example a field-scale optimization with 36 vertical injection
wells and 25 vertical production wells is considered. The field dimensions are 2020×2020×10
m3, modelled by 101×101×1 grid blocks. The permeability field and well locations are
shown in Figure 6.40. All other rock and fluid properties are as described in section 6.2. Op-
timization was done for cumulative production equivalent to 1.1 PV of mobile oil in place,
with zero discounting. In this example the adjoint was for computational reasons calculated
for a subset (one third) of the forward time steps. This was done under the assumption that
the subset of pressures and saturations obtained are sufficiently similar to the set that would
result from a fully implicit forward scheme with a three-times larger simulation time step
size. It is noted that this may have negatively affected the results.
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Figure 6.40: Top view of permeability field and well locations for field-scale optimization example.

6.6.1 Scope for improvement
Results are shown in table 6.12 and in Figures 6.41 & 6.42. Under pressure-constrained
well operating conditions the main benefit is again in reduced water production, although
a slight increase in cumulative oil recovery was also realized. The small-scale oscillations
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Pressure constrained optimization
cum oil* cum water* cum liq* mob PV NPV**

base case 4.34 2.85 7.20 1.10 291.1
opt case 4.39 1.80 6.19 0.95 315.8
diff(%) 1.1 -36.9 -14.0 -14.0 8.5

Rate controlled optimization
base case 4.38 2.81 7.19 1.10 295.21
opt case 5.01 2.17 7.19 1.10 358.69
diff(%) 14.4 -22.6 0.0 0.0 21.5
* units: million m3 ** units: million $

Table 6.12: Results for pressure- and rate-controlled optimization.

in the production rates are attributed to the complexity of the flow pattern in combination
with the explicit calculation of transmissibilities and production rates. For rate-controlled
well operating conditions accelerated oil production, increased cumulative oil production,
and decreased water production were realized.
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Figure 6.41: Production rates for reference case and pressure-constrained optimized case.
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Figure 6.42: Production rates for reference and rate-controlled optimized case.

Figure 6.44 & 6.45 show the final saturations distribution for the reference and rate-
controlled optimized case respectively. It shows increased sweep in quadrants Q1, Q3, and
Q4 (see Figure 6.43 for definition of these areas). In quadrant Q2 this is not so obvious. In
some areas within Q2 the sweep is improved, in others the sweep is less.
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Figure 6.43: Definition of quadrants Q1, Q2, Q3 andQ4.
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Figure 6.44: Final saturation distribution for reference case.
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Figure 6.45: Final saturation distibution for rate-controlled optimized case.
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6.6.2 Optimal control function
Figure 6.46 shows the optimum valve-settings for the pressure-constrained optimized case.
All optimization is done at the production wells. Differently from the previous examples,
producer valves are mainly closed at the intermediate stage.
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Figure 6.46: Optimum valve-settings for pressure-constrained optimization.

6.7 Two-phase, three-dimensional example
In the previous sections, water flood optimization in two dimensional, horizontal reservoir
models was investigated. In this section, optimization for a two-phase, three-dimensional
example was considered. Apart from the third dimension it differs from the reservoir models
in the previous sections by the presence of gravity effects.

6.7.1 Reservoir model
The permeability field and well locations are shown in Figure 6.47. The reservoir dimensions
in x-, y-, and z-direction are 300×300×30 m3 modelled with 30×30×3 grid blocks. The
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smart producer, consisting of 30 segments, is located at the right edge in the top layer, the
smart injector, also consisting of 30 segments, is located at the left edge in the middle layer.
The vertical permeability was taken to be a factor 10 lower than the horizontal permeability.
The oil and water densities at standard conditions were respectively 850 and 1000

h
kg
m3

i
, and

constant compressibility of 1 × 10−9 £ 1
Pa

¤
was taken for both liquids. Other properties are

described in section 6.2. Optimization was done for cumulative production equivalent to 1.5
PV of mobile oil in place, with zero discounting.
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Figure 6.47: Permeability field and well locations.

6.7.2 Scope for improvement
For this case only optimization under pressure-constrained well operating conditions was in-
vestigated. The results for the reference and the optimized case are shown in table 6.13. As in
most two-dimensional, pressure-constrained optimized cases the improvement is mainly in a
reduction in water production; a slight improvement in cumulative oil recovery was however
also realized. Figure 6.48 shows the production figures for the reference and the optimized
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no discounting
Pressure constrained optimization

cum oil* cum water* cum liq* mob PV NPV**
base case 0.389 0.263 0.652 1.51 25.81
opt case 0.392 0.140 0.532 1.23 28.58
diff(%) 0.9 -46.9 -18.4 -18.4 10.7
* units: million m3 ** units: million $

Table 6.13: Results for reference and optimized case.

case. In the optimized case the oil production rate is initially slightly below the plateau pro-
duction, which is compensated for in a later stage. Water production is significantly reduced.
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Figure 6.48: Production rates for reference and optimized case.

Figure 6.49 shows the final water saturation distribution for the reference case. The figure
shows that most of the reservoir is saturated with water, leaving little scope for improving
cumulative oil recovery.
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Figure 6.49: Final saturation distribution in reference case.

Figure 6.50 shows the optimum valve-settings for the injector and producer segments.
Although most choking at the injectors occurs at the early stage, some also occur near the
end of the producing period. Similarly, although most choking at the producers occurs near
the end of the producing period, some also occurs at the early stage.
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Figure 6.50: Optimum valve-settings.

6.8 Three-phase flow, three-dimensional case
In this section pressure-constrained optimization for a simple three dimensional reservoir is
considered in the presence of a small gas cap.

6.8.1 Reservoir model
The reservoir dimensions in x-, y-, and z-direction are 300×300×30 m3, modelled with
30×30×6 grid blocks. The reservoir is tilted by 10◦ in the y-direction. The permeability field
is simple, with a high permeability streak in parts of layers 3, 4 and 5, as shown in Figure
6.51. The permeability in x-, and y-direction in the high permeability zone is 2× 10−12 m2.
Outside of it the permeability equals 1 × 10−13 m2. The permeability in the z-direction is
1% of that in the x- and y-direction.
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Figure 6.51: Slice of permeability field. Exagerated scale for z-direction.

The top of the reservoir is at 2200 m and the initial gas-oil contact at 2230 m. The locations
of the wells and the gas-oil contact (GOC) are shown in Figure 6.52.

Figure 6.52: Location of gas-oil contact (flat surface), injection well (lower bar), and production well
(upper bar). Exagerated scale for z-direction.
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P [105Pa] Bo [-] w_dens [kg/m3] g_dens [kg/m3] Rs[m3/m3]
143 1.15 1090 100 40
183 1.2 1098 120 45
223 1.21 1105 140 46
263 1.2 1111 156 46
303 1.19 1116 172 46

Table 6.14: PVT data, bubble point at 223*105 Pa.

Pressure constrained optimization
cum oil* cum wat* cum gas** NPV*** cum w inj*

base case 46.32 99.28 4.26 1.72 163.17
opt case 45.24 13.71 4.16 3.36 80.38
diff(%) -2.34 -86.19 -2.34 95.02 -50.74

*thousand m3, **million m3, *** million $

Table 6.15: Results for reference and optimized case.

Initially, in the entire reservoir the water saturation is at connate water saturation with
Swc = 0.1. Above the GOC the oil saturation is equal to the residual oil saturation Sor (
Sor = 0.1). The well flowing pressure in the producer is kept slightly above the bubble point
pressure to avoid gas coming out of solution directly around the well. The PVT data are
shown in Table 6.14. Constant viscosities were used with µo = µw = 1× 10−3 [Pa s], and
µg = 1× 10−5 [Pa s]. A Stone I relative permeability model was used.

For this example the adjoint was calculated for one-fifth of the time steps of the forward
simulation. The total simulation time was 523 days. At the start of production the reservoir
was at hydrostatic equilibrium.

6.8.2 Scope for improvement
Only pressure-constrained optimization was considered. In the reference case the cash flow
became negative at 426 days, in the optimized case the cash flow remained positive for the
entire simulation period. The results are shown in table 6.15 and in Figure 6.53 & 6.54. They
show that the main improvement is in cutting back water production.

The optimum oil production rates are for most of the time lower than in the reference
case, due to choking of the producer segments (Figure 6.55) that are located within the high
permeability zone.
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Figure 6.53: Injection and production rates
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Figure 6.54: Cumulative injection and production rates.



6.8. Scope for improvement 133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

discrete time step n

in
je

ct
or

 n
um

be
r

injector valve-settings

10 20 30 40

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

discrete time step n

pr
od

uc
er

 n
um

be
r

producer valve-settings

10 20 30 40

5

10

15

20

25

30

Figure 6.55: Optimum valve-settings





Chapter 7
Discussion

7.1 Introduction
The scope for water flood improvement by dynamic flow control as well as the shape of the
optimal control function are affected by many factors. The optimum results obtained vary
with the objective function and the length of the optimization period, as will be discussed
in section 7.2. In section 7.3 the scope for improvement as function of reservoir properties,
well operating constraints and relative well positions are treated. In section 7.4 some trends
in the control functions are discussed. Section 7.5 addresses some possible principles behind
an optimal water flood.

Results from chapter 6 showed that the scope for improvement and the associated optimal
control functions vary with reservoir type, location of the wells and well operating condi-
tions. Furthermore, factors related to the optimization method, such as convergence, local
optima, numerical dispersion and adjoint issues may affect the results obtained. Some care
must therefore be taken in interpreting trends for the optimized water floods. The trends dis-
cussed should therefore be considered as trends associated with an improved, rather than the
optimal water flooding scenario.

7.2 Assessment of water flood efficiency
One objective of this study is to find the control function that gives the optimal trajectory of
the injected water (front) through the reservoir. Results from chapter 6 showed that this con-
trol function as well as the scope for improvement may strongly depend on the discount rate,
on the length of the optimization window, and on the fact of the length of the optimization
window is fixed or variable.

Technical versus economical optimum

From a technical viewpoint the optimal control function may yield maximum oil recovery
with minimum water injection and production. However, from a economic viewpoint this
may not be optimal, especially if it is associated with low production rates. When optimiz-
ing the Net Present Value (NPV) objective function, with increasing discount rate the focus
becomes more on the short term (production) optimization. This can be deduced from com-
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parison of Figure 6.3 & 6.4, Figure 6.5 & 6.6, and Figure 6.13 & 6.14. Tables 6.1 & 6.2 in
section 6.2.1 show that for pressure-constrained optimization the economical and technical
optima are often more conflicting if discounting is applied, since the increased need for high
early oil production rates resulted in a less efficient reduction of water production.

Length of the optimization window

The NPV objective function used in this study only comprises information on oil and water
production rates. If the length of the optimization period is shorter than the time of water
breakthrough, the only thing to be optimized is the oil production rate. If production is rate-
controlled it does not matter from which part of the well the oil is produced. Similarly, if the
length of the optimization period is such that water breakthrough occurs just close to the end,
this water breakthrough can often be completely prevented with a slight, and often nonunique
adjustment of the injection/production strategy. As soon as water breakthrough is avoided,
the algorithm no longer has a direction in which to optimize. The result is that the optimal
control function found may not be optimal for a longer production period. For the NPV
objective function, the scope for improvement and the associated optimal control function
thus depend on the length of the optimization window. From this point of view, when using
a fixed optimization window, it is advisable to optimize for a production period (at least) as
long as the one expected for the real case. Alternatively, a variable optimization window
length may be used, where the point of zero cash flow is used as the end time criterion.

Results from section 6.3 showed that the scope for improvement may change if uncertainty
is included in the optimization. Generally, forecasts for production and well equipment per-
formance will be more reliable for the short than for the long term. Potential improvement
in the long term may be associated with a large degree of uncertainty. Yeten et al. (2004)
showed that the decision on whether or not to deploy smart wells depended on uncertainty
in down-hole valve reliability, uncertainty in geology and on the risk attitude of the decision
maker. Similarly, in water flood optimization the optimal control function may vary with
uncertainty in the short and long term production performance, the downward and upward
potential of the control function, and the risk attitude of the decision maker.

7.3 Scope for improvement
The scope for improvement by dynamic flow control depends on various factors. Since its
performance is compared to that of a conventional water flood, one important aspect is the
performance of the latter. If performing well there may be little scope for improvement by
optimizing flow control.

Secondly, the scope for improvement depends on the degree of control on the pressure (po-
tential) distribution and thereby the fluid flow direction in the reservoir. This controllability
is influenced by factors like the reservoir properties, the well operating constraints, and the
well locations in the reservoir.
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7.3.1 Relative well locations
The ability to manipulate the fluid potential gradient and thereby the flow direction in the
reservoir depends on the (relative) locations of the wells in the reservoir, as shown schemat-
ically in Figure 7.1 for a two-dimensional example. In this schematic flow is principally
in the x-direction if all injectors and producers are open. If the reservoir is homogeneous
and isotropic, Lx and Ly represent the reservoir dimensions [m] in respectively the x- and
y-direction. The angle θ gives an estimate to what degree the average flow direction may be
changed by controlling injection and production rates. Locally, however, the flow direction
may be significantly different from this average.

θ

Ly

Lx

Injectors Producers

y

x
θ

Ly

Lx

Injectors Producers

y

x

Figure 7.1: Schematic of possible change in flow direction with respect to the main flow directon
(x-direction). Top view.

Figure 7.2: Schematic of control on fluid flow direction in a three dimensional setting

The larger the angle θ the more the fluid flow direction can in principle be changed, and
the larger the ability to (partly) correct the negative impact of geological features is expected
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to be. If the reservoir is not homogeneous and/or isotropic Lx and Ly must be corrected for
differences in permeability in the x- and y-direction.

In the example discussed in section 6.5, the injectors are communicating to multiple pro-
ducers, lying on opposite sides (Figure 6.33). This enables significant manipulation of the
fluid flow direction. Even larger changes in the fluid flow direction are possible in the field-
scale pattern flood example (Figure 6.40) of section 6.6. For the three-dimensional examples
( Figure 6.47 & 6.51) the control on the fluid flow direction may be less than for the two-
dimensional examples, because control will mainly be within the plane in between the wells,
as schematically depicted in Figure 7.2. In addition, the controllability will vary with gravity
effects.

7.3.2 Reservoir properties
A general observation from the examples investigated in chapter 6 is that the performance of
a dynamically controlled water flood is less sensitive to the reservoir properties than a con-
ventional water flood. Therefore, the scope for improvement with respect to a conventional
waterflood depends, partly, on the performance of the conventional water flood. The lat-
ter varies with the heterogeneity type, as will be explained below. For each separate aspect
discussed the others are assumed constant.

Orientation of heterogeneity with respect to the principal flow direction

Figure 7.3 shows a schematic representation of a reservoir with a simple high permeability
zone indicated in gray. Injector and producer are located along the left and right edges
respectively, as indicated by the black bars. In this figure the angle θ represents the angle
between the principal axes of the high permeability zone and the wells.

θθθ

Figure 7.3: Angle (θ) between principal axis of heterogeneity and wells. Top view
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If the high permeability streak’s principal orientation is parallel or close to parallel to both
wells and is extending over the full reservoir width, water does generally not break through
early in a conventional waterflooding scenario. This is because the travel time for the injected
water to the producer (time of flight) is similar along the well, as shown in Figure 7.4a by
the equal lengths of the streamlines in combination with the uniform streamline density7. As
a result the front moves uniformly from injector to producer. Since there is no significant
water breakthrough problem there is also little to no scope for optimization.

a)   0 degrees b)   45 degrees c)   90 degrees

Figure 7.4: Streamline visualization for various angles θ between principal axes of high permeability
zone and and wells (Top view). Contrast between high and low permeability zones is a factor 10. Total
number of streamlines equals 25.

With increasing angle θ, the variation in effective permeability along flow paths from in-
jector to producer increases along the well. Consequently, flow increasingly tends to follow
the high permeability zone. In Figure 7.4 this can be deduced from the higher streamline
density in the high permeability zones. This generally results in an increasingly non-uniform
movement of the oil-water front towards the producer, and an earlier time of water break-
through. The latter is most severe if the principal orientation of the streak is at right angles
to the wells, i.e. θ = 90◦ (Figure 7.4c). In that case the oil-water displacement is generally
far from optimal in a conventional water flood, and significant improvement may be possible
by optimizing flow control.

Relative position of heterogeneity in the reservoir

The scope for improvement by optimized flow control also depends on the position of the
high permeability zone in the reservoir with respect to the wells and the no-flow boundaries.
The reason for this is that part of the increased oil sweep is achieved by enhanced injection
and production in low permeability zones, and decreased injection and production in the high

7 In this chapter many streamline illustrations are used, because they clearly show the direction and intensity
of flow through the reservoir. All streamline illustrations were constructed with an in-house streamline simulator,
developed by Cas Berentsen.
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permeability zones. At the injector and producer side this causes the pressure to be locally
respectively relatively low and high in the streak. As a result transverse-flow towards the
streak occurs at the injection side and transverse-flow out of the streak at the production
side. The further away from the high permeability zone injection and production occurs the
less severe this transverse-flow generally is, because there is less variation in time of flight
along all flow paths from an injector to a producer. This will be illustrated for the simple
permeability field, shown in Figure 7.5.

x1

x2

inj1 prod1

injN prodN

x1

x2

x1

x2

inj1 prod1inj1 prod1

injN prodNinjN prodN

Figure 7.5: Relative position of the high permeability zone with respect to wells and no-flow bound-
aries. Top view.

a) b) c)

Figure 7.6: a) streamlines resulting from injection and production at constant well flowing pressure in
all wells (inj1-injN , and prod1-prodN ). b) Injection in injN and production from prodN . c) Injection
in inj1 and production from prod1. Contrast between high and low permeability zones is a factor 10.
Total number of streamlines in each picture: 35
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Figure 7.6b shows that if injection and production only occur in injN and prodN respec-
tively, only a limited number of streamlines go through the high permeability zone, and most
flow occurs within low permeability zone x2. Figure 7.6c shows that for injection and pro-
duction through only inj1 and prod1 respectively most flow still goes through the high per-
meability zone. The injected water generally readily ends up in the high permeability zone
due to strong transverse-flow. Similarly, production from prod1 will mainly withdraw fluids
from the high permeability zone. The control on fluid flow in zone x1 may thus be limited,
and by that the scope to improve the sweep in it. This explains for heterogeneity type 1 and
2 (section 6.2) why even in the optimized case some parts of the reservoir are left unswept
(compare Figure 6.9, 6.10 & 6.11 in this respect).

Permeability contrast between high and low permeability zones

For permeability fields like in Figure 7.5 the capacity of the high permeability zone to
transports fluids increase relative to the low permeability areas with increasing contrast be-
tween high and low permeability zones, resulting in an increasingly non-uniform movement
of the oil-water front towards the producer. In Figure 7.7 this is reflected by the increasing
streamline density in the high permeability zone compared to the low permeability zone.

a) factor 2 b) factor 10 c) factor 30

Figure 7.7: Streamlines resulting from injection and production at constant well flowing pressure for
various contrasts between high and low permeability zones. a) factor 2, b) factor 10, c) factor 30. Total
number of streamlines: 35. Top view.

If contrasts are small the conventional waterflood performance may already be fairly good,
and only moderate changes in flow profiles with respect to the reference case are required
for compensation. The scope for optimization may then also be limited. Figure 7.8 shows
that for large permeability contrasts full compensation may not be possible, due to strong
transverse flow towards and from the high permeability zones. Despite this, the scope for
improvement may be significant, because a conventional water flood may perform poorly for
large permeability contrasts.
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a) factor 2 b) factor 10 c) factor 30

Figure 7.8: Streamlines for various permeability contrasts. Injection is through injector 4, production
through producer 4. Top view.

Relative size of the high permeability zone

In previous sections, the effect of the relative position of a heterogeneity in the reservoir,
and the effect of the permeability contrast were discussed. The effect of the heterogeneity
dimensions, relative to those of the entire reservoir, can be considered a combined effect
of these two. Generally the relative flow capacity of a high permeability zone is likely to
increase with increasing relative size, as can be deduced from Figure 7.9.

whp

wtot

whp

wtot

Figure 7.9: Relative width of high permeability zone (whp) with respect to reservoir width (wtot). Top
view.

Secondly, the larger the high permeability zone, the closer to it the wells generally are, and
the more severe transverse-flow effects will be if the wells within the high permeability zone
are (partly) closed. However, with increasing relative size the percentage of total oil stored



7.3. Multiple high and low permeability areas 143

in the high permeability zone generally increases too, so a larger streak does not necessarily
cause a larger problem. In the extreme cases where whp

wtot
−→ 0, or whp

wtot
−→ 1 the reservoir

becomes homogeneous, and for this two-dimensional, horizontal reservoir with parallel wells
the scope for improvement reduces to zero.

Multiple high and low permeability areas

Figure 7.10a shows a schematic of a reservoir having four high permeability streaks. As all
wells located in the low permeability are close to at least one high permeability zone, reduced
injection and production in the latter expectedly induces strong transverse flow, similar to that
in Figure 7.6c.
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Figure 7.10: a) Schematic of reservoir containing four high permeability zones. b) Permeability field
heterogeneity for type 2. Top view.

Results for heterogeneity type 2 (Figure 7.10b), however, indicate that this does not nec-
essarily reduce the scope for optimization. Tables 6.1 & 6.2 and Figure 6.5 & 6.6 show that
even for pressure-constrained optimization significant improvements in both cumulative oil
recovery and water production are realized. Figure 7.11 shows a streamline representation
of the conventional water flood for heterogeneity type 2. It shows that in the conventional
water flood most flow is occurring in the two high permeability zones.
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Figure 7.11: Streamlines for heterogeneity type 2, corresponding to a conventional water flood.

Figure 7.12 shows snapshots of the saturation and the flow paths at various times for
the non-discounted, pressure-constrained optimized case. It shows that Streak I (see Fig-
ure 7.10b for definition) is flooded first. Subsequently, production from Streak I is stopped
and Zone B is swept, mainly by water flowing from Streak I to Streak P, as indicated by the
streamline pictures. In this example Streak I may be considered to act as an extension of the
injection well, whereas Streak P may be considered an extension of the producer well. This
is in agreement with (unpublished) findings from Dolle and Glandt (N. Dolle and C. Glandt,
personal communication), who suggested to consider high permeability zones or fractures as
an extension of the well, and actively use those zones to improve sweep of the reservoir. The
reason for the poor sweep of Zone A and Zone C is due to the relative position of the high
permeability zones, as discussed on pages 139-141. The streamline pictures in Figure 7.12
show that little flow occurs in these zones.

Figure 7.13a shows the streamlines for a conventional water flood for the heterogeneity
containing four high permeability streaks (Figure 7.10a). As in the previous cases, flow oc-
curs predominantly in the high permeability zones. Figure 7.10b shows the flow paths if
injection is into Streak 4 and production from Streak 1. Similarly, Figure 7.10c shows the
flow direction if injection is into Streak 1, and production from Streak 4. For both scenarios
a significant change in flow direction with respect to the conventional water flood is realized,
with more flow going through the low permeability zones. This suggests that an improved
sweep of especially the low permeability zones may be possible with either of these strate-
gies.
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sw at 2 days sw at 12 days sw at 129 days sw at 199 days

sw at 272 days sw at 386 days sw at 603 days

Figure 7.12: Snapshots of water saturation and flow paths at 2, 12, 129, 199, 272, 386, and 603 days
(Top view ). Water saturated areas are coloured dark.

a) ref. case b) inj 33-38, prd 5-9 c) inj 5-9, prd 33:38

Figure 7.13: a) Injection and production at constant well flowing pressure. b) Injection in wells 33-38,
production in wells 5-9. c) Injection in wells 5-9, production in wells 33-38.
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7.3.3 Operating constraints
If it is possible to increase the macro-scale sweep in the reservoir by flow control, but only
at the cost of flow rate, the scope for optimization may become limited because of economic
factors. Results suggest that the scope of improvement is maximal in situations where fluid
flow can be controlled without negatively affecting the total injection and production rates,
as is the case for rate-controlled optimization. For these operating conditions the scope for
improvement is generally in reduced water production, increased cumulative oil production,
and accelerated oil production. For pressure-constrained operating conditions the scope for
improvement varied from case to case. With tight pressure constraints optimized flow control
may result in lower than maximal well rates, and the relative importance of increased sweep,
high oil production and low water production rates must therefore be considered. These may
be different for different reservoirs. Moreover, the ability to optimize each of the individual
aspects may also vary with the reservoir, as will be discussed below.

Well interference

Under pressure-constrained operating conditions, closing one of the wells generally causes
a drop in total injection and production rates. However, it also induces a change in the (local)
pressure field and hence a change in the (local) fluid flow direction. As a result, injection
and production rates in communicating wells may change. Because of this coupling it is not
obvious to predict how much the total injection and production rates will be affected.
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Figure 7.14: Top view of reservoir. Contrast between high and low permeability zone is a factor 6.7.

Figure 7.14 shows a reservoir with five injectors and five producers, producing on constant
well flowing pressure. An estimate of the steady state interference between injectors and
producers can be obtained by considering the changes in flow rates in the individual wells
upon closing one of the wells. Figure 7.15 shows the steady state response between the wells
for the permeability field shown in Figure 7.14. Each row in Figure 7.15 represents one well
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test. The diagonal contains the rate changes in the wells that are tested (closed), the off-
diagonals the responses (rate changes) in the other wells. All rate changes were normalized
with respect to the maximum.
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Figure 7.15: Steady state flow rate response. Tested wells are shown on the y-axis, steady state reponses
on the x-axis.

The figure shows that each well is at least affecting neighboring wells, and one segment
on the opposite side of the reservoir. Responses are small but not zero in wells distant to the
tested well. The wells within the high permeability zone (see Figure 7.14, and rows inj_3
and prd_3 in Figure 7.15) are affecting all other wells in the reservoir, the degree however
varying significantly. The negative correlation between for example tested and neighboring
producers indicates that if the rate in one well decreases the rates in the other wells increase,
resulting in a drop in the total production rates that is less than would be expected from the
tested segment alone. This is attributed to changes in the fluid flow direction, as depicted in
Figure 7.16.

Improvement in oil and water production

The scope for reducing water production and increasing cumulative oil production will
vary with well interference and the extent to which the fluid flow direction is affected.

If all trajectories from an injector to a producer will water out before the end of the pro-
duction process, the injector and/or producer should be closed at some point in time. If the
resulting change in flow direction is small, and the drop in total production rates is large, the
main effect will be a reduction in water production.
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If the flow direction is changed significantly, as for example in Figure 7.12 & 7.16c, the
newly formed trajectories (streamlines) may on the average contain more oil. Consequently,
apart from a reduction in water production an increase in oil production may be feasible,
especially if the drop in total production rates is not so severe .

If only part of the trajectories will water out before the end of the production process, it
may be necessary to keep the injector and/or producer open in order to maintain oil produc-
tion in the remaining, oil-bearing trajectories. In these situations a large reduction in water
production may not be possible.

a) inj. 1 closed b) inj. 2 closed c) inj. 3 closed

Figure 7.16: Streamlines for: a) injector 1 closed. b) injector 2 closed. c) injector 3 closed. All active
wells are operated on constant well flowing pressure. Total number of streamlines equals 25. Top view.

7.3.4 Reduced uncertainty in the outcome
Apart from considering the scope for improvement for each individual example, additional
benefits of dynamic water flood optimization are observed when considering the results for
all cases. Figure 7.17 shows the ranges in NPV outcome for heterogeneity type 1, 2, and 3
for all reference and optimized runs of section 6.2 (pressure-constrained, rate-constrained,
discounted, not discounted, optimization for 1 PV, 2 PV, unit mobility and unfavorable dis-
placement). The figure shows that for all examples considered the range in NPV outcomes
lies higher and is narrower for the optimized cases. For pressure-constrained optimization
over one PV of injection the range is only slightly narrower, and the ranges for optimized
and reference cases partly overlap. For all other examples the ranges do not overlap, and
are much narrower for the optimized cases. The narrower distributions suggest that by dy-
namic flow control negative effects of geological features and fluid properties can (partly) be
compensated for, thereby reducing the uncertainty in the outcome. This is in agreement with
results from Yeten et al. (2004).
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Figure 7.17: Range in NPV outcome for reference and optimized cases in section 6.2.

7.4 General trends for the controls
In section 7.3 the focus was on the scope of improvement. In this section the existence of
general trends in the optimal injection and production strategies (optimal control functions)
is investigated.

7.4.1 Type of control
In Sudaryanto and Yortsos’ approach, the wells were operated according to a “bang bang”
type of control, which means that wells only operate on their extremes (on/off) [Sudaryanto
(1998), Sudaryanto and Yortsos (2000)]. In their approach maximization of the water satu-
ration at water breakthrough was achieved by optimizing the switch times for the injection
wells. In Asheim’s approach the well injection or production profiles changed gradually in
time. Results from chapter 6 suggest that the type of control depends on a number of factors.

Pressure-constrained operating conditions

For the examples with one smart injector and one smart producer, discussed in section 6.2,
the type of control was generally close to an on/off type of control under pressure-constrained
well operating conditions. For the examples discussed in sections 6.5, 6.6 & 6.7 the optimal
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control functions also comprised intermediate valve-settings. This suggests that the type of
control under pressure-constrained operating conditions may vary with the (relative) well
locations, the type of reservoir, and the length of the optimization period.

Rate-controlled operating conditions

The optimal control function for the rate-controlled optimized cases were never of the bang
bang type. The optimum control functions for the producers often exhibited smooth, grad-
ually changing behavior as found by Asheim (1988), although frequent switching between
producer wells was observed at the early stage for the example in section 6.5 (Figure 6.39).
More often, frequent switching between injectors was observed at the early stage, generally
disappearing at a later stage. Since the frequent switching at the injectors did not occur for all
cases it is difficult to interpret the differences in dynamics between injectors and producers.
They may be related to distinct differences in properties between injectors and producers.
However, the frequent switching at the injectors may also be a numerical artefact, result-
ing from the fact that the objective function is based only on the production rates. For the
producer the gradients ∂Ln

∂un are

∂Ln
∂un

= (λn)T
∂gn

∂un
+

∂J n

∂un
. (7.1)

For the injector, however, there is no direct cost to water injection, hence the gradients ∂Ln
∂un

for the injectors are
∂Ln
∂un

= (λn)T
∂gn

∂un
. (7.2)

Numerical errors in the adjoint equation, i.e. in the Lagrange multipliers λ, may have there-
fore affect the injector gradients (eq. 7.2) to a larger degree than the producer gradients
(eq. 7.1). The injector gradients’ susceptibility to numerical errors may then be reduced by
including separate costs for water injection. Thirdly, the high frequent switching in the injec-
tors may be due to the fact that the number of controllable parameters (equal to the product of
the number of wells and the number of time steps) is very large. Just as in history matching,
regularization should then be used to smooth the control functions.

7.4.2 Number of well segments required
In this study, a large number of smart well segments were used to enable detailed optimiza-
tion. Figure 6.7 & 6.8 show that a restricted number of segments may be sufficient if wells are
operated on pressure constraints. Adjacent segments with a similar control function for the
valve-settings could be grouped together into a single segment. The figures also show that the
number of segments required varies with the heterogeneity type. For the rate-controlled op-
timized cases the number of segments cannot be directly extracted from the optimal control
functions, as they show the rates per segment and not the valve-settings. In this case adja-
cent segments with a similar control function can only be grouped together if the rates have
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a similar associated well flowing pressure. However, also for rate-controlled well operating
conditions a much smaller number of segments may be sufficient for significant optimization.
Similar improvements in oil recovery and water reduction were achieved with the defensive
control method (section 2.2.2) and the optimal control method for heterogeneity type 1. In
the defensive control method, only 3 segments per well were used and optimization was done
for 5 time intervals, whereas in the optimal control method 45 segments per well were used,
and flow rates were optimized at each time step [Yeten (2003)].

7.4.3 Timing of optimizing injection and production
For the two-dimensional examples a number of trends in optimizing injectors and producers
can be observed for both the pressure and rate-controlled optimized cases. In some pressure-
constrained optimized cases control was both at the producers and the injectors. Figure 6.7
& 6.8 show that the optimal injector valve-settings differ only from the reference valve set-
tings (all valves open) at the early stage of the water flooding process, whereas closing of
producer segments typically started at a later stage. In other cases only a number of producer
segments were closed, typically occurring at a later stage. Under rate-controlled well operat-
ing conditions optimization of the flow rates was generally done both in the injectors and the
producers. Figure 6.15 & 6.16 show distinct differences between reference and optimal in-
jection and production strategies, but the magnitude of the difference is not directly obvious
from these figures. One way of making this better visible is by plotting the normalized sum
of the absolute differences γ between reference and optimal wells rates as function of time.
For the injectors γ then is

γninj =

Ninj

i=1
|qnref,inji−qnopt,inji |
Ninj

i=1
qnref,inji

, (7.3)

where Ninj is the number of injection wells/segments, and n is the discrete time step. Simi-
larly, for the producers γ equals

γnprod =

Nprod

j=1
qnref,prodj

−qnopt,prodj
Nprod

j=1
qnref,prodj

, (7.4)

where Nprod is the total number of producer wells/segments. The magnitude of γ is then a
measure of the change in control with respect to the reference case. Figure 7.18 & 7.19 show
γinj and γprod as function of time for heterogeneity type 1 and 2 respectively.
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Figure 7.18: γ for injectors and producers for undiscounted, rate-controlled optimization. Heterogene-
ity type 1.
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Figure 7.19: γ for injectors and producers for undiscounted, rate-controlled optimization. Heterogene-
ity type 2.

For the injectors γ decreases with time, reflecting that the optimal injection strategy differs
most from the reference case at an early stage. For the producers the overall trend for γ is
that it increases with time, indicating that optimization of the producers becomes increasingly
important as time progresses. Apart from the fact that trends for injector and producer are
opposite, an additional difference is that for the injectors γ reduces to approximately zero at
the end time, whereas for the producers γ starts with a nonzero value.

The opposite trends for injectors and producers are in agreement with the opposite trends
in sensitivities, discussed in section 5.4 (Figure 5.9). The differences in trends are attributed
to the fact that optimization of the water flood is related to maximizing oil production and
minimizing water production, in combination with the fact that the water front moves from
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the injector towards the producer. As long as the front is close to the injectors largest control
on it is in the injectors. Since the front is at this stage generally still far away from the
producers, the degree of control on it from the producers may be limited. Furthermore,
generally only oil is produced at this stage. As water flooding continues, the front will move
away from the injectors. For a certain period the front will be distant to both injectors and
producers. Resultingly, the degree of control on it through either injectors or producers may
be limited. As the front comes close to the producers it can be controlled mainly through the
producers.

Optimization of injection at the early stage may serve to reduce water buildup at the pro-
ducer at a later stage. This may be important because as soon as the water is close to the
production well its production can mainly be controlled by closing valves in the water sat-
urated zones. This may cause divergence of the water to neighboring well segments, as
schematically depicted in Figure 7.20 & 7.21.

a) all wells open b) prod 7-14 closed c) prod 1-38 closed

Figure 7.20: Top view of streamlines for: a) all valves open. b) water producing segments in high
permeability zone closed. c) most producer segments closed.
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Figure 7.21: Schematic representation of water spreading along smart, segmented producer. Closed
valves are cross-marked.
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This spread of water may eventually cause the producer to become completely surrounded
by water. This effect may be less in the pattern flood example, described in section 6.6, be-
cause of the larger distance between producer wells. That may for the pattern flood example
also explain why under pressure-constrained well operating conditions optimization of the
valve-settings only occurs at the producer wells.

7.4.4 Dynamism of optimal control strategy
The degree of dynamism in the optimal control functions varied considerably from case
to case, partly because the optimal fluid trajectory through the reservoir, and thereby the
optimal control function, depends on the geological properties. The degree of dynamism in
the optimal control function may therefore vary with reservoir properties, as can be deduced
from Figure 6.16.

Furthermore, the degree of dynamism expectedly depends on the number of injectors and
producers in the reservoir, because with increasing number of wells more detailed optimiza-
tion may be possible.

Figure 6.7 & 6.16 show that the degree of dynamism in the optimal control function also
varies with the well operating constraints, the dynamism being larger for rate-constrained
than for pressure-constrained well operating conditions. The reason for this is the difference
in pressure available to inject/produce fluids in each scenario. Fluid flow at a certain velocity
along the optimal trajectories may often require a larger pressure gradient than along the ref-
erence case trajectories, because optimization generally comprises a decreased flow through
the high permeability zones and an increased flow through the low permeability zones. The
average resistance to flow may therefore generally be higher along the optimal trajectories.
As long as field rates can be maintained these optimal trajectories will lead to an improve-
ment in the water flood. This is the case if production is entirely rate-controlled. However,
under tight pressure constraints these trajectories are not necessarily optimal, because the
higher average resistance to flow will cause a drop in the field rate. This negatively affects
the instantaneous oil production rate and possibly also the cumulative oil recovery. The tra-
jectory will only be optimal if the negative impact of the lower oil production rate is more
than compensated for in a later stage. The number of feasible optimal trajectories thus de-
pends on the well operating constraints, more specifically on the pressure (energy) available
to inject and produce fluids. The expected trend is that the number of feasible optimal trajec-
tories increases with slacker constraints on the pressure.

The degree of dynamism expectedly also depends on the length of the optimization period,
more specifically on the fraction of mobile oil produced at the end of the production process.
For some rate-controlled optimized cases a steep drop in the oil production rates was ob-
served near the end of the production process (see Figure 6.13, 6.14 & 6.34 in this respect),
because at that stage most of the mobile oil had already been produced. A detailed dynamic
control strategy may be required to produce the last (relatively small) volumes of oil in the
reservoir.
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7.4.5 Uniqueness of optimal control functions
In history matching, many different combinations of the spatially distributed parameters are
generally possible that give the same production response at the wells. This is because the
number of parameters to be estimated is generally larger than the number of measurements.
In water flood optimization there may also be different strategies that give the same opti-
mum value for the objective function. The difference in the non-uniqueness between history
matching and water flood optimization is that in history matching it is known that the real
field has a unique permeability and porosity distribution. In water flood optimization, on
the other hand, there may be various injection-production strategies giving the same opti-
mum end result. The existence of a unique optimal control function depends on the objective
function, the type of operating constraints, the number of controls, and the physics of the
process.

Objective function

Mehos and Ramirez (1989) found different optimal control policies giving approximately
the same end result. Similar findings were done by Fathi and Ramirez (1987). They attributed
this to a lack of specifications in the objective function that an optimum solution should
fulfill. They argued that including additional specifications, like discounting, would narrow
the feasible region for the injection policies and increase the possibility of having only one
local extremum.

The NPV objective function in this study is based on production rates for the entire pro-
duction time interval. Therefore, its value can only be evaluated at the end of this production
period. As various combinations of injection and production rates may give the same end re-
sult in terms of NPV, the optimal control function may not be unique. Results for some of
the two-dimensional examples considered suggest that the optimal control functions are not
unique, or at least that there are multiple local optima having approximately the same NPV
value. Tables 6.5 & 6.6 and Figure 6.13 & 6.14 show for heterogeneity type 1 that, although
a change in the discount rate causes a change in the NPV and in the optimal control func-
tion, the ultimate oil and water recovery did not change to a significant extent. Applying
both the discounted and the non-discounted optimal control functions to the case with zero
discounting would therefore give an approximately similar NPV, and cumulative oil and wa-
ter production. Since the values would not be exactly identical, this can in the strictest sense
not be attributed to non-uniqueness. However, the fact remains that different control func-
tions may give similar end results. This also appeared from the comparison study between
the defensive and the optimal control method [Yeten (2003)].

Operating constraints

The uniqueness of the solution may also depend on the well operating conditions. The
closer the operating conditions are to rate-controlled conditions, the larger the number of
possible trajectories from injector to producer may be (see section 7.4.4 in this respect),
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and the larger the chance may be on having different combinations of trajectories giving
approximately the same end result.

Number of controls

The number of possible control functions increases with increasing number of controls
and the frequency at which the controls can be changed. As a result there is an increased
possibility that there are multiple optimal control functions that are approximately equivalent
in terms of the end result obtained. This may particularly be the case if wells are close to
each other and affect similar areas in the reservoir.

7.5 Underlying principles
Section 7.3 discussed the scope for improvement as function of reservoir properties, well
operating conditions, and well positions. Section 7.4 discussed some characteristics of the
optimal control functions. This section discusses an optimal water flood in terms of possible
underlying principles. Since water flood optimization is still a developing area of research,
this should be considered a first step.

Results showed that for rate-controlled well operating conditions the improvement in water
flooding consisted of increased cumulative oil recovery, reduced cumulative water produc-
tion, accelerated oil production and delayed water production, realized by increasing the
macro-scale sweep efficiency. Under pressure-constrained well operating conditions the im-
provement depended on the relative importance of reducing water production, increasing the
sweep efficiency and maintaining oil production rates as high as possible. In general an op-
timal water flood may thus be associated with maximizing the macro-scale sweep, while
minimizing water production and maximizing oil production rates.

7.5.1 Rate-controlled operating conditions

Time of flight

Results from earlier studies indicated that, for a certain constant total injection and pro-
duction rate, an improved water flood appeared to be associated with an increased time
of flight of the injected water to the producer [Sudaryanto (1998), Sudaryanto and Yort-
sos (2000), Sudaryanto and Yortsos (2001), Brouwer et al. (2001)]. It must be emphasized
that this increase in time of flight for a certain constant total injection and production rate
is distinct from an increase in the time of flight by simply decreasing the flow rates. Fur-
thermore, since the injected water flows towards the producer along a range of trajectories
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(streamlines), the time of flight from injector to producer refers to the shortest time of flight
from this set of trajectories.

Figure 7.22 shows the top view of a two-dimensional, homogeneous reservoir with two
parallel wells. If both wells are operated at constant well flowing pressure, the oil-water front
moves uniformly to the producer and in case of a piston-like displacement only break through
after all oil has been produced. Properties of this ideal water flood are that, for a certain
constant total injection and production rate, it has a maximum time of flight, and a minimum
variation in time of flight for all trajectories from injector to producer. If the displacement is
not piston-like, the characteristic of this ideal water flood is that at all times the (fractional)
flow of water is minimized. For heterogeneous reservoirs simultaneous breakthrough along
the entire well may generally not be feasible, due to the limited control on fluid flow within
the reservoir.

Figure 7.22: Schematic of homogeneous reservoir, with injectors along the left edge and producers
along the right edge. Top view.

Sudaryanto (1998), Sudaryanto and Yortsos (2000) and Sudaryanto and Yortsos (2001)
maximized the water saturation at the time of water breakthrough. Since optimization was
for incompressible flow at constant total production rate, it consisted of maximizing the time
of water breakthrough, i.e. maximizing the time of flight from injectors to the producer. The
optimal injection policy comprised the start of injection in the most distant injector, often
after some time followed by a switch to injection in the closest injector, as shown in Figure
7.23 & 7.24. Rather than a geometric distance, this should be considered the distance from
a time of flight point of view. Furthermore, rather than considering the time of flight from
injector to producer it may be better to consider the time of flight from the oil-water front
to the producer. At the start of the production process these are equivalent since the oil-
water front originates at the injector. Figure 7.23 shows that in the optimum water flood
the injected fluids from both injectors simultaneously arrive at the producer, pointing at a
minimum variation in the time of flight from injectors to producers. The switching from
injection in well A to injection in well B occurred at the time that the time of flight from the
existing oil-water front to the producer was equal to the time of flight from injector B to the
producer. This may indicate that, for a certain constant total injection and production rate,
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the time of flight should be maximized at all times and/or that the variation in time of flight
should be minimized at all times.

 

(d) 

(a) (b) 

(c) 

Figure 7.23: Consecutive snapshots of front movement under bang-bang policy. (a) At initial time, (b)
at time just before injection switches from well-A to well-B, (c) at time injection is only through well-B,
and (d) at breakthrough. [from Sudaryanto (1998), reprinted with permission].
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Figure 7.24: Schematic representation of injection rates.
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Zakirov et al. (1996) investigated optimization of production from a reservoir containing a
gas cap, an oil layer and an aquifer. They found an optimal control policy in which production
was simultaneous from both wells, such that the GOR in both wells was similar at all times.
They interpreted this to correspond to an equal gas-front movement through the reservoir. In
the optimum policy the water-oil-ratio was not similar at all times. This may indicate that gas
was the component mostly affecting the performance of the production process. The similar
evolution of the GOR in both wells may suggest that a minimum variation in time of flight
of the gas to the producers was the underlying principle.

In the present study, because all examples considered had many injectors and produc-
ers, and because of the more complex permeability fields, it is not directly obvious which
injectors-producers combinations are most distant from a time of flight point of view. Gen-
erally, however, the plateau production period in the rate-controlled optimized cases is ex-
tended due to a delay in water breakthrough, indicating that the time of flight from injectors
to producers has increased relative to a conventional water flood.

Results from this and other studies thus suggest that, for a certain constant total injection
and production rate, maximizing the time of flight (at all times) and/or minimizing the varia-
tion in time of flight (at all times) may be important principles behind an optimal water flood.
More research is, however, required to validate this principle.

7.5.2 Pressure-constrained operating conditions
Since the total injection and production rates generally vary in the pressure-constrained op-
timized cases, the results are more difficult to interpret in terms of possible underlying prin-
ciples. Interpretation of the results is therefore restricted to describing a number of observa-
tions in some detail.

Time of flight

Since total injection and production rates are generally not constant in the pressure con-
strained optimized case, an increase in the time of flight might result from a drop in the field
injection and production rates rather than from an improved macro-scale sweep.

Under pressure-constrained operating conditions, water flood optimization may primarily
comprise optimization of the trajectories that have a shorter time of flight than the total
production time, i.e. those trajectories along which water breakthrough would occur before
the end of the production period if no control would be conducted. In some optimized cases
control on water production only occurs at the producers. Producers in or adjacent to the
high permeability zone are closed progressively as the oil-water front approaches. Figure
7.20 shows that this increases the length of the flow path from the oil-water front to the
active producers. In other cases, control on water production is done both at injectors and
producers. Control at the injectors then generally consists of initially closing the injector
segments in or adjacent to the high permeability zone, whereas those further away from it
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remain open. Figure 7.16c shows that as a result the length of the shortest flow path from
injectors to producers increases.

Under pressure constrained operating conditions, the reduction in water production thus
appears to be associated with increasing the time of flight along flow paths, that would oth-
erwise cause water breakthrough before the end of the production period. Since the shutting
in of wells generally also affects the total injection and production rates, the increase in time
of flight is not necessarily directly proportional to the increase in flow path length.

7.5.3 Stages in the production process
Distinct stages in the optimized water flood were reported by Virnovsky (1992) and Virnovsky
(1991). The optimal production rates shown in Figures 6.3-6.6, and the associated optimal
control functions, shown in Figures 6.7 & 6.8, may also point at the existence of distinct
stages. The initial lower-than-maximal production rates are realized by choking at the injec-
tor, and serve to avoid water build up at, and production in the production wells at a later
stage. The higher oil production rates in the subsequent stage may serve to maximize cu-
mulative oil production. During this stage most well segments are open. In the third stage
the total well rates are again much lower due to the closing of producer segments. The main
objectives in this stage may be to reduce water production and to increase the macro-scale
sweep.

The relative lengths and even the existence of the individual stages may vary with the
reservoir, the rock and fluid properties, the well operating constraints, the well locations,
the length of the production process, and with discounting. Furthermore, for more complex
production scenarios like the pattern flood described in section 6.6 some of these stages may
alternatingly become more and less important. It must be emphasized that these stages are
based on observations for a restricted number of examples and may as a result be rather
speculative and/or incomplete. More simulations on a larger variety of reservoir models and
well configurations are needed for verification.
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Conclusions and Recommendations

One objective of this study was to find the optimum injection and production strategy for
various types of reservoir models and operating constraints. The use of a gradient based
optimization algorithm in combination with optimal control theory appeared very powerful
in this respect. A second objective was to investigate the scope for improvement as function
of reservoir properties and operating constraints.

8.1 Water Flooding Optimization

8.1.1 Conclusions
For many of the synthetic examples considered significant improvement in NPV of the water
flooding process was realized by optimizing the injection and production strategy. Because
the optimum strategies were generally dynamic, water flooding optimization expectedly ben-
efits from smart well technology. However, results show that significant improvement may
also be possible in a five spot pattern flood with vertical wells, where control may be at the
surface. Because the optimization is local, the improvements obtained represent lower limits
to improvements possible. Below, the main conclusions on the scope for improvement, the
optimal control functions, and the possible principles behind water flooding optimization are
given.

Scope for improvement

· The scope for improvement depends on the type of heterogeneity in the permeability field.
Because the NPV performance of the optimal water flood depends less on geological
features than that of a conventional water flood, the scope for improvement partly depends
on the performance of the conventional water flood.

· Under rate-controlled operating conditions there generally is scope for accelerated oil
production, increased cumulative oil recovery and decreased water production. Under
pressure constrained operating conditions, for the examples and the oil prices and water
costs considered, the scope is mainly in reduced water production, although extra cumu-
lative oil production is sometimes also feasible.
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· Because under pressure-constrained operating conditions optimized flow control may re-
sult in lower-than-maximal well rates, the relative importance of improved sweep, high
oil production rates and reduced water production must be considered.

· The scope for improvement also depends on the possibility to affect the pressure distribu-
tion, and thereby the fluid flow direction in the reservoir. This may vary with heterogene-
ity type, the well operating constraints, and the relative well locations in the reservoir.

· The scope for improvement depends on the relative magnitudes of the oil price and the
water cost, and on the length of the optimization window.

· Although the displacement efficiency is in an absolute sense much worse if displacement
conditions are unfavorable, the scope for improvement by dynamic water flood optimiza-
tion is relatively higher for unfavorable than for favorable displacement conditions. For
the unfavorable displacement case considered part of the improvement resulted from an
extension of the production period with positive cash flow.

Preliminary results on water flood optimization in mature oil fields, and water flood op-
timization with a closed loop assimilation/optimization approach yielded significant NPV
improvement. However, since results are based on only one example, general conclusions
can not be drawn.

Optimal control functions

· Just like the scope for improvement, the optimal injection and production strategies vary
with the relative position of the heterogeneity in the reservoir with respect to the wells
and no-flow boundaries, the number of alternating high and low permeability zones, the
well operating constraints, and the well locations.

· The optimal control type varies with well operating constraints and to a lesser extent also
with the type of reservoir considered. For pressure-constrained well operating conditions
an on/off type of optimal control function was often observed, which was never the case
under rate-constrained well operating conditions.

· A much smaller number of well segments than used in this study may be sufficient for
significant optimization. The exact number of well segments required varies with the
type of heterogeneity and with the well operating constraints.

· The importance of control in injectors and producers may change over time. Differences
in trends between injector and producer optimal control functions are attributed to the fact
that as the water flood progresses the oil-water front moves from the injectors towards the
producers.
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Principles

· Comparison of the reference and optimal water flood shows that in the latter case there
is generally relatively more flow through the low and less through the high permeability
zones.

· The characteristics of an optimum water flood seem to vary with well operating condi-
tions. Under rate-controlled well operating conditions the optimization seems associated
with an increased time of flight of the oil-water front to the producer in combination with
a decreased variation in time of flight. This increased time of flight is distinct from an in-
crease in time of flight realized by simply reducing injection and production rates. Under
pressure-constrained well operating conditions, water flood optimization may primarily
comprise optimization of the trajectories along which water breakthrough would occur
before the end of the production period if no control would be conducted.

· In some examples, the high permeability zones are actively used as extension of the
injection or production well

8.1.2 Recommendations

Scope for improvement

The effects of capillary pressure were not investigated in this study. Furthermore, although
present in the three-dimensional examples, gravity effects were not studied separately. Re-
sults obtained in this study may therefore only be representative for situations were gravity
and capillary effects are relatively small. Gravity may positively or negatively affect the
sweep efficiency. In fractured reservoirs, capillary effects may significantly contribute to
the macro-scale sweep, by causing imbibition of water, present in fractures, into (water-wet)
tight matrix blocks. The scope for improvement and the shape of the optimal control func-
tions may thus change if capillary or gravity forces are significant. Therefore, their exact
effects should be investigated.

Preliminary results suggest that significant optimization may still be possible in reservoirs
that already have a significant non-optimal water flooding history. For the example investi-
gated the scope reduces with optimization starting at a later time. This is, however, partly
due to the fact that the end simulation time was fixed. For the scenarios where optimization
started close before the end time, the oil production rates were still high at this end time.
In practice production would therefore not be stopped at that time. Taking a possible exten-
sion of the production period into account, will therefore affect the scope for optimization,
something that should be investigated further.
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This study primarily focused on investigating the scope for optimization for reservoir mod-
els with a priori known properties. For one example the feasibility of a closed loop optimiza-
tion approach was investigated, yielding significant improvements. Although an encouraging
result, it should be considered only a first step. Future work should focus on improving the
robustness of this closed loop approach. Apart from addressing divergence issues of the
Kalman filter, larger uncertainties in pressure and flow rate measurements must be consid-
ered, and estimation of other properties like for example the porosity distribution and the
relative permeability curves should be included.

Shape of optimal control functions

Further investigation of the trends observed in the optimal control functions is desirable in
order to come up with a better initial guess for the optimization procedure. Knowledge on
the shape of the optimal control function may also be useful in field applications, especially
if information on reservoir properties is scarce.

8.2 Optimal Control Theory

8.2.1 Conclusions

· Optimal control theory is a suitable optimization procedure for water flood optimization
in reservoirs with multiple sources and multiple sinks. The main benefit is in the effi-
cient calculation of the gradients of the objective function with respect to the controllable
parameters.

· Stability aspects of the forward dynamic system and the adjoint appeared qualitatively
similar.

· Results suggest that for water flood optimization purposes, although formally not ex-
actly the ‘adjoint’, a fully-implicit adjoint scheme can be used in combination with a
forward dynamic system formulation that is implicit in the states, and explicit in the
state-dependent coefficients.

· The fully-implicit formulation of the adjoint does in principle not require extra compu-
tation time compared to the semi-implicit formulation, because the states and the state-
dependent coefficients are already known from the forward simulation, and because they
are linear in the Lagrange multipliers.
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· In a number of cases the gradients obtained with optimal control theory significantly
differed from those obtained by numerical perturbation.

8.2.2 Recommendations
The adjoint method is not yet a widely used method for optimization problems in petroleum
engineering. Most studies thus far have focused on the applications, rather than the theory
itself. Furthermore, the applications in history matching and dynamic process optimization
problems seem to have evolved largely independently, each also reporting different difficul-
ties. Since it is a powerful theory with applications in both history matching and dynamic
process optimization, it is desirable to study the adjoint method in reservoir simulation appli-
cations from a more fundamental point of view. Literature from meteorology, oceanography
and hydrology, where adjoint methods have been in use for a longer time, may be very useful
in this respect.

Apart from applications in history matching and dynamic process optimization, there may
be additional applications of optimal control theory in the petroleum industry. Instead of
using the adjoint only to find optimal well rates, it may also be used to select suitable well
locations. A first attempt in this directions was done by Virnovsky (1991) and Virnovsky
(1992). Secondly, in some applications the adjoint method is used to generate sensitivity
coefficients for well bore pressure data and the producing water-oil ratio with respect to
reservoir rock properties [Wu et al. (1999)]. These sensitivity maps may possibly also be
used for optimization purposes, because they may provide information on suitable locations
for near-well stimulation and/or shutoff methods.

Instead of only using the gradients obtained by the adjoint method it may also be possible
to directly use the values of the Lagrange multipliers. Chapter 4 and 5 showed that they
may have a physical meaning that one may make use of. Depending on their exact physical
meaning they may possibly be helpful in finding suitable infill well locations or new branches
in existing wells.





Nomenclature
This section contains a declaration of the most important symbols, abbreviations and sub-

scripts in chapters 1 - 7.

Greek
α down-hole valve
αeff effective valve multiplication factor [−]
αicv multiplication factor representing down-hole interval control valve [−]
αwh multiplication factor representing well head choke [−]
α vector containing effective valve multiplication factors
γ normalized sum of absolute differences between reference and optimal well rates [−]
Φ fluid potential [Pa]
∂L∗
∂u modified gradient
ε weighting factor in steepest descent algorithm
φ porosity [−]
λl component mobility

h
m2

Pa s

i
λ vector of Lagrange multipliers
µ fluid viscosity [Pa s]
ρl density of component l

h
kg
m3

i
τ cumulative time [yr]
θ angle between principal axes of the high permeability zone and the wells

Roman
A system matrix
b discount rate

h
%
yr

i
B storage matrix
Bl component formation volume factor

h
m3

m3

i
CCFL Courant-Friedrich-Levy condition [−]
EOR enhanced oil recovery
fcgo gas-oil capillary pressure function [Pa]
fcow oil-water capillary pressure function [Pa]
fw (Sw) fractional flow of water [−]
g gravitational acceleration factor

£
m
s2

¤
g dynamic system vector
Gadj adjoint system matrix
GOR gas-oil-ratio

h
m3

m3

i
h depth [m]
H Hamiltonian
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I identity matrix
J̄ modified objective function
J objective function
Jj cost-to-go objective function
J objective function
Jn cash flow for time step n [$]
J∗w value of grid block filled with water [$]
k absolute permeability

£
m2
¤

krl relative permeability for component l [−]
L Lagrangian
J∗o value of grid block filled with oil [$]
Lx Reservoir dimension in x-direction [m]
ṁ mass rate vector

h
kgm
s

1
m3

i
m mass [kg]
n discrete time step indicator
N final time step
Ninj number of injectors
Nprod number of producers
NPV net present value [$]
O order
OCT optimal control theory
p̂ vector containing primary variables
p̂nwf vector containing well flowing pressures
pcgo gas-oil capillary pressure [Pa]
pcow oil-water capillary pressure [Pa]
pgb grid block pressure [Pa]
pl component pressure [Pa]
pwf well flowing pressure [Pa]
PV pore volume, total porous volume in reservoir occupied by fluids

£
m3
¤

q̀ source term
h
kg
s

1
m3

i
qadj source vector for adjoint equation
q̂ vector containing source terms
q̃l source term

£
1
s

¤
q∗l volumetric rate at surface conditions

h
m3

s

i
rl price (+)/cost (-) for production of component l

h
$
m3

i
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Rs solution gas-oil ratio
h
m3

m3

i
streak zone of high permeability in area of lower permeability
Sl fractional saturation of component l
Sor residual oil saturation [−]
Swc connate water saturation [−]
S∗w constraint on maximum water saturation [−]
t time [s]
tdf time interval in which flow rates are optimized [s]
ttot total production time [s]
T̂ transmissibility matrix
T4 transmissibility matrix for gravity driven flow
ul component velocity vector

£
m
s

¤
ut total fluid velocity

£
m
s

¤
u input/control variables
Vf fluid volume in one grid block

£
m3
¤

ŵn
pc injection/production due to capillary forces

w well geometric and rock/fluid properties
whp width of high permeability zone [m]
wtot width of reservoir [m]
Ŵn matrix containing well geometric factors and fluid mobilities
WOR water-oil-ratio

h
m3

m3

i
x distance in x-direction [m]
x state vector

Subscripts/superscipts
opt optimal
dg dissolved gas component
fg free gas component
g gas component
h horizontal
inj injection
ref reference (non-optimized) case
r iteration number in optimization loop
t total
v vertical
w water component
l component indicator
o oil component
max maximum allowed value
min minimum allowed value
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Appendix A
The reservoir model

In this study optimization of the water flooding process was investigated both for two-phase
(oil and water) flow in the horizontal plane, and three-phase, three-dimensional flow. Two
separate reservoir model were used. Since the three-phase, three-dimensional formulation is
the most general, it is the one that will be discussed. The black oil formulation described in the
following sections is based on the formulation from Aziz and Settari (1986). The three phases
that are distinguished are gas, oil, and water. The three components that are distinguished are
the light and the heavy hydrocarbon pseudo-components and the water component.

A.1 Three phase flow

A.1.1 Mass Balance equations
In multi-phase flow the mass balance for each individual component per unit rock volume is

−O · ṁ+ q̀ = ∂(m)
∂t , (A.1)

which states that the difference in mass flowing into and out of a unit volume per unit time, plus
the mass added or extracted through an external source per unit time and volume q̀

h
kg
s

1
m3

i
must equal the change in mass per unit time and volume ∂(m)

∂t

h
kg
s

1
m3

i
. ṁ is a vector com-

prising the mass flow in x,y,z-direction and has unit
h
kgm
s

1
m3

i
. For a component c it is equal to

the product of its density and the velocity of the phase l in which it is present, i.e. ṁc=ρcul.
The total mass m of component c per unit rock volume can be expressed as the product of
the component density ρc, the rock porosity φ, and the phase saturation Sl (The volume frac-
tion of the porous rock that is occupied by the phase l in which component c is present.), i.e.
mc = ρcφSl. Substitution into eq. A.1 then gives

−O · ρcul = ∂
∂t (ρcφSl)− ρcq̃l, (A.2)

where the source term q̃l has unit
£
1
s

¤
, ul

£
m
s

¤
is a vector with the phase velocities in x,y,z-

direction. The porosity and density are a function of pressure. The component density is
generally assumed to be a function of the phase pressure pl, hence ρc = ρc (pl).
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For the heavy hydrocarbon component the mass balance then becomes

−O · −ρouo = ∂
∂t

³−
ρoφSo

´
− −ρoq̃o (A.3)

where −ρo is the density of the heavy hydrocarbon component in the oil phase. For the water
component the material balance is

−O · ρwuw = ∂
∂t (ρwφSw)− ρw q̃w (A.4)

For the light hydrocarbon component the situation is slightly different since it is present both
in the gas phase and in solution in the oil phase.

ṁg =
−
ρdguo + ρgug (A.5)

mg =
−
ρdgφSo + ρgφSg (A.6)

where −ρdg is the density of the heavy hydrocarbon component dissolved in the oil phase. The
mass balance then is

−O ·
³−
ρdguo + ρgug

´
= ∂

∂t

³−
ρdgφSo + ρgφSg

´
− −ρdg q̃o − ρg q̃fg (A.7)

The source terms −ρdg q̃o and ρg q̃fg represent respectively dissolved and free gas production.

A.1.2 Formation Volume Factors and the Solution gas-oil-ratio
Under the assumption of constant reservoir temperature, the relation between the phase vol-
umes at surface conditions and reservoir conditions can be described by the formation volumes
factors

Bo =
Vo,RC
Vo,SC

= f1 [−] , (A.8)

Bw =
Vw,RC
Vw,SC

= f2 (pw) [−] , (A.9)

Bg =
Vg,RC
Vfg,SC

= f3 (pg) [−] , (A.10)

where Vl stands for the volume occupied by a fixed mass of phase l at reservoir conditions
and the subscript SC refers to the volume at standard conditions (atmospheric pressure and
temperature) and RC for the volume at reservoir conditions. The oil formation volume factor
Bo is a function of both the oil pressure and the bulk hydrocarbon composition in the reservoir.
The equilibrium distribution of the light hydrocarbon pseudo component between the oil and
gas phases is described by the solution-gas-oil ratio

Rs =
h
Vdg
Vo

i
STC

= f4 [−] , (A.11)

which is the ratio of the SC-volume of dissolved gas over the SC-oil volume. In the black oil
approach this equilibrium distribution is assumed to be reached instantaneously throughout the
reservoir. For saturated oil, Rs increases with pressure up to the bubble point pressure. The
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bubble point pressure (pbp) is the pressure at which all light hydrocarbons are just dissolved in
the oil phase. Above pbp the oil is undersaturated, and Rs is therefore constant. Apart from
the pressure, pbp and Rs also depend on the bulk hydrocarbon composition in the reservoir. In
this study, however, Rs is assumed to be only a function of pressure.

The phase densities at reservoir conditions are related to the component densities at standard
conditions in the following way. For the oil phase

ρo = 1
Bo

¡
ρoSC +RsρgSC

¢
=

−
ρo +

−
ρdg

where −ρo = 1
Bo

ρoSTC is the density of the oil component in the oil phase at reservoir condi-

tions and −ρdg = Rs
Bo

ρgSTC the density of the dissolved gas component. Similarly for the gas
and water phase

ρw = 1
Bw

¡
ρwSTC

¢
(A.12)

ρg = 1
Bg

¡
ρgSTC

¢
(A.13)

After dividing eq. A.3 by ρoSTC the mass balance for the heavy hydrocarbon component
becomes

−O · 1
Bo
uo =

∂
∂t

³
1
Bo

φSo

´
− 1

Bo
q̃o (A.14)

After dividing eq. A.4 by ρwSTC the mass balance for the water component becomes

−O · 1
Bw
uw =

∂
∂t

³
1
Bw

φSw

´
− 1

Bw
q̃w (A.15)

For the gas component dividing eq. A.7 by ρgSTC results in

−O ·
³
Rs
Bo
uo +

1
Bg
ug

´
= ∂

∂t

³
Rs
Bo

φSo +
1
Bg

φSg

´
−Rs

1
Bo

q̃o − 1
Bg

q̃fg (A.16)

All production terms q̃o, q̃w, q̃fg have dimension.
£
1
s

¤
.

A.1.3 Constitutive equation - Darcy’s Law
The fluid flow velocity in permeable media is often described through Darcy’s law which for
single phase, one dimensional flow reads as

ux = − k
µ
∂Φ
∂x . (A.17)

It states that the fluid velocity ux
£
m
s

¤
is proportional to the fluid potential gradient ∂Φ

∂x , the
rock permeability k

£
m2
¤

and inversely proportional to the fluid viscosity µ [Pa s]. The same
law may be used for multi-phase and multi-dimensional flow. The only extra factor needed is
the relative permeability krl [−], where l is the phase considered. The relative permeability
represents a reduction in the permeability for a phase due to interference with another phase.
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Furthermore, the fluid potential gradient can be expressed as

OΦl = Opl − ρlgOh, (A.18)

where pl is the phase pressure, g is the gravitational acceleration
¡
g = 9.81 m

s2

¢
, and h is the

depth. Darcy’s law for phase l then becomes

ul = −kkrl
µl
(Opl − ρlgOh) . (A.19)

The density and viscosity are a function of both pressure and temperature. Constant temper-
ature is assumed in the black oil model, and in this study the densities and viscosities are
assumed to be only a function of pressure, i.e. ρl = ρl (pl), and µl = µl (pl). The relative per-
meability is assumed to be only a function of saturation. In three-phase flow with a water-wet
rock the relative permeability for the oil phase is typically taken to be a function of both the
water (Sw) and the gas saturations (Sg), i.e. kro = kro (Sw, Sg). The relative permeability
for the water and gas phases is then generally taken to be a function of only their own phase
saturation, i.e. krw = krw (Sw) and krg = krg (Sg). This is done because in a water-wet rock
water and gas generally reside in a different part of the pore space and are separated by the oil,
as schematically depicted in Figure A.1. Because gas and water do not interface in this situa-
tion, changes in saturation of either of them is then assumed to have no (significant) effect on
the relative permeability of the other. Since the oil interfaces with both gas and water its rel-
ative permeability depends on both saturations. Typically, values for the relative permeability
are derived from two-phase flow experiments.

grain
water
oil
gas

grain
water
oil
gas

Figure A.1: Schematic of pore space occupied by water phase, oil phase and gas phase in a water wet
medium
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A.1.4 Mass balance combined wit Darcy’s Law
Substituting Darcy’s law for each phase into eqs. A.14, A.15, and A.16, and substituting the
relation λl =

krl
Blµl

k for each phase, where λl is the mobility of phase l, results in

O · (λo (Opo − ρogOh)) = ∂
∂t

³
1
Bo

φSo

´
− 1

Bo
q̃o, (A.20)

O · (λw (Opw − ρwgOh)) = ∂
∂t

³
1
Bw

φSw

´
− 1

Bw
q̃w, (A.21)

O · ¡Rsλo (Opo − ρogOh) + λg
¡
Opg − ρggOh

¢¢
= ∂

∂t

³
Rs
Bo

φSo +
1
Bg

φSg

´
− 1

Bo
Rsq̃o − 1

Bg
q̃fg. (A.22)

A.1.5 Choice of primary variables - Formulation in terms of po, Sw, and
Sg

With 6 unknowns (po, pw, pg, So, Sw, and Sg) 6 equations are required to complete the system
description. Apart from eqs. A.20, A.21 & A.22 these comprise 3 additional equations. The
first is a closure equation requiring that the sum of all fractional saturations must always be
equal to one, i.e.

So + Sw + Sg = 1. (A.23)
Furthermore, the relation between the individual phase pressures is given by the capillary pres-
sure equations

pcow = po − pw = fcow (Sw, Sg) , (A.24)

pcgo = pg − po = fcgo (Sw, Sg) , (A.25)
where water is assumed to be the wetting phase, oil the intermediate wetting phase, and gas
the nonwetting phase. Functions fcow and fcgo are generally empirical relations, derived from
core experiments.

In eqs. A.20, A.21, A.22 the primary variables are respectively po, pw, and pg. Generally
a formulation with primary variables being the oil pressure po, the fractional water saturation
Sw and the fractional gas saturation Sg is used in reservoir simulation. This can be obtained
by substituting eqs. A.23, A.24, A.25 into eqs. A.20, A.21, A.22, giving

O · (λo (Opo − ρogOh)) = ∂
∂t

³
1
Bo

φ (1− Sw − Sg)
´
− 1

Bo
q̃o, (A.26)

O · (λw (O (po − pcow)− ρwgOh)) = ∂
∂t

³
1
Bw

φSw

´
− 1

Bw
q̃w , (A.27)

O · ¡Rsλo (Opo − ρogOh) + λg
¡
O (po + pcgo)− ρggOh

¢¢
= ∂

∂t

³
Rs
Bo

φ (1− Sw − Sg) +
1
Bg

φSg

´
− 1

Bo
Rsq̃o − 1

Bg
q̃fg. (A.28)
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The capillary pressure gradients can be expressed in terms of a saturation gradient using

Opcow = ∂pcow
∂Sw

OSw + ∂pcow
∂Sg

OSg, (A.29)

and

Opcgo = ∂pcgo
∂Sw

OSw + ∂pcgo
∂Sg

OSg. (A.30)

Substitution of eqs. A.29 & A.30 into the left sides of eqs.A.26,A.27 & A.28 then gives

O · (λoOpo − λoρogOh) = ∂
∂t

³
1
Bo

φ (1− Sw − Sg)
´
− 1

Bo
q̃o, (A.31)

O ·
³
λwOpo − λw

∂pcow
∂Sw

OSw − λw
∂pcow
∂Sg

OSg − λwρwgOh
´
= ∂

∂t

³
1
Bw

φSw

´
− 1

Bw
q̃w,
(A.32)

and

O ·
³
(Rsλo + λg)Opo + λg

∂pcgo
∂Sw

OSw + λg
∂pcgo
∂Sg

OSg −
¡
Rsλoρo + λgρg

¢
gOh

´
= ∂

∂t

³
Rs
Bo

φ (1− Sw − Sg) +
1
Bg

φSg

´
− 1

Bo
Rsq̃o − 1

Bg
q̃fg. (A.33)

A.2 Discretization
Since the equations can generally not be solved analytically, they must be evaluated numeri-
cally. To this purpose the equations are discretized in space and in time. At first discretization
of the ∂

∂t terms in eqs. A.31, A.32, and A.33 is discussed.

A.2.1 Time differencing of the right hand side
The time difference is defined as [Ertekin et al. (2001)]

∆t (x) ≡ xn+1 − xn.

The ∂
∂t terms are discretized using a mass-conservative time difference rule

∂

∂t
(x) ' 1

∆t
∆t (x) ,

where

∆t (UVX) = V nXn∆tU + Un+1Xn∆tV + Un+1V n+1∆tX . (A.34)
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Application of eq. A.34 to the ∂
∂t term of eq. A.31 gives

∆t

³
1
Bo

φSo

´
=

µ³
So
Bo

´n
φ
0
+ φn+1Sno

³
1
Bo

´0¶
∆tpo

−φn+1
³
1
Bo

´n+1
∆tSw − φn+1

³
1
Bo

´n+1
∆tSg,

= βop∆tpo − βos∆tSw − βos∆tSg , (A.35)

and thus
∂

∂t

³
1
Bo

φSo

´
' βop

∆tpo
∆t
− βos

∆tSw
∆t

− βos
∆tSg
∆t

. (A.36)
Similarly for eq. A.32

∆t

³
1
Bw

φSw

´
=

µ³
1
Bw

´n
Sw

nφ
0
+ φn+1Sw

n
³

1
Bw

´0¶
∆tpo,

+

µ
φn+1

³
1
Bw

´n+1
− φn+1Sw

n
³

1
Bw

´0
p0cow

¶
∆tSw, (A.37)

= βwp∆tpo + βws∆tSw,

and thus
∂

∂t

³
1
Bw

φSw

´
' βwp

∆tpo
∆t

+ βws
∆tSw
∆t

. (A.38)
For equation A.33

∆t

³
Rs
Bo

φSo +
1
Bg

φSg

´
= ∆t

³
1
Bg

φSg

´
+
³
1
Bo

φSo

´n
R0s∆tpo +Rn+1

s ∆t

³
1
Bo

φSo

´
,

(A.39)
where the first term is

∆t

³
1
Bg

φSg

´
=

³
1
Bg

´n
Sng φ

0
∆tpo + φn+1Sng

³
1
Bg

´0 ¡
∆tpo + p0cgo∆tSg

¢
+φn+1

³
1
Bg

´n+1
∆tSg. (A.40)

Substitution of eqs. A.35 & A.40 into eq. A.39 then gives for the gas phase

∆t

³
Rs
Bo

φSo +
1
Bg

φSg

´
=


+
³
1
Bo

φSo

´n
R0s

+
³³

1
Bg

´n
Sng +Rn+1

s

³
So
Bo

´n´
φ
0

+φn+1
µ
Rn+1
s Sno

³
1
Bo

´0
+ Sng

³
1
Bg

´0¶
∆tpo,

−Rn+1
s φn+1

³
1
Bo

´n+1
∆tSw,

+

 φn+1
³
1
Bg

´n+1
+ φn+1Sng

³
1
Bg

´0
p0cgo

−Rn+1
s φn+1

³
1
Bo

´n+1
∆tSg,

= βgp∆tpo − βgsw∆tSw + βgsg∆tSg, (A.41)
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and thus
∂

∂t

³
Rs
Bo

φSo +
1
Bg

φSg

´
' βgp

∆tpo
∆t
− βgsw

∆tSw
∆t

+ βgsg
∆tSg
∆t

. (A.42)
Substituting eqs. A.36, A.38, A.42 into eqs. A.31, A.32, A.33 and multiplying the equation by
the grid block volume Vgb gives for the oil equation

O · VgbλoOpo − O · VgbλoρogOh = Vgbβop
∆tpo
∆t

− Vgbβos
∆tSw
∆t

− Vgbβos
∆tSg
∆t

− Vgb
Bo

q̃o,

which is more compactly written as

O · To1Opo − O · To4Oh = β∗op
∆tpo
∆t
− β∗os

∆tSw
∆t

− β∗os
∆tSg
∆t

− q∗o . (A.43)

The subscripts 1, 4 in the transmissibility terms are used for convenience. Similarly, the water
and gas equations become respectively

O · Tw1Opo − O · Tw2OSw − O · Tw3OSg − O · Tw4Oh
= β∗wp

∆tpo
∆t

+ β∗ws
∆tSw
∆t

− q∗w. (A.44)

and

O · Tg1Opo +O · Tg2OSw +O · Tg3OSg − O · Tg4Oh
= β∗gp

∆tpo
∆t
− β∗gsw

∆tSw
∆t

+ β∗gsg
∆tSg
∆t

− q∗g . (A.45)

Simplifying assumptions for parameters βop, βos, βwp, βws, βgp, βgsw, βgsg
The fact that some factors are to be calculated implicitly would require iteration on these
parameters. The systems that are considered are, however, of low compressibility, and most
pressure dependent parameters therefore hardly change during the simulation. To avoid time
consuming iterating on implicitly calculated factors the following simplifying assumptions
were made in the forward simulation:

βop ≈
µ³

So
Bo

´n
φ
0
+ φnSno

³
1
Bo

´0¶
, (A.46)

βos ≈ φn
³
1
Bo

´n
, (A.47)

βwp ≈
µ³

1
Bw

´n
Sw

nφ
0
+ φnSw

n
³

1
Bw

´0¶
, (A.48)

βws ≈
µ
φn
³

1
Bw

´n
− φnSw

n
³

1
Bw

´0
p0cow

¶
, (A.49)

βgp ≈

 +
³
1
Bo

φSo

´n
R0s +

³³
1
Bg

´n
Sng +Rn

s

³
So
Bo

´n´
φ
0

+φn
µ
Rn
sS

n
o

³
1
Bo

´0
+ Sng

³
1
Bg

´0¶
 , (A.50)
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βgsw ≈ Rn
sφ

n
³
1
Bo

´n
, (A.51)

βgsg ≈
·
φn
³
1
Bg

´n
+ φnSng

³
1
Bg

´0
p0cgo −Rn

sφ
n
³
1
Bo

´n¸
. (A.52)

A.2.2 Spatial discretization
It is important to note here that the axes of reference are oriented as shown in the figure below.

x

y

z

Figure A.2:

Since the spatial discretization leads to rather lengthy equations, they will not all be dis-
cussed. Instead, only the oil equation will be treated in some detail. A similar procedure holds
for the water and gas equations. Spatial discretization of O · To1Opo in eq. A.43 gives

O · To1Opo = ∂
∂x

³
To1

∂po
∂x

´
+ ∂

∂y

³
To1

∂po
∂y

´
+ ∂

∂z

³
To1

∂po
∂z

´
,

= To1
i+1

2
,j,k

¡
poi+1,j,k − poi,j,k

¢− To1
i− 1

2
,j,k

¡
poi,j,k − poi−1,j,k

¢
+To1

i,j+1
2
,k

¡
poi,j+1,k − poi,j,k

¢− To1
i,j− 1

2
,k

¡
poi,j,k − poi,j−1,k

¢
+To1

i,j,k+1
2

¡
poi,j,k+1 − poi,j,k

¢− To1
i,j,k− 1

2

¡
poi,j,k − poi,j,k−1

¢
.

(A.53)

Similarly, for the term O · To4Oh

O · To4Oh = ∂
∂x

¡
To4

∂h
∂x

¢
+ ∂

∂y

³
To4

∂h
∂y

´
+ ∂

∂z

¡
To4

∂h
∂z

¢
,

= To4
i+1

2
,j,k
(hi+1,j,k − hi,j,k)− To4

i− 1
2
,j,k
(hi,j,k − hi−1,j,k)

+To4
i,j+1

2
,k
(hi,j+1,k − hi,j,k)− To4

i,j− 1
2
,k
(hi,j,k − hi,j−1,k)

+To4
i,j,k+1

2

(hi,j,k+1 − hi,j,k)− To4
i,j,k− 1

2

(hi,j,k − hi,j,k−1) ,

(A.54)
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where
To4

i+1
2
,j,k

=
∆yi,j,k∆zi,j,k
∆x

i+1
2
,j,k

λo
i+1

2
,j,k

ρo
i+1

2
,j,k

gi+ 1
2 ,j,k

.

A.2.3 Discretized equations in matrix form
In the discretized system there are three equations per grid block. The total number of equa-
tions is thus 3 times the number of grid blocks. These equations could be sorted in different
ways. One possibility is to order the equations per phase. However, this leads to a matrix with
a large bandwidth, something undesirable from a computational point of view. Ordering the
equations per grid block leads to a matrix with a smaller bandwidth, and will therefore be used
in this study. The discrete formulation for a 7 point stencil is then

 T̂o

T̂w

T̂g




p̂i,j,k−1
p̂i,j−1,k
p̂i−1,j,k
p̂i,j,k
p̂i+1,j,k
p̂i,j+1,k
p̂i,j,k+1


−
 To4

Tw4

Tg4




hi,j,k−1
hi,j−1,k
hi−1,j,k
hi,j,k
hi+1,j,k
hi,j+1,k
hi,j,k+1


=

 β∗ot
β∗wt
β∗gt

 ˙̂p− q̂, (A.55)

where

T̂o =
T̂ot

i,j,k− 1
2

T̂ot
i,j− 1

2
,k

T̂ot
i− 1

2
,j,k

T̂oti,j,k
T̂ot

i+1
2
,j,k

T̂ot
i,j+1

2
,k

T̂ot
i,j,k+1

2
,

T̂w =
T̂wt

i,j,k− 1
2

T̂wt
i,j− 1

2
,k

T̂wt
i− 1

2
,j,k

T̂wti,j,k
T̂wt

i+1
2
,j,k

T̂wt
i,j+1

2
,k

T̂wt
i,j,k+1

2
,

T̂g =
T̂gt

i,j,k− 1
2

T̂gt
i,j− 1

2
,k

T̂gt
i− 1

2
,j,k

T̂gti,j,k
T̂gt

i+1
2
,j,k

T̂gt
i,j+1

2
,k

T̂gt
i,j,k+1

2
,

and

T̂ot
i,j,k+1

2

=
£
To1 0 0

¤
i,j,k+ 1

2

,

T̂wt
i,j,k+1

2

=
£
Tw1 −Tw2 −Tw3

¤
i,j,k+ 1

2

,

T̂gt
i,j,k+1

2

=
£
Tg1 Tg2 Tg3

¤
i,j,k+ 1

2

,

and

To4 =
To4

i,j,k− 1
2

To4
i,j− 1

2
,k

To4
i− 1

2
,j,k

To4i,j,k
To4

i+1
2
,j,k

To4
i,j+1

2
,k

To4
i,j,k+1

2
,

Tw4 =
Tw4

i,j,k− 1
2

Tw4
i,j− 1

2
,k

Tw4
i− 1

2
,j,k

Tw4i,j,k
Tw4

i+1
2
,j,k

Tw4
i,j+1

2
,k

Tw4
i,j,k+1

2
,

Tg4 =
Tg4

i,j,k− 1
2

Tg4
i,j− 1

2
,k

Tg4
i− 1

2
,j,k

Tg4i,j,k
Tg4

i+1
2
,j,k

Tg4
i,j+1

2
,k

Tg4
i,j,k+1

2
,
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and

p̂i,j,k+1 =

 po
Sw
Sg


i,j,k+1

,

β∗ot =
£
β∗op −β∗os −β∗os

¤
,

β∗wt =
£
β∗wp β∗ws 0

¤
,

β∗gt =
£
β∗gp −β∗gsw β∗gsg

¤
,

and

˙̂p =

 ∆tpo
∆t
∆tSw
∆t
∆tSg
∆t

 ,

and

q̂ =

 q∗o
q∗w
q∗g

 .

Finally the discrete system of equations can be written as

T̂p̂−T4h = B ˙̂p− q̂. (A.56)

where the product T4h contains terms due to gravity forces. Eq. A.56 can be rewritten into

B ˙̂p = T̂p̂−T4h+ q̂. (A.57)

For numerical implementation, the analytical inverse of matrix B was used. For this block
diagonal matrix, the inverse can be calculated analytically by calculating the inverse of the
individual blocks. This analytical inverse has been compared with the inv(B) command in
MATLAB and maximum differences between the inverted matrices were in the order 1·10−19.

Matrix formulation: Implicit in p̂, explicit in T̂,T4, q̂

In Eq. A.57 B and ˙̂p have already been determined by mass-conservative time differenc-
ing. Therefore, only the choice for the time step at which T̂, p̂, T4, q̂ are to be calculated
must be determined. The choice is to calculate all states p̂ implicitly, and all state dependent
coefficients explicitly. Matrix B is assigned Bn. Eq. A.57 then becomes

Bn
³
p̂n+1

∆tn − p̂n

∆tn

´
= T̂

n
p̂n+1−Tn

4h+ q̂
n. (A.58)

If injection and production rates are assigned directly without using a well model, the fluid
mobilities are calculated explicitly. This is still the case if a well model is used, but in this case
the grid block pressure used in the well model is calculated implicitly. The well model used in
this study equals (see eq. B.21 and appendix B for more details on the well model)

q̂n = −Ŵnp̂n+1 + Ŵnp̂nwf + ŵ
n
pc. (A.59)
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Substitution gives, after some rearranging

gn = 0,

=
h
−I 1
∆tn + (B

n)−1 T̂n − (Bn)−1 Ŵn
i
p̂n+1

+(Bn)−1
³
−Tn

4h+ Ŵ
np̂nwf + ŵ

n
pc

´
+ I p̂

n

∆tn . (A.60)



Appendix B
Well model

The well model used in this study is (after Ertekin et al. (2001))

pwf − pgbl =
qlµlBl

2πhkrl 3
p
kxkykz

µ
ln

µ
ro
rw

¶
+ S

¶
, (B.1)

where pgbl is the pressure in the grid block for phase l. The well flowing pressure pwf is
assumed to be the same for all phases. µl is the fluid viscosity, Bl the formation volume factor,
h the grid block thickness in the z-direction [m], krl the relative permeability. kx, ky, kz are
absolute permeabilities in x, y, and z- direction respectively, ql the injection or production rateh
m3

s

i
, rw the well radius [m], and ro the effective well radius [m], and S the well skin [−].

The effective well radius equals

ro = 0.28

√
kx/ky(∆x)

2 +
√
ky/kx (∆y)2

4
√
(kx/ky)+

4
√
(ky/kx)

. (B.2)

Rearranging gives

ql =
1

Bl

krl
µl

¡
2πh 3

p
kxkykz

¢³
ln
³
ro
rw

´
+ S

´ (pwfl − pgbl)

·
m3

s

¸
. (B.3)

Dividing by the grid block volume gives

q̂l =
1

Bl

krl
µl

¡
2πh 3

p
kxkykz

¢
Vgb

³
ln
³
ro
rw

´
+ S

´ (pwfl − pgbl)

·
m3

m3s
=
1

s

¸
,

=
1

Bl
q̃l

·
1

s

¸
. (B.4)

In eq. B.4 q̃l corresponds to the q̃o, q̃w, and q̃g used in three phase flow formulation in chapter
3, and appendix A. This can be written as

q̃l =
krl
µl

w (pwfl − pgbl)

·
1

s

¸
, (B.5)

where w = (2πh 3
√
kxkykz)

Vgb(ln( rorw )+S)
contain all parameters that are constant throughout the simulation.

The source terms for the individual components are then

q̃o =
kro
µo

w (pwfo − pgbo)

·
1

s

¸
, (B.6)

q̃w =
krw
µw

w (pwfw − pgbw)

·
1

s

¸
, (B.7)
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q̃g = q̃dg + q̃fg ,
= Rsq̃o + q̃fg,

= Rs
kro
µo

w (pwfo − pgbo) +
krg
µg

w
¡
pwfg − pgbg

¢ ·
1

s

¸
. (B.8)

Since only the oil pressure po is calculated the relations pw = po − pcow, and pg = po + pcgo
must be substituted into eqs. B.7 and B.8 respectively. Eq. B.7 then becomes

q̃w =
krw
µw

w (pwf − pgbo) +
krw
µw

wpcow

·
1

s

¸
, (B.9)

and eq. B.8

q̃g =

µ
Rs

kro
µo

+
krg
µg

¶
w (pwf − pgbo)−

krg
µg

wpcgo

·
1

s

¸
. (B.10)

Adding the effective choke position αeff , with αeff = αwhαicv to eqs. B.6, B.9, & B.10 then
gives

q̃o = αeff
kro
µo

w (pwf − pgbo)

·
1

s

¸
, (B.11)

q̃w = αeff

µ
krw
µw

w (pwf − pgbo) +
krw
µw

wpcow

¶ ·
1

s

¸
, (B.12)

q̃g = αeff

µµ
Rs

kro
µo

+
krg
µg

¶
w (pwf − pgbo)−

krg
µg

wpcgo

¶ ·
1

s

¸
. (B.13)

The total production rate is then

q̃tp = q̃o + q̃w + q̃g, (B.14)

= αeff


h
kro
µo
+ krw

µw
+
³
Rs

kro
µo
+

krg
µg

´i
w (pwf − pgbo)

+krw
µw

wpcow − krg
µg

wpcgo

 .

For an injector the injection rate is dependent on the total fluid mobility around the well, i.e.
the sum of the oil mobility kro

µo
, the water mobility krw

µw
, and the free gas mobility krg

µg
, i.e.

q̃tinj = αeff

½·
kro
µo

+
krw
µw

+
krg
µg

¸
w (pwf − pgbo) +

krw
µw

wpcow − krg
µg

wpcgo

¾
. (B.15)

The production rates q∗o , q∗w, & q∗g (see chapter 3 and appendix A) are then

q∗o =
Vgb
Bo

q̃o,

= αeffVgbw
kro
Boµo

(pwf − pgbo) , (B.16)
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q∗w =
Vgb
Bw

q̃w,

= αeffVgbw
krw
Bwµw

(pwf − pgbo) ,

+αeffVgbw
krw

Bwµw
pcow, (B.17)

q∗g =
Vgb
Bo

Rsq̃o +
Vgb
Bg

q̃fg,

= αeffVgbw

µ
Rs

kro
Boµo

+
krg
Bgµg

¶
(pwf − pgbo)− αeffVgbw

krg
Bgµg

pcgo.(B.18)

This can be written in matrix form as

 q∗o
q∗w
q∗g

 = −

 αeffVgbw
kro
Boµo

0 0

αeffVgbw
krw
Bwµw

0 0

αeffVgbw
³
Rs

kro
Boµo

+
krg
Bgµg

´
0 0


 po

Sw
Sg



+

 αeffVgbw
kro
Boµo

0 0

αeffVgbw
krw
Bwµw

0 0

αeffVgbw
³
Rs

kro
Boµo

+
krg
Bgµg

´
0 0


 pwf

0
0



+

 0

αeffVgbw
krw
Bwµw

pcow

−αeffVgbw krg
Bgµg

pcgo

 , (B.19)

or

q̂p = −Ŵpp̂+ Ŵpp̂wf + ŵppc . (B.20)

If only the states are calculated implicitly, and all other parameters explicitly this becomes

q̂n = −Ŵnp̂n+1 + Ŵnp̂nwf + ŵ
n
pc. (B.21)

For a water injector the injection rate is dependent on the total fluid mobility around the well,
i.e. the sum of the oil mobility kro

µo
, the water mobility krw

µw
, and the free gas mobility krg

µg
, i.e.

q∗winj =
Vgb
Bw

q̃t,

=
Vgb
Bw
(q̃o + q̃w + q̃fg) ,

= αeff
Vgb
Bw

w

µ·
kro
µo

+
krw
µw

+
krg
µg

¸
(pwf − pgbo) +

krw
µw

pcow − krg
µg

pcgo

¶
,
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which can be written as q∗o
q∗w
q∗g

 = −

 0 0 0

αeffVgbw
1
Bw

h
kro
µo
+ krw

µw
+

krg
µg

i
0 0

0 0 0


 po

Sw
Sg



+

 0 0 0

αeffVgbw
1
Bw

h
kro
µo
+ krw

µw
+

krg
µg

i
0 0

0 0 0


 pwf

0
0



+

 0

αeffw
Vgb
Bw

³
krw
µw

pcow − krg
µg

pcgo

´
0

 , (B.22)

or
q̂in = −Ŵinp̂+ Ŵinp̂wf + ŵinpc . (B.23)



Appendix C
Optimal Control Theory - Derivatives

The derivatives for the optimal control problem are based on a fully implicit description of
the dynamic system. Derivatives that have to be calculated are ∂gn−1

∂xn , ∂gn

∂xn , ∂gn

∂αneff
, ∂Jn

∂xn , and
∂Jn

∂αneff
.

C.1 Derivatives ∂gn−1
∂xn

C.1.1 The oil equation
Fully written out the discrete oil equation for grid block i, j, k is

gn−1oi,j,k = −
 To1

¡
poi+1,j,k − poi,j,k

¢
+ To1

¡
poi−1,j,k − poi,j,k

¢
+To1

¡
poi,j+1,k − poi,j,k

¢
+ To1

¡
poi,j−1,k − poi,j,k

¢
+To1

¡
poi,j,k+1 − poi,j,k

¢
+ To1

¡
poi,j,k−1 − poi,j,k

¢
n

+

 To4 (hi+1,j,k − hi,j,k) + To4 (hi−1,j,k − hi,j,k)
+To4 (hi,j+1,k − hi,j,k) + To4 (hi,j−1,k − hi,j,k)
+To4 (hi,j,k+1 − hi,j,k) + To4 (hi,j,k−1 − hi,j,k)

n

+
¡
β∗op
¢n pno−pn−1o

∆tn − (β∗os)n Snw−Sn−1w

∆tn − (β∗os)n Sng−Sn−1g

∆tn

− (q∗o)n , (C.1)

where

To1
¡
poi+1,j,k − poi,j,k

¢
= To1

i+1
2
,j,k

¡
poi+1,j,k − poi,j,k

¢
,

:

To4 (hi,j,k−1 − hi,j,k) = To4
i,j,k− 1

2

(hi,j,k−1 − hi,j,k) (C.2)

is used to shorten notation. Similarly for grid block i− 1, j, k we obtain
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gn−1oi−1,j,k = −
 To1

¡
poi,j,k − poi−1,j,k

¢
+ To1

¡
poi−2,j,k − poi−1,j,k

¢
+To1

¡
poi−1,j+1,k − poi−1,j,k

¢
+ To1

¡
poi−1,j−1,k − poi−1,j,k

¢
+To1

¡
poi−1,j,k+1 − poi−1,j,k

¢
+ To1

¡
poi−1,j,k−1 − poi−1,j,k

¢
n

+

 To4 (hi,j,k − hi−1,j,k) + To4 (hi−2,j,k − hi−1,j,k)
+To4 (hi−1,j+1,k − hi−1,j,k) + To4 (hi−1,j−1,k − hi−1,j,k)
+To4 (hi−1,j,k+1 − hi−1,j,k) + To4 (hi−1,j,k−1 − hi−1,j,k)

n

+
¡
β∗op
¢n
i−1,j,k

³
pno−pn−1o

∆tn

´
i−1,j,k

− (β∗os)ni−1,j,k
³
Snw−Sn−1w

∆tn

´
i−1,j,k

− (β∗os)ni−1,j,k
³
Sng−Sn−1g

∆tn

´
i−1,j,k

− (q∗o)ni−1,j,k . (C.3)

Derivatives with respect to the oil pressure
∂gn−1oi−1,j,k
∂pnoi,j,k

Eq. C.3 can be considered the starting equation for derivatives
∂gn−1oi±1,j±1,k±1

∂pnoi,j,k
, which are

∂gn−1oi,j,k−1
∂pnoi,j,k

= −To1
i,j,k− 1

2

−
∂To1

i,j,k− 1
2

∂pnoi,j,k

poi,j,k
− poi,j,k−1 +

∂To4
i,j,k− 1

2
∂pnoi,j,k

hi,j,k − hi,j,k−1 ,

∂gn−1oi,j−1,k
∂pnoi,j,k

= −To1
i,j− 1

2
,k
−

∂To1
i,j− 1

2
,k

∂pnoi,j,k

poi,j,k
− poi,j−1,k +

∂To4
i,j− 1

2
,k

∂pnoi,j,k

hi,j,k − hi,j−1,k ,

∂gn−1oi−1,j,k
∂pnoi,j,k

= −To1
i− 1

2
,j,k

−
∂To1

i− 1
2
,j,k

∂pnoi,j,k

poi,j,k
− poi−1,j,k +

∂To4
i− 1

2
,j,k

∂pnoi,j,k

hi,j,k − hi−1,j,k ,

∂gn−1oi+1,j,k
∂pnoi,j,k

= −To1
i+1

2
,j,k

−
∂To1

i+1
2
,j,k

∂pnoi,j,k

poi,j,k
− poi+1,j,k

+

∂To4
i+1

2
,j,k

∂pnoi,j,k

hi,j,k − hi+1,j,k ,

∂gn−1oi,j+1,k
∂pnoi,j,k

= −To1
i,j+1

2
,k
−

∂To1
i,j+1

2
,k

∂pnoi,j,k

poi,j,k
− poi,j+1,k

+

∂To4
i,j+1

2
,k

∂pnoi,j,k

hi,j,k − hi,j+1,k ,

∂gn−1oi,j,k+1
∂pnoi,j,k

= −To1
i,j,k+1

2

−
∂To1

i,j,k+1
2

∂pnoi,j,k

poi,j,k
− poi,j,k+1

+

∂To4
i,j,k+1

2
∂pnoi,j,k

hi,j,k − hi,j,k+1 ,

(C.4)
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Eq. C.1 forms the basis for derivative
∂gn−1oi,j,k

∂pnoi,j,k
, that equals

∂gn−1oi,j,k

∂pnoi,j,k
=



−
∂To1

i+1
2
,j,k

∂pnoi,j,k

¡
poi+1,j,k − poi,j,k

¢
+

∂To4
i+1

2
,j,k

∂pnoi,j,k
(hi+1,j,k − hi,j,k)

−
∂To1

i− 1
2
,j,k

∂pnoi,j,k

¡
poi−1,j,k − poi,j,k

¢
+

∂To4
i− 1

2
,j,k

∂pnoi,j,k
(hi−1,j,k − hi,j,k)

−
∂To1

i,j+1
2
,k

∂pnoi,j,k

¡
poi,j+1,k − poi,j,k

¢
+

∂To4
i,j+1

2
,k

∂pnoi,j,k
(hi,j+1,k − hi,j,k)

−
∂To1

i,j− 1
2
,k

∂pnoi,j,k

¡
poi,j−1,k − poi,j,k

¢
+

∂To4
i,j− 1

2
,k

∂pnoi,j,k
(hi,j−1,k − hi,j,k)

−
∂To1

i,j,k+1
2

∂pnoi,j,k

¡
poi,j,k+1 − poi,j,k

¢
+

∂To4
i,j,k+1

2

∂pnoi,j,k
(hi,j,k+1 − hi,j,k)

−
∂To1

i,j,k− 1
2

∂pnoi,j,k

¡
poi,j,k−1 − poi,j,k

¢
+

∂To4
i,j,k− 1

2

∂pnoi,j,k
(hi,j,k−1 − hi,j,k)


+To1

i+1
2
,j,k
+ To1

i− 1
2
,j,k
+ To1

i,j+1
2
,k
+ To1

i,j− 1
2
,k
+ To1

i,j,k+1
2

+ To1
i,j,k− 1

2

+
∂(β∗op)

n

∂pnoi,j,k

³
pno−pn−1o

∆tn

´
+
¡
β∗op
¢n 1
∆tn − ∂(β∗os)

n

∂pnoi,j,k

³
Snw−Sn−1w

∆tn

´
−∂(β∗os)

n

∂pnoi,j,k

³
Sng−Sn−1g

∆tn

´
− ∂(q∗o)

n

∂pnoi,j,k
. (C.5)

This can be rearranged as

∂gn−1oi,j,k

∂pnoi,j,k
=



+
∂To1

i+1
2
,j,k

∂pnoi,j,k

¡
+poi,j,k − poi+1,j,k

¢− ∂To4
i+1

2
,j,k

∂pnoi,j,k
(+hi,j,k − hi+1,j,k)

+
∂To1

i− 1
2
,j,k

∂pnoi,j,k

¡
+poi,j,k − poi−1,j,k

¢− ∂To4
i− 1

2
,j,k

∂pnoi,j,k
(+hi,j,k − hi−1,j,k)

+
∂To1

i,j+1
2
,k

∂pnoi,j,k

¡
+poi,j,k − poi,j+1,k

¢− ∂To4
i,j+1

2
,k

∂pnoi,j,k
(+hi,j,k − hi,j+1,k)

+
∂To1

i,j− 1
2
,k

∂pnoi,j,k

¡
+poi,j,k − poi,j−1,k

¢− ∂To4
i,j− 1

2
,k

∂pnoi,j,k
(+hi,j,k − hi,j−1,k)

+
∂To1

i,j,k+1
2

∂pnoi,j,k

¡
+poi,j,k − poi,j,k+1

¢− ∂To4
i,j,k+1

2

∂pnoi,j,k
(+hi,j,k − hi,j,k+1)

+
∂To1

i,j,k− 1
2

∂pnoi,j,k

¡
+poi,j,k − poi,j,k−1

¢− ∂To4
i,j,k− 1

2

∂pnoi,j,k
(+hi,j,k − hi,j,k−1)


+To1

i+1
2
,j,k
+ To1

i− 1
2
,j,k
+ To1

i,j+1
2
,k
+ To1

i,j− 1
2
,k
+ To1

i,j,k+1
2

+ To1
i,j,k− 1

2

+
∂(β∗op)

n

∂pnoi,j,k

³
pno−pn−1o

∆tn

´
+
¡
β∗op
¢n 1
∆tn − ∂(β∗os)

n

∂pnoi,j,k

³
Snw−Sn−1w

∆tn

´
−∂(β∗os)

n

∂pnoi,j,k

³
Sng−Sn−1g

∆tn

´
− ∂(q∗o)

n

∂pnoi,j,k
. (C.6)

Substitution of eqs. C.4 into eq. C.6 then gives finally
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∂gn−1oi,j,k

∂pnoi,j,k
= −

µ
∂gn−1oi,j,k−1
∂pnoi,j,k

+
∂gn−1oi,j−1,k
∂pnoi,j,k

+
∂gn−1oi−1,j,k
∂pnoi,j,k

+
∂gn−1oi+1,j,k

∂pnoi,j,k
+

∂gn−1oi,j+1,k

∂pnoi,j,k
+

∂gn−1oi,j,k+1

∂pnoi,j,k

¶
+

∂(β∗op)
n

∂pnoi,j,k

³
pno−pn−1o

∆tn

´
+
(β∗op)

n

∆tn

−∂(β∗os)
n

∂pnoi,j,k

³
Snw−Sn−1w

∆tn

´
− ∂(β∗os)

n

∂pnoi,j,k

³
Sng−Sn−1g

∆tn

´
− ∂(q∗o)

n

∂pnoi,j,k
. (C.7)

In eq. C.7 the derivative ∂(β∗op)
n

∂pnoi,j,k
is

∂(β∗op)
n

∂pnoi,j,k
= VgbS

n−1
o

Ã³
1
Bo

´n−1
∂φ

0

∂pnoi,j,k
+ φn

∂
1
Bo

0

∂pnoi,j,k
+
³
1
Bo

´0
∂φn

∂pnoi,j,k

!
, (C.8)

where
∂

1
Bo

n−1

∂pnoi,j,k
= 0. (C.9)

In eq. C.7 the derivative ∂(β∗os)
n

∂pnoi,j,k
is equal to

∂(β∗os)
n

∂pnoi,j,k
= Vgb

µ
φnao +

³
1
Bo

´n
∂φn

∂pnoi,j,k

¶
, (C.10)

where

ao =
∂

1
Bo

n

∂pnoi,j,k
. (C.11)

Derivatives with respect to the water saturation
∂gn−1oi,j,k−1
∂Snwi,j,k

Eq. C.3 is the starting equation for derivatives
∂gn−1oi±1,j±1,k±1

∂Snwi,j,k
. Derivative

∂gn−1oi,j,k−1
∂Snwi,j,k

equals

∂gn−1oi,j,k−1
∂Snwi,j,k

= −
∂To1

i,j,k− 1
2

∂Snwi,j,k

¡
poi,j,k − poi,j,k−1

¢
+

∂To4
i,j,k− 1

2

∂Snwi,j,k
(hi,j,k − hi,j,k−1) .

(C.12)

Derivatives
∂gn−1oi,j−1,k
∂Snwi,j,k

,
∂gn−1oi−1,j,k
∂Snwi,j,k

,
∂gn−1oi+1,j,k

∂Snwi,j,k
,
∂gn−1oi,j+1,k

∂Snwi,j,k
, and

∂gn−1oi,j,k+1

∂Snwi,j,k
are obtained similarly.

Eq. C.1 forms the basis for derivative
∂gn−1oi,j,k

∂Snwi,j,k
, which becomes after substituting eqs. C.12,
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and some rearranging

∂gn−1oi,j,k

∂Snwi,j,k
= −

µ
∂gn−1oi,j,k−1
∂Snwi,j,k

+
∂gn−1oi,j−1,k
∂Snwi,j,k

+
∂gn−1oi−1,j,k
∂Snwi,j,k

+
∂gn−1oi+1,j,k

∂Snwi,j,k
+

∂gn−1oi,j+1,k

∂Snwi,j,k
+

∂gn−1oi,j,k+1

∂Snwi,j,k

¶
+

∂(β∗op)
n

∂Snwi,j,k

³
pno−pn−1o

∆tn

´
− ∂(β∗os)

n

∂Snwi,j,k

³
Snw−Sn−1w

∆tn

´
− (β∗os)

n

∆tn

− ∂(β∗os)
n

∂Snwi,j,k

³
Sng−Sn−1g

∆tn

´
− ∂(q∗o)

n

∂Snwi,j,k
. (C.13)

In eq. C.13 the derivatives ∂(β∗op)
n

∂Snwi,j,k
and ∂(β∗os)

n

∂Snwi,j,k
are zero, i.e.

∂(β∗op)
n

∂Snwi,j,k
= Vgb

∂
∂Snwi,j,k

µ³
So
Bo

´n−1
φ
0
+ φnSn−1o

³
1
Bo

´0¶
= 0, (C.14)

and

∂(β∗os)
n

∂Snwi,j,k
= Vgb

∂
∂Snwi,j,k

³
φn
³
1
Bo

´n´
= 0. (C.15)

Derivatives with respect to the gas saturation
∂gn−1oi,j,k−1
∂Sngi,j,k

Eq. C.3 is the starting equation for derivatives
∂gn−1oi±1,j±1,k±1

∂Sngi,j,k
. Derivative

∂gn−1oi,j,k−1
∂Sngi,j,k

equals

∂gn−1oi,j,k−1
∂Sngi,j,k

= −
∂To1

i,j,k− 1
2

∂Sngi,j,k

¡
poi,j,k − poi,j,k−1

¢
+

∂To4
i,j,k− 1

2

∂Sngi,j,k
(hi,j,k − hi,j,k−1) .

(C.16)

Eq. C.1 forms the basis for derivative
∂gn−1oi,j,k

∂Sngi,j,k
, which becomes after substituting eqs. C.16,

and some rearranging

∂gn−1oi,j,k

∂Sngi,j,k
= −

µ
∂gn−1oi,j,k−1
∂Sngi,j,k

+
∂gn−1oi,j−1,k
∂Sngi,j,k

+
∂gn−1oi−1,j,k
∂Sngi,j,k

+
∂gn−1oi+1,j,k

∂Sngi,j,k
+

∂gn−1oi,j+1,k

∂Sngi,j,k
+

∂gn−1oi,j,k+1

∂Sngi,j,k

¶
+

∂(β∗op)
n

∂Sngi,j,k

³
pno−pn−1o

∆tn

´
− ∂(β∗os)

n

∂Sngi,j,k

³
Snw−Sn−1w

∆tn

´
−∂(β∗os)

n

∂Sngi,j,k

³
Sng−Sn−1g

∆tn

´
− (β∗os)

n

∆tn − ∂(q∗o)
n

∂Sngi,j,k
. (C.17)
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In eq. C.17 the derivatives ∂(β∗op)
n

∂Sngi,j,k
and ∂(β∗os)

n

∂Sngi,j,k
are zero, i.e.

∂(β∗op)
n

∂Sngi,j,k
= Vgb

∂
∂Sngi,j,k

µ³
So
Bo

´n−1
φ
0
+ φnSn−1o

³
1
Bo

´0¶
= 0, (C.18)

and

∂(β∗os)
n

∂Sngi,j,k
= Vgb

∂
∂Sngi,j,k

³
φn
³
1
Bo

´n´
= 0. (C.19)

C.1.2 The water equation
Fully written out the discrete water equation for grid block i, j, k is

gn−1wi,j,k
= −

 Tw1
i+1

2
,j,k

¡
poi+1,j,k − poi,j,k

¢
+ Tw1

i− 1
2
,j,k

¡
poi−1,j,k − poi,j,k

¢
+Tw1

i,j+1
2
,k

¡
poi,j+1,k − poi,j,k

¢
+ Tw1

i,j− 1
2
,k

¡
poi,j−1,k − poi,j,k

¢
+Tw1

i,j,k+1
2

¡
poi,j,k+1 − poi,j,k

¢
+ Tw1

i,j,k− 1
2

¡
poi,j,k−1 − poi,j,k

¢

n

+

 Tw2
i+1

2
,j,k

¡
Swi+1,j,k − Swi,j,k

¢
+ Tw2

i− 1
2
,j,k

¡
Swi−1,j,k − Swi,j,k

¢
+Tw2

i,j+1
2
,k

¡
Swi,j+1,k − Swi,j,k

¢
+ Tw2

i,j− 1
2
,k

¡
Swi,j−1,k − Swi,j,k

¢
+Tw2

i,j,k+1
2

¡
Swi,j,k+1 − Swi,j,k

¢
+ Tw2

i,j,k− 1
2

¡
Swi,j,k−1 − Swi,j,k

¢

n

+

 Tw3
i+1

2
,j,k

¡
Sgi+1,j,k − Sgi,j,k

¢
+ Tw3

i− 1
2
,j,k

¡
Sgi−1,j,k − Sgi,j,k

¢
+Tw3

i,j+1
2
,k

¡
Sgi,j+1,k − Sgi,j,k

¢
+ Tw3

i,j− 1
2
,k

¡
Sgi,j−1,k − Sgi,j,k

¢
+Tw3

i,j,k+1
2

¡
Sgi,j,k+1 − Sgi,j,k

¢
+ Tw3

i,j,k− 1
2

¡
Sgi,j,k−1 − Sgi,j,k

¢

n

+

 Tw4
i+1

2
,j,k
(hi+1,j,k − hi,j,k) + Tw4

i− 1
2
,j,k
(hi−1,j,k − hi,j,k)

+Tw4
i,j+1

2
,k
(hi,j+1,k − hi,j,k) + Tw4

i,j− 1
2
,k
(hi,j−1,k − hi,j,k)

+Tw4
i,j,k+1

2

(hi,j,k+1 − hi,j,k) + Tw4
i,j,k− 1

2

(hi,j,k−1 − hi,j,k)


n

+
¡
β∗wp

¢n
i,j,k

³
pno−pn−1o

∆tn

´
i,j,k

+ (β∗ws)
n
i,j,k

³
Snw−Sn−1w

∆tn

´
i,j,k
− (q∗w)ni,j,k . (C.20)
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Derivatives with respect to the oil pressure
∂gn−1wi,j,k−1
∂pnoi,j,k

Derivative
∂gn−1wi,j,k−1
∂pnoi,j,k

equals

∂gn−1wi,j,k−1
∂pnoi,j,k

= −Tw1
i,j,k− 1

2

−
∂Tw1

i,j,k− 1
2

∂pnoi,j,k

¡
poi,j,k − poi,j,k−1

¢
+

∂Tw2
i,j,k− 1

2

∂pnoi,j,k

¡
Swi,j,k − Swi,j,k−1

¢
+

∂Tw3
i,j,k− 1

2

∂pnoi,j,k

¡
Sgi,j,k − Sgi,j,k−1

¢
+

∂Tw4
i,j,k− 1

2

∂pnoi,j,k
(hi,j,k − hi,j,k−1) .

(C.21a)

It is representative for derivatives
∂gn−1wi±1,j±1,k±1

∂pnoi,j,k
.

Eq. C.20 forms the starting point for derivative
∂gn−1wi,j,k

∂pnoi,j,k
which becomes, after substituting

eqs. C.21 and some rearranging

∂gn−1wi,j,k

∂pnoi,j,k
= −


∂gn−1wi,j,k−1
∂pnoi,j,k

+
∂gn−1wi,j−1,k
∂pnoi,j,k

+
∂gn−1wi−1,j,k
∂pnoi,j,k

+
∂gn−1wi+1,j,k

∂pnoi,j,k
+

∂gn−1wi,j+1,k

∂pnoi,j,k
+

∂gn−1wi,j,k+1

∂pnoi,j,k


+

∂(β∗wp)
n

∂pnoi,j,k

³
pno−pn−1o

∆tn

´
+
(β∗wp)

n

∆tn +
∂(β∗ws)

n

∂pnoi,j,k

³
Snw−Sn−1w

∆tn

´
− ∂(q∗w)

n

∂pnoi,j,k
.

(C.22)

In eq. C.22 the derivative ∂(β∗wp)
n

∂pnoi,j,k
is

∂(β∗wp)
n

∂pnoi,j,k
= VgbS

n−1
w

Ã³
1
Bw

´n−1
∂φ

0

∂pnoi,j,k
+ φn

∂
1
Bw

0

∂pnoi,j,k
+
³

1
Bw

´0
∂φn

∂pnoi,j,k

!
, (C.23)

noting that
∂pnw

∂pnoi,j,k
=

∂(pno−pncow)
∂pnoi,j,k

= 1, (C.24)

and thus
∂

1
Bw

n

∂pnoi,j,k
=

∂
1
Bw

n

∂pnwi,j,k

∂pnwi,j,k
∂pnoi,j,k

=
∂

1
Bw

n

∂pnwi,j,k
= aw. (C.25)

In eq. C.22 the derivative ∂(β∗ws)
n

∂pnoi,j,k
is

∂(β∗ws)
n

∂pnoi,j,k
= Vgb


µ³

1
Bw

´n
− Sn−1w

³
1
Bw

´0
p0cow

¶
∂φn

∂pnoi,j,k

+φn

Ã
∂

1
Bw

n

∂pnoi,j,k
− Sn−1w p0cow

∂
1
Bw

0

∂pnoi,j,k

!
 . (C.26)
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Derivatives with respect to the water saturation
∂gn−1wi,j,k−1
∂Snwi,j,k

For derivatives like
∂gn−1wi±1,j±1,k±1

∂Snwi,j,k
,
∂gn−1wi,j,k−1
∂Snwi,j,k

is used as an example, i.e.

∂gn−1wi,j,k−1
∂Snwi,j,k

= −
∂Tw1

i,j,k− 1
2

∂Snwi,j,k

¡
poi,j,k − poi,j,k−1

¢
+Tw2

i,j,k− 1
2

+
∂Tw2

i,j,k− 1
2

∂Snwi,j,k

¡
Swi,j,k − Swi,j,k−1

¢
+

∂Tw3
i,j,k− 1

2

∂Snwi,j,k

¡
Sgi,j,k − Sgi,j,k−1

¢
+

∂Tw4
i,j,k− 1

2

∂Snwi,j,k
(hi,j,k − hi,j,k−1) .

(C.27)

Eq. C.20 forms again the starting point for derivative
∂gn−1wi,j,k

∂Snwi,j,k
which becomes, after some

rearranging

∂gn−1wi,j,k

∂Snwi,j,k
= −


∂gn−1wi,j,k−1
∂Snwi,j,k

+
∂gn−1wi,j−1,k
∂Snwi,j,k

+
∂gn−1wi−1,j,k
∂Snwi,j,k

+
∂gn−1wi+1,j,k

∂Snwi,j,k
+

∂gn−1wi,j+1,k

∂Snwi,j,k
+

∂gn−1wi,j,k+1

∂Snwi,j,k


+

∂(β∗wp)
n

∂Snwi,j,k

³
pno−pn−1o

∆tn

´
+

∂(β∗ws)
n

∂Snwi,j,k

³
Snw−Sn−1w

∆tn

´
+

(β∗ws)
n

∆tn − ∂(q∗w)
n

∂Snwi,j,k
.

(C.28)

In eq. C.28 the derivative ∂(β∗wp)
n

∂Snwi,j,k
is zero, i.e.

∂(β∗wp)
n

∂Snwi,j,k
= Vgb

∂
∂Snwi,j,k

µ³
1
Bw

´n−1
Sn−1w φ

0
+ φnSn−1w

³
1
Bw

´0¶
= 0. (C.29)

The derivative ∂(β∗ws)
n

∂Snwi,j,k
equals

∂(β∗ws)
n

∂Snwi,j,k
= Vgb

∂ φn
1
Bw

n−φnSn−1w
1
Bw

0
p0cow

∂Snwi,j,k
,

= Vgb

µ
−φnSn−1w

³
1
Bw

´0
∂p0cow
∂Snwi,j,k

¶
. (C.30)
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Derivatives with respect to the gas saturation
∂gn−1wi,j,k−1
∂Sngi,j,k

The derivatives
∂gn−1wi±1,j±1,k±1

∂Sngi,j,k
are like

∂gn−1wi,j,k−1
∂Sngi,j,k

= −
∂Tw1

i,j,k− 1
2

∂Sngi,j,k

¡
poi,j,k − poi,j,k−1

¢
+

∂Tw2
i,j,k− 1

2

∂Sngi,j,k

¡
Swi,j,k − Swi,j,k−1

¢
+

∂Tw3
i,j,k− 1

2

∂Sngi,j,k

¡
Sgi,j,k − Sgi,j,k−1

¢
+Tw3

i,j,k− 1
2

+
∂Tw4

i,j,k− 1
2

∂Sngi,j,k
(hi,j,k − hi,j,k−1) . (C.31)

Eq. C.20 forms again the starting point for derivative
∂gn−1wi,j,k

∂Sngi,j,k
which becomes, after substituting

eqs. C.31 and some rearranging

∂gn−1wi,j,k

∂Sngi,j,k
= −


∂gn−1wi,j,k−1
∂Sngi,j,k

+
∂gn−1wi,j−1,k
∂Sngi,j,k

+
∂gn−1wi−1,j,k
∂Sngi,j,k

+
∂gn−1wi+1,j,k

∂Sngi,j,k
+

∂gn−1wi,j+1,k

∂Sngi,j,k
+

∂gn−1wi,j,k+1

∂Sngi,j,k


+

∂(β∗wp)
n

∂Sngi,j,k

³
pno−pn−1o

∆tn

´
+

∂(β∗ws)
n

∂Sngi,j,k

³
Snw−Sn−1w

∆tn

´
− ∂(q∗w)

n

∂Sngi,j,k
. (C.32)

In eq. C.32 the derivatives ∂(β∗wp)
n

∂Sngi,j,k
and ∂(β∗ws)

n

∂Sngi,j,k
are zero, i.e.

∂(β∗wp)
n

∂Sngi,j,k
= Vgb

∂
∂Sngi,j,k

µ³
1
Bw

´n−1
Sn−1w φ

0
+ φnSn−1w

³
1
Bw

´0¶
= 0, (C.33)

and

∂(β∗ws)
n

∂Sngi,j,k
= Vgb

∂ φn
1
Bw

n−φnSn−1w
1
Bw

0
p0cow

∂Sngi,j,k

= 0. (C.34)

C.1.3 The gas equation
The discrete gas equation for grid block i, j, k is
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gn−1gi,j,k = −

 Tg1
i+1

2
,j,k

¡
poi+1,j,k − poi,j,k

¢
+ Tg1

i− 1
2
,j,k

¡
poi−1,j,k − poi,j,k

¢
+Tg1

i,j+1
2
,k

¡
poi,j+1,k − poi,j,k

¢
+ Tg1

i,j− 1
2
,k

¡
poi,j−1,k − poi,j,k

¢
+Tg1

i,j,k+1
2

¡
poi,j,k+1 − poi,j,k

¢
+ Tg1

i,j,k− 1
2

¡
poi,j,k−1 − poi,j,k

¢

n

−

 Tg2
i+1

2
,j,k

¡
Swi+1,j,k − Swi,j,k

¢
+ Tg2

i− 1
2
,j,k

¡
Swi−1,j,k − Swi,j,k

¢
+Tg2

i,j+1
2
,k

¡
Swi,j+1,k − Swi,j,k

¢
+ Tg2

i,j− 1
2
,k

¡
Swi,j−1,k − Swi,j,k

¢
+Tg2

i,j,k+1
2

¡
Swi,j,k+1 − Swi,j,k

¢
+ Tg2

i,j,k− 1
2

¡
Swi,j,k−1 − Swi,j,k

¢

n

−

 Tg3
i+1

2
,j,k

¡
Sgi+1,j,k − Sgi,j,k

¢
+ Tg3

i− 1
2
,j,k

¡
Sgi−1,j,k − Sgi,j,k

¢
+Tg3

i,j+1
2
,k

¡
Sgi,j+1,k − Sgi,j,k

¢
+ Tg3

i,j− 1
2
,k

¡
Sgi,j−1,k − Sgi,j,k

¢
+Tg3

i,j,k+1
2

¡
Sgi,j,k+1 − Sgi,j,k

¢
+ Tg3

i,j,k− 1
2

¡
Sgi,j,k−1 − Sgi,j,k

¢

n

+

 Tg4
i+1

2
,j,k
(hi+1,j,k − hi,j,k) + Tg4

i− 1
2
,j,k
(hi−1,j,k − hi,j,k)

+Tg4
i,j+1

2
,k
(hi,j+1,k − hi,j,k) + Tg4

i,j− 1
2
,k
(hi,j−1,k − hi,j,k)

+Tg4
i,j,k+1

2

(hi,j,k+1 − hi,j,k) + Tg4
i,j,k− 1

2

(hi,j,k−1 − hi,j,k)


n

+
¡
β∗gp
¢n
i,j,k

³
pno−pn−1o

∆tn

´
i,j,k
− ¡β∗gsw¢ni,j,k ³Snw−Sn−1w

∆tn

´
i,j,k

+
¡
β∗gsg

¢n
i,j,k

³
Sng−Sn−1g

∆tn

´
i,j,k
− ¡q∗g¢ni,j,k . (C.35)

Derivatives with respect to the oil pressure
∂gn−1gi−1,j,k
∂pnoi,j,k

The derivatives
∂gn−1gi±1,j±1,k±1

∂pnoi,j,k
are like

∂gn−1gi,j,k−1
∂pnoi,j,k

= −Tg1
i,j,k− 1

2

−
∂Tg1

i,j,k− 1
2

∂pnoi,j,k

¡
poi,j,k − poi,j,k−1

¢
−

∂Tg2
i,j,k− 1

2

∂pnoi,j,k

¡
Swi,j,k − Swi,j,k−1

¢− ∂Tg3
i,j,k− 1

2

∂pnoi,j,k

¡
Sgi,j,k − Sgi,j,k−1

¢
+

∂Tg4
i,j,k− 1

2

∂pnoi,j,k
(hi,j,k − hi,j,k−1) . (C.36)
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Eq. C.35 forms the starting point for derivative
∂gn−1gi,j,k

∂pnoi,j,k
which becomes, after some rearranging

∂gn−1gi,j,k

∂pnoi,j,k
= −


∂gn−1gi,j,k−1
∂pnoi,j,k

+
∂gn−1gi,j−1,k
∂pnoi,j,k

+
∂gn−1gi−1,j,k
∂pnoi,j,k

+
∂gn−1gi+1,j,k

∂pnoi,j,k
+

∂gn−1gi,j+1,k

∂pnoi,j,k
+

∂gn−1gi,j,k+1

∂pnoi,j,k


+

∂(β∗gp)
n

i,j,k

∂pnoi,j,k

³
pno−pn−1o

∆tn

´
i,j,k

+
(β∗gp)

n

i,j,k

∆tn − ∂(β∗gsw)
n

i,j,k

∂pnoi,j,k

³
Snw−Sn−1w

∆tn

´
i,j,k

+
∂(β∗gsg)

n

i,j,k

∂pnoi,j,k

³
Sng−Sn−1g

∆tn

´
i,j,k
− ∂(q∗g)

n

i,j,k

∂pnoi,j,k
. (C.37)

In eq. C.37 the derivative ∂(β∗gp)
n

∂pnoi,j,k
is

∂(β∗gp)
n

∂pnoi,j,k
= Vgb



³
1
Bo

φSo

´n−1
∂R0

s

∂pnoi,j,k
+

µ³
1
Bg

´n−1
Sn−1g +Rn

s

³
So
Bo

´n−1¶
∂φ

0

∂pnoi,j,k

+φ
0 ³ So

Bo

´n−1
∂Rns

∂pnoi,j,k
+

µ
Rn
sS

n−1
o

³
1
Bo

´0
+ Sn−1g

³
1
Bg

´0¶
∂φn

∂pnoi,j,k

+φn

Sn−1o

³
1
Bo

´0
∂Rns

∂pnoi,j,k
+Rn

sS
n−1
o

∂
1
Bo

0

∂pnoi,j,k
+ Sn−1g

∂
1
Bg

0

∂pnoi,j,k




.

(C.38)
Since

∂png
∂pnoi,j,k

=
∂(pno+p

n
cgo)

∂pnoi,j,k
=

∂(pno )
∂pnoi,j,k

= 1, (C.39)

the derivative
∂

1
Bg

n

∂pnoi,j,k
becomes

∂
1
Bg

n

∂pnoi,j,k
=

∂
1
Bg

n

∂pngi,j,k

∂pngi,j,k
∂pnoi,j,k

=
∂

1
Bg

n

∂pngi,j,k
= ang . (C.40)

In eq. C.37 the derivative ∂(β∗gsw)
n

∂pnoi,j,k
is

∂(β∗gsw)
n

∂pnoi,j,k
= Vgb

·
Rn
sφ

nao +Rn
s

³
1
Bo

´n
∂φn

∂pnoi,j,k
+ φn

³
1
Bo

´n
∂Rns

∂pnoi,j,k

¸
(C.41)

and the derivative ∂(β∗gsg)
n

∂pnoi,j,k
is equal to

∂(β∗gsg)
n

∂pnoi,j,k
= Vgb


³
1
Bg

´n
∂φn

∂pnoi,j,k
+ φnang + Sn−1g p0cgo

³ 1
Bg

´0
∂φn

∂pnoi,j,k
+ φn

∂
1
Bg

0

∂pnoi,j,k


−Rn

sφ
nano −Rn

s

³
1
Bo

´n
∂φn

∂pnoi,j,k
− φn

³
1
Bo

´n
∂Rns

∂pnoi,j,k
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Derivatives with respect to the water saturation
∂gn−1gi−1,j,k
∂Snwi,j,k

The derivatives
∂gn−1gi±1,j±1,k±1

∂Snwi,j,k
are like

∂gn−1gi,j,k−1
∂Snwi,j,k

= −
∂Tg1

i,j,k− 1
2

∂Snwi,j,k

¡
poi,j,k − poi,j,k−1

¢− Tg2
i,j,k− 1

2

−
∂Tg2

i,j,k− 1
2

∂Snwi,j,k

¡
Swi,j,k − Swi,j,k−1

¢− ∂Tg3
i,j,k− 1

2

∂Snwi,j,k

¡
Sgi,j,k − Sgi,j,k−1

¢
+

∂Tg4
i,j,k− 1

2

∂Snwi,j,k
(hi,j,k − hi,j,k−1) . (C.42)

Eq. C.35 forms the starting point for derivative
∂gn−1gi,j,k

∂Snwi,j,k
which becomes, after some rearranging

∂gn−1gi,j,k

∂Snwi,j,k
= −


∂gn−1gi,j,k−1
∂Snwi,j,k

+
∂gn−1gi,j−1,k
∂Snwi,j,k

+
∂gn−1gi−1,j,k
∂Snwi,j,k

+
∂gn−1gi+1,j,k

∂Snwi,j,k
+

∂gn−1gi,j+1,k

∂Snwi,j,k
+

∂gn−1gi,j,k+1

∂Snwi,j,k


+

∂(β∗gp)
n

i,j,k

∂Snwi,j,k

³
pno−pn−1o

∆tn

´
i,j,k
− ∂(β∗gsw)

n

i,j,k

∂Snwi,j,k

³
Snw−Sn−1w

∆tn

´
i,j,k
− (β

∗
gsw)

n

i,j,k

∆tn

+
∂(β∗gsg)

n

i,j,k

∂Snwi,j,k

³
Sng−Sn−1g

∆tn

´
i,j,k
− ∂(q∗g)

n

i,j,k

∂Snwi,j,k
. (C.43)

In eq. C.43 the derivatives
∂(β∗gp)

n

i,j,k

∂Snwi,j,k
,
∂(β∗gsw)

n

i,j,k

∂Snwi,j,k
, and

∂(β∗gsg)
n

i,j,k

∂Snwi,j,k
are zero, i.e.

∂(β∗gp)
n

∂Snwi,j,k
= Vgb

∂
∂Snwi,j,k

 +
³
1
Bo

φSo

´n−1
R0s +

µ³
1
Bg

´n−1
Sn−1g +Rn

s

³
So
Bo

´n−1¶
φ
0

+φn
µ
Rn
sS

n−1
o

³
1
Bo

´0
+ Sn−1g

³
1
Bg

´0¶


= 0. (C.44)

∂(β∗gsw)
n

∂Snwi,j,k
= Vgb

∂ Rns φ
n 1

Bo

n

∂Snwi,j,k

= 0 (C.45)

∂(β∗gsg)
n

∂Snwi,j,k
= Vgb

∂ φn
1
Bg

n

+φnSn−1g
1
Bg

0
p0cgo−Rns φn 1

Bo

n

∂Snwi,j,k

= 0 (C.46)
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Derivatives with respect to the gas saturation
∂gn−1gi−1,j,k
∂Sngi,j,k

The derivatives
∂gn−1gi±1,j±1,k±1

∂Sngi,j,k
are like

∂gn−1gi,j,k−1
∂Sngi,j,k

= −
∂Tg1

i,j,k− 1
2

∂Sngi,j,k

¡
poi,j,k − poi,j,k−1

¢− ∂Tg2
i,j,k− 1

2

∂Sngi,j,k

¡
Swi,j,k − Swi,j,k−1

¢
−Tg3

i,j,k− 1
2

−
∂Tg3

i,j,k− 1
2

∂Sngi,j,k

¡
Sgi,j,k − Sgi,j,k−1

¢
+

∂Tg4
i,j,k− 1

2

∂Sngi,j,k
(hi,j,k − hi,j,k−1) . (C.47)

Eq. C.35 forms the starting point for derivative
∂gn−1gi,j,k

∂Sngi,j,k
which becomes, after substituting eqs.

C.47 and some rearranging

∂gn−1gi,j,k

∂Sngi,j,k
= −

µ
∂gn−1gi,j,k−1
∂Sngi,j,k

+
∂gn−1gi,j−1,k
∂Sngi,j,k

+
∂gn−1gi−1,j,k
∂Sngi,j,k

+
∂gn−1gi+1,j,k

∂Sngi,j,k
+

∂gn−1gi,j+1,k

∂Sngi,j,k
+

∂gn−1gi,j,k+1

∂Sngi,j,k

¶
+

∂(β∗gp)
n

i,j,k

∂Sngi,j,k

³
pno−pn−1o

∆tn

´
i,j,k
− ∂(β∗gsw)

n

i,j,k

∂Sngi,j,k

³
Snw−Sn−1w

∆tn

´
i,j,k

+
∂(β∗gsg)

n

i,j,k

∂Sngi,j,k

³
Sng−Sn−1g

∆tn

´
i,j,k

+
(β∗gsg)

n

i,j,k

∆tn − ∂(q∗g)
n

i,j,k

∂Sngi,j,k
. (C.48)

In eq. C.48 the derivatives
∂(β∗gp)

n

i,j,k

∂Sngi,j,k
and

∂(β∗gsw)
n

i,j,k

∂Sngi,j,k
are zero, i.e.

∂(β∗gp)
n

∂Sngi,j,k
= Vgb

∂
∂Sngi,j,k

 +
³
1
Bo

φSo

´n−1
R0s +

µ³
1
Bg

´n−1
Sn−1g +Rn

s

³
So
Bo

´n−1¶
φ
0

+φn
µ
Rn
sS

n−1
o

³
1
Bo

´0
+ Sn−1g

³
1
Bg

´0¶


= 0, (C.49)

and
∂(β∗gsw)

n

∂Sngi,j,k
= Vgb

∂ Rns φ
n 1

Bo

n

∂Sngi,j,k
= 0 (C.50)

In eq. C.48 the derivative ∂(β∗gsg)
n

∂Sngi,j,k
is

∂(β∗gsg)
n

∂Sngi,j,k
= Vgbφ

nSn−1g

³
1
Bg

´0 ∂(p0cgo)
∂Sngi,j,k

(C.51)

C.2 Derivatives ∂gn

∂xn
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C.2.1 The oil equation
For grid block i− 1, j, k the discrete oil equation is, using notation similar to that in eqs. C.1
& C.2,

gnoi−1,j,k = −
 +To1

¡
poi,j,k − poi−1,j,k

¢
+ To1

¡
poi−2,j,k − poi−1,j,k

¢
+To1

¡
poi−1,j+1,k − poi−1,j,k

¢
+ To1

¡
poi−1,j−1,k − poi−1,j,k

¢
+To1

¡
poi−1,j,k+1 − poi−1,j,k

¢
+ To1

¡
poi−1,j,k−1 − poi−1,j,k

¢
n+1

+

 +To4 (hi,j,k − hi−1,j,k) + To4 (hi−2,j,k − hi−1,j,k)
+To4 (hi−1,j+1,k − hi−1,j,k) + To4 (hi−1,j−1,k − hi−1,j,k)
+To4 (hi−1,j,k+1 − hi−1,j,k) + To4 (hi−1,j,k−1 − hi−1,j,k)

n+1

+
¡
β∗op
¢n+1
i−1,j,k

³
pn+1o −pno
∆tn+1

´
i−1,j,k

− (β∗os)n+1i−1,j,k
³
Sn+1w −Snw
∆tn+1

´
i−1,j,k

− (β∗os)n+1i−1,j,k
³
Sn+1g −Sng
∆tn+1

´
i−1,j,k

− (q∗o)n+1i−1,j,k . (C.52)

Derivatives with respect to the oil pressure
∂gnoi−1,j,k
∂pnoi,j,k

All parameters on line 1 and 2 of eq. C.52 are at time level n + 1, and thus the derivatives
for these terms are ∂()n+1

∂()n = 0. All parameters on line 3 and 4 of eq. C.52 are only a function

of the states in grid block i− 1, j, k, and thus the derivatives ∂()i−1,j,k
∂()i,j,k

are zero. Consequently

all derivatives
∂gnoi±1,j±1,k±1

∂pnoi,j,k
are zero, i.e.

∂gnoi,j,k−1
∂pnoi,j,k

= 0,
∂gnoi,j−1,k
∂pnoi,j,k

= 0,
∂gnoi−1,j,k
∂pnoi,j,k

= 0,

∂gnoi+1,j,k
∂pnoi,j,k

= 0,
∂gnoi,j+1,k
∂pnoi,j,k

= 0,
∂gnoi,j,k+1
∂pnoi,j,k

= 0. (C.53)

Derivative
∂gnoi,j,k
∂pnoi,j,k

equals

∂gnoi,j,k
∂pnoi,j,k

= − β∗n+1op

∆tn+1
+
³
pn+1o −pno
∆tn+1

´
∂β∗n+1op

∂pnoi,j,k

−
³
Sn+1w −Snw
∆tn+1

´
∂(β∗os)

n+1

∂pnoi,j,k
−
³
Sn+1g −Sng
∆tn+1

´
∂(β∗os)

n+1

∂pnoi,j,k
. (C.54)

In eq. C.54 the derivative ∂(β∗op)
n+1

∂pnoi,j,k
equals

∂(β∗op)
n+1

∂pnoi,j,k
= Vgb

"³
So
Bo

´n ∂ φ
0

∂pnoi,j,k
+ Sno φ

0
ano + φn+1Sno

∂
1
Bo

0

∂pnoi,j,k

#
. (C.55)
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In eq. C.54 the derivative ∂(β∗os)
n+1

∂pnoi,j,k
is zero, i.e.

∂(β∗os)
n+1

∂pnoi,j,k
= Vgb

∂ φn+1
1
Bo

n+1

∂pnoi,j,k

= 0. (C.56)

Derivatives with respect to the water saturation
∂gnoi−1,j,k
∂Snwi,j,k

For the same reasons as described in section 1 all derivatives
∂gnoi±1,j±1,k±1

∂Snwi,j,k
are zero, i.e.

∂gnoi,j,k−1
∂Snwi,j,k

= 0,
∂gnoi,j−1,k
∂Snwi,j,k

= 0,
∂gnoi−1,j,k
∂Snwi,j,k

= 0,

∂gnoi+1,j,k
∂Snwi,j,k

= 0,
∂gnoi,j+1,k
∂Snwi,j,k

= 0,
∂gnoi,j,k+1
∂Snwi,j,k

= 0 (C.57)

Derivative
∂gnoi,j,k
∂Snwi,j,k

equals

∂gnoi,j,k
∂Snwi,j,k

=
³
pn+1o −pno
∆tn+1

´
∂(β∗op)

n+1

∂Snwi,j,k
+
(β∗os)

n+1

∆tn+1
+
³
−
³
Sn+1w −Snw
∆tn+1

´
−
³
Sn+1g −Sng
∆tn+1

´´
∂(β∗os)

n+1

∂Snwi,j,k
,

in which derivative ∂(β∗op)
n+1

∂Snwi,j,k
equals

∂(β∗op)
n+1

∂Snwi,j,k
= −Vgb

µ³
1
Bo

´n
φ
0
+ φn+1

³
1
Bo

´0¶
, (C.58)

and derivative ∂(β∗os)
n+1

∂Snwi,j,k
is zero, i.e.

∂(β∗os)
n+1

∂Snwi,j,k
= Vgb

∂ φn+1
1
Bo

n+1

∂Snwi,j,k

= 0. (C.59)

Derivatives with respect to the gas saturation
∂gnoi−1,j,k
∂Sngi,j,k

Again all derivatives
∂gnoi±1,j±1,k±1

∂Sngi,j,k
are zero, i.e.

∂gnoi,j,k−1
∂Sngi,j,k

= 0,
∂gnoi,j−1,k
∂Sngi,j,k

= 0,
∂gnoi−1,j,k
∂Sngi,j,k

= 0,

∂gnoi+1,j,k
∂Sngi,j,k

= 0,
∂gnoi,j+1,k
∂Sngi,j,k

= 0,
∂gnoi,j,k+1
∂Sngi,j,k

= 0. (C.60)



210 Appendix C

Derivative
∂gnoi,j,k
∂Sngi,j,k

equals

∂gnoi,j,k
∂Sngi,j,k

=
³
pn+1o −pno
∆tn+1

´
∂(β∗op)

n+1

∂Sngi,j,k
+
(β∗os)

n+1

∆tn+1

+
³
−
³
Sn+1w −Snw
∆tn+1

´
−
³
Sn+1g −Sng
∆tn+1

´´
∂(β∗os)

n+1

∂Sngi,j,k
(C.61)

In eq. C.61 the derivative ∂(β∗op)
n+1

∂Sngi,j,k
is

∂(β∗op)
n+1

∂Sngi,j,k
= −Vgb

µ³
1
Bo

´n
φ
0
+ φn+1

³
1
Bo

´0¶
. (C.62)

The derivative ∂(β∗os)
n+1

∂Sngi,j,k
is zero

∂(β∗os)
n+1

∂Sngi,j,k
= Vgb

∂ φn+1
1
Bo

n+1

∂Sngi,j,k

= 0. (C.63)

C.2.2 The water equation
For grid block i − 1, j, k the discrete water equation is, using notation similar to that in eqs.
C.1 & C.2,

gnwi−1,j,k = −
 Tw1

¡
poi,j,k − poi−1,j,k

¢
+ Tw1

¡
poi−2,j,k − poi−1,j,k

¢
+Tw1

¡
poi−1,j+1,k − poi−1,j,k

¢
+ Tw1

¡
poi−1,j−1,k − poi−1,j,k

¢
+Tw1

¡
poi−1,j,k+1 − poi−1,j,k

¢
+ Tw1

¡
poi−1,j,k−1 − poi−1,j,k

¢
n+1

+

 Tw2
¡
Swi,j,k − Swi−1,j,k

¢
+ Tw2

¡
Swi−2,j,k − Swi−1,j,k

¢
+Tw2

¡
Swi−1,j+1,k − Swi−1,j,k

¢
+ Tw2

¡
Swi−1,j−1,k − Swi−1,j,k

¢
+Tw2

¡
Swi−1,j,k+1 − Swi−1,j,k

¢
+ Tw2

¡
Swi−1,j,k−1 − Swi−1,j,k

¢
n+1

+

 Tw3
¡
Sgi,j,k − Sgi−1,j,k

¢
+ Tw3

¡
Sgi−2,j,k − Sgi−1,j,k

¢
+Tw3

¡
Sgi−1,j+1,k − Sgi−1,j,k

¢
+ Tw3

¡
Sgi−1,j−1,k − Sgi−1,j,k

¢
+Tw3

¡
Sgi−1,j,k+1 − Sgi−1,j,k

¢
+ Tw3

¡
Sgi−1,j,k−1 − Sgi−1,j,k

¢
n+1

+

 Tw4 (hi,j,k − hi−1,j,k) + Tw4 (hi−2,j,k − hi−1,j,k)
+Tw4 (hi−1,j+1,k − hi−1,j,k) + Tw4 (hi−1,j−1,k − hi−1,j,k)
+Tw4 (hi−1,j,k+1 − hi−1,j,k) + Tw4 (hi−1,j,k−1 − hi−1,j,k)

n+1

+
¡
β∗wp

¢n+1
i−1,j,k

³
pn+1o −pno
∆tn+1

´
i−1,j,k

+ (β∗ws)
n+1
i−1,j,k

³
Sn+1w −Snw
∆tn+1

´
i−1,j,k

− (q∗w)n+1i−1,j,k . (C.64)
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Derivatives with respect to the oil pressure
∂gnwi−1,j,k
∂pnoi,j,k

Again all derivatives
∂gnwi±1,j±1,k±1

∂pnoi,j,k
are zero

∂gnwi,j,k−1
∂pnoi,j,k

= 0,
∂gnwi,j−1,k
∂pnoi,j,k

= 0,
∂gnwi−1,j,k
∂pnoi,j,k

= 0,

∂gnwi+1,j,k
∂pnoi,j,k

= 0,
∂gnwi,j+1,k
∂pnoi,j,k

= 0,
∂gnwi,j,k+1
∂pnoi,j,k

= 0. (C.65)

Derivative
∂gnwi,j,k
∂pnoi,j,k

equals

∂gnwi,j,k
∂pnoi,j,k

=

∂

+(β∗wp)n+1i,j,k

pn+1o −pno
∆tn+1

i,j,k

+(β∗ws)
n+1
i,j,k

Sn+1w −Snw
∆tn+1

i,j,k

−(q∗w)n+1i,j,k


∂pnoi,j,k

= −
¡
β∗wp

¢n+1
i,j,k

∆tn+1
+
³
pn+1o −pno
∆tn+1

´
i,j,k

∂(β∗wp)
n+1

i,j,k

∂pnoi,j,k
+
³
Sn+1w −Snw
∆tn+1

´
i,j,k

∂(β∗ws)
n+1
i,j,k

∂pnoi,j,k
.

(C.66)

In eq. C.66 the derivative ∂(β∗wp)
n+1

∂pnoi,j,k
is

∂(β∗wp)
n+1

∂pnoi,j,k
= Vgb

"
Snw

Ã³
1
Bw

´n
∂φ

0

∂pnoi,j,k
+ φ

0 ∂ 1
Bw

n

∂pnoi,j,k

!
+ φn+1Snw

∂
1
Bw

0

∂pnoi,j,k

#
. (C.67)

In eq. C.66 the derivative ∂(β∗ws)
n+1

∂pnoi,j,k
equals

∂(β∗ws)
n+1

∂pnoi,j,k
= −Vgbφn+1Snwp0cow

∂
1
Bw

0

∂pnoi,j,k
. (C.68)

Derivatives with respect to the water saturation
∂gnwi−1,j,k
∂Snwi,j,k

All derivatives
∂gnwi±1,j±1,k±1

∂Snwi,j,k
are zero

∂gnwi,j,k−1
∂Snwi,j,k

= 0,
∂gnwi,j−1,k
∂Snwi,j,k

= 0,
∂gnwi−1,j,k
∂Snwi,j,k

= 0,

∂gnwi+1,j,k
∂Snwi,j,k

= 0,
∂gnwi,j+1,k
∂Snwi,j,k

= 0,
∂gnwi,j,k+1
∂Snwi,j,k

= 0. (C.69)
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Derivative
∂gnwi,j,k
∂Snwi,j,k

equals

∂gnwi,j,k
∂Snwi,j,k

=
³
pn+1o −pno
∆tn+1

´
i,j,k

∂(β∗wp)
n+1

i,j,k

∂Snwi,j,k
− (β

∗
ws)

n+1
i,j,k

∆tn+1
+
³
Sn+1w −Snw
∆tn+1

´
i,j,k

∂(β∗ws)
n+1
i,j,k

∂Snwi,j,k
. (C.70)

In eq. C.70 the derivative ∂(β∗wp)
n+1

∂Snwi,j,k
is

∂(β∗wp)
n+1

∂Snwi,j,k
= Vgb

·³
1
Bw

´n
φ
0
+ φn+1

³
1
Bw

´0¸
, (C.71)

and the derivative ∂(β∗ws)
n+1

∂Snwi,j,k
is equal to

∂(β∗ws)
n+1

∂Snwi,j,k
= −Vgbφn+1

³
1
Bw

´0µ
p0cow + Snw

∂p0cow
∂Snwi,j,k

¶
. (C.72)

Derivatives with respect to the gas saturation
∂gnwi−1,j,k
∂Sngi,j,k

The derivatives
∂gnwi±1,j±1,k±1

∂Sngi,j,k
are zero, i.e.

∂gnwi,j,k−1
∂Sngi,j,k

= 0,
∂gnwi,j−1,k
∂Sngi,j,k

= 0,
∂gnwi−1,j,k
∂Sngi,j,k

= 0,

∂gnwi+1,j,k
∂Sngi,j,k

= 0,
∂gnwi,j+1,k
∂Sngi,j,k

= 0,
∂gnwi,j,k+1
∂Sngi,j,k

= 0. (C.73)

Derivative
∂gnwi,j,k
∂Sngi,j,k

equals

∂gnwi,j,k
∂Sngi,j,k

=
³
pn+1o −pno
∆tn+1

´
i,j,k

∂(β∗wp)
n+1

i,j,k

∂Sngi,j,k
+
³
Sn+1w −Snw
∆tn+1

´
i,j,k

∂(β∗ws)
n+1
i,j,k

∂Sngi,j,k
(C.74)

In eq. C.74 the derivatives ∂(β∗wp)
n+1

∂Sngi,j,k
and ∂(β∗ws)

n+1

∂Sngi,j,k
are zero

∂(β∗wp)
n+1

∂Sngi,j,k
= Vgb

∂
1
Bw

n
Snwφ

0
+φn+1Snw

1
Bw

0

∂Sngi,j,k

= 0, (C.75)

and

∂(β∗ws)
n+1

∂Sngi,j,k
= Vgb

∂ φn+1
1
Bw

n+1−φn+1Snw 1
Bw

0
p0cow

∂Sngi,j,k

= 0. (C.76)
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C.2.3 The gas equation
For grid block i− 1, j, k the discrete gas equation is, using notation similar to that in eqs. C.1
& C.2,

gngi−1,j,k = −
 Tg1

¡
poi,j,k − poi−1,j,k

¢
+ Tg1

¡
poi−2,j,k − poi−1,j,k

¢
+Tg1

¡
poi−1,j+1,k − poi−1,j,k

¢
+ Tg1

¡
poi−1,j−1,k − poi−1,j,k

¢
+Tg1

¡
poi−1,j,k+1 − poi−1,j,k

¢
+ Tg1

¡
poi−1,j,k−1 − poi−1,j,k

¢
n+1

−
 Tg2

¡
Swi,j,k − Swi−1,j,k

¢
+ Tg2

¡
Swi−2,j,k − Swi−1,j,k

¢
+Tg2

¡
Swi−1,j+1,k − Swi−1,j,k

¢
+ Tg2

¡
Swi−1,j−1,k − Swi−1,j,k

¢
+Tg2

¡
Swi−1,j,k+1 − Swi−1,j,k

¢
+ Tg2

¡
Swi−1,j,k−1 − Swi−1,j,k

¢
n+1

−
 Tg3

¡
Sgi,j,k − Sgi−1,j,k

¢
+ Tg3

¡
Sgi−2,j,k − Sgi−1,j,k

¢
+Tg3

¡
Sgi−1,j+1,k − Sgi−1,j,k

¢
+ Tg3

¡
Sgi−1,j−1,k − Sgi−1,j,k

¢
+Tg3

¡
Sgi−1,j,k+1 − Sgi−1,j,k

¢
+ Tg3

¡
Sgi−1,j,k−1 − Sgi−1,j,k

¢
n+1

+

 Tg4 (hi,j,k − hi−1,j,k) + Tg4 (hi−2,j,k − hi−1,j,k)
+Tg4 (hi−1,j+1,k − hi−1,j,k) + Tg4 (hi−1,j−1,k − hi−1,j,k)
+Tg4 (hi−1,j,k+1 − hi−1,j,k) + Tg4 (hi−1,j,k−1 − hi−1,j,k)

n+1

+
¡
β∗gp
¢n+1
i−1,j,k

³
pn+1o −pno
∆tn+1

´
i−1,j,k

− ¡β∗gsw¢n+1i−1,j,k

³
Sn+1w −Snw
∆tn+1

´
i−1,j,k

+
¡
β∗gsg

¢n+1
i−1,j,k

³
Sn+1g −Sng
∆tn+1

´
i−1,j,k

− ¡q∗g¢n+1i−1,j,k . (C.77)

Derivatives with respect to the oil pressure
∂gngi−1,j,k
∂pnoi,j,k

Just as for the oil and water equations the derivatives
∂gngi±1,j±1,k±1

∂pnoi,j,k
are zero

∂gngi,j,k−1
∂pnoi,j,k

= 0,
∂gngi,j−1,k
∂pnoi,j,k

= 0,
∂gngi−1,j,k
∂pnoi,j,k

= 0,

∂gngi+1,j,k
∂pnoi,j,k

= 0,
∂gngi,j+1,k
∂pnoi,j,k

= 0,
∂gngi,j,k+1
∂pnoi,j,k

= 0. (C.78)

Derivative
∂gngi,j,k
∂pnoi,j,k

equals

∂gngi,j,k
∂pnoi,j,k

= −
¡
β∗gp
¢n+1

∆tn+1
+
³
pn+1o −pno
∆tn+1

´
∂(β∗gp)

n+1

∂pnoi,j,k

−
³
Sn+1w −Snw
∆tn+1

´
∂(β∗gsw)

n+1

∂pnoi,j,k
+
³
Sn+1g −Sng
∆tn+1

´
∂(β∗gsg)

n+1

∂pnoi,j,k
(C.79)
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In eq. C.79 the derivative ∂(β∗gp)
n+1

∂pnoi,j,k
equals

∂(β∗gp)
n+1

∂pnoi,j,k
= Vgb



³
1
Bo

φSo

´n ∂(R0
s)
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+R0sS

n
o

Ã³
1
Bo

´n
∂φn

∂pnoi,j,k
+ φn

∂
1
Bo

n

∂pnoi,j,k

!

+φ
0

Sng
∂

1
Bg

n

∂pnoi,j,k
+Rn+1

s Sno
∂

1
Bo

n

∂pnoi,j,k


+
³³

1
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´n
Sng +Rn+1

s

³
So
Bo

´n´
∂φ

0

∂pnoi,j,k

+φn+1

Rn+1
s Sno

∂
1
Bo

0

∂pnoi,j,k
+ Sng

∂
1
Bg

0

∂pnoi,j,k




.

(C.80)

Because

∂png
∂pnoi,j,k

=
∂(pno+pncog)
∂pnoi,j,k

=
∂(pno )
∂pnoi,j,k

= 1,

derivative
∂

1
Bg

n

∂pnoi,j,k
becomes

∂
1
Bg

n

∂pnoi,j,k
=

∂
1
Bg

n

∂pngi,j,k

∂png
∂pnoi,j,k

= ang .

In eq. C.79 the derivative ∂(β∗gsw)
n+1

∂pnoi,j,k
is zero

∂(β∗gsw)
n+1

∂pnoi,j,k
= Vgb

∂ Rn+1s φn+1
1
Bo

n+1

∂pnoi,j,k

= 0, (C.81)

and derivative ∂(β∗gsg)
n+1

∂pnoi,j,k
is equal to

∂(β∗gsg)
n+1

∂pnoi,j,k
= Vgbφ

n+1Sng p
0
cgo

∂
1
Bg

0

∂pnoi,j,k
. (C.82)
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Derivatives with respect to the water saturation
∂gngi−1,j,k
∂Snwi,j,k

The derivatives
∂gngi±1,j±1,k±1

∂Snwi,j,k
are again zero

∂gngi,j,k−1
∂Snwi,j,k

= 0,
∂gngi,j−1,k
∂Snwi,j,k

= 0,
∂gngi−1,j,k
∂Snwi,j,k

= 0,

∂gngi+1,j,k
∂Snwi,j,k

= 0,
∂gngi,j+1,k
∂Snwi,j,k

= 0,
∂gngi,j,k+1
∂Snwi,j,k

= 0. (C.83)

Derivative
∂gngi,j,k
∂Snwi,j,k

equals

∂gngi,j,k
∂Snwi,j,k

=
³
pn+1o −pno
∆tn+1

´
∂(β∗gp)

n+1

∂Snwi,j,k
+

¡
β∗gsw

¢n+1
∆tn+1

−
³
Sn+1w −Snw
∆tn+1

´
∂(β∗gsw)

n+1

∂Snwi,j,k
+
³
Sn+1g −Sng
∆tn+1

´
∂(β∗gsg)

n+1

∂Snwi,j,k
. (C.84)

In eq. C.84 the derivative ∂(β∗gp)
n+1

∂Snwi,j,k
is equal to

∂(β∗gp)
n+1

∂Snwi,j,k
= Vgb

·
−
³
1
Bo

φ
´n

R0s −Rn+1
s

³
1
Bo

´n
φ
0 − φn+1Rn+1

s

³
1
Bo

´0¸
(C.85)

The derivatives ∂(β∗gsw)
n+1

∂Snwi,j,k
and ∂(β∗gsg)

n+1

∂Snwi,j,k
are zero, i.e.

∂(β∗gsw)
n+1

∂Snwi,j,k
= Vgb

∂ Rn+1s φn+1
1
Bo

n+1

∂Snwi,j,k

= 0, (C.86)

and

∂(β∗gsg)
n+1

∂Snwi,j,k
= Vgb

∂ φn+1
1
Bg

n+1

+φn+1Sng
1
Bg

0
p0cgo−Rn+1s φn+1

1
Bo

n+1

∂Snwi,j,k

= 0. (C.87)

Derivatives with respect to the gas saturation
∂gngi−1,j,k
∂Sngi,j,k

The derivatives
∂gngi±1,j±1,k±1

∂Sngi,j,k
are again zero

∂gngi,j,k−1
∂Sngi,j,k

= 0,
∂gngi,j−1,k
∂Sngi,j,k

= 0,
∂gngi−1,j,k
∂Sngi,j,k

= 0,

∂gngi+1,j,k
∂Sngi,j,k

= 0,
∂gngi,j+1,k
∂Sngi,j,k

= 0,
∂gngi,j,k+1
∂Sngi,j,k

= 0. (C.88)
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Derivative
∂gngi,j,k
∂Sngi,j,k

equals

∂gngi,j,k
∂Sngi,j,k

= +
³
pn+1o −pno
∆tn+1

´
∂(β∗gp)

n+1

∂Sngi,j,k
−
³
Sn+1w −Snw
∆tn+1

´
∂(β∗gsw)

n+1

∂Sngi,j,k

−
¡
β∗gsg

¢n+1
∆tn+1

+
³
Sn+1g −Sng
∆tn+1

´
∂(β∗gsg)

n+1

∂Sngi,j,k
. (C.89)

In eq. C.89 the derivative ∂(β∗gp)
n+1

∂Sngi,j,k
is equal to

∂(β∗gp)
n+1

∂Sngi,j,k
= Vgb

 −
³
1
Bo

φ
´n

R0s + φ
0 ³³

1
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´n
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s

³
1
Bo

´n´
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µ
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³
1
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´0
+
³
1
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´0¶
 . (C.90)

The derivative ∂(β∗gsw)
n+1

∂Sngi,j,k
is zero

∂(β∗gsw)
n+1

∂Sngi,j,k
= Vgb

∂ Rn+1s φn+1
1
Bo

n+1

∂Sngi,j,k

= 0, (C.91)

and the derivative ∂(β∗gsg)
n+1

∂Sngi,j,k
is equal to

∂(β∗gsg)
n+1

∂Sngi,j,k
= Vgbφ

n+1
³
1
Bg

´0µ
Sng

∂p0cgo
∂Sngi,j,k

+ p0cgo

¶
. (C.92)

C.3 Transmissibility and well model derivatives

C.3.1 The oil equation

Derivatives with respect to the oil pressure

Derivatives like
∂To1

i+1
2
,j,k

∂pnoi,j,k
are

∂To1
i+1

2
,j,k

∂pnoi,j,k
=
∆yi,j,k∆zi,j,k
∆x

i+1
2
,j,k

∂λo
i+1

2
,j,k

∂pnoi,j,k
, (C.93)
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where

∂λo
i+1

2
,j,k

∂pnoi,j,k
= ki+ 1

2 ,j,k
kro

i+1
2
,j,k

 1
µo

i+1
2
,j,k

∂
1
Bo i+1

2
,j,k

∂pnoi,j,k
+ 1

Bo
i+1

2
,j,k

∂
1
µo i+1

2
,j,k

∂pnoi,j,k

 .

Derivatives
∂To1

i± 1
2
,j± 1

2
,k± 1

2

∂pnoi,j,k
are obtained in a similar way.

For terms To4
i+1

2
,j,k

the derivative is

∂To4
i+1

2
,j,k

∂pnoi,j,k
= g

Ã
ρo

i+1
2
,j,k

∂To1
i+1

2
,j,k

∂pnoi,j,k
+

∂ρo
i+1

2
,j,k

∂pnoi,j,k
To1

i+1
2
,j,k

!
. (C.94)

The general equation for the well model derivative is

∂(q∗o)
n

∂pnoi,j,k
= ∂

∂pnoi,j,k

µ
Vgb
Bo

µ
αeff

kro
µo

w (pwf − pgbo)

¶¶
. (C.95)

For an injector this derivative is zero since no oil is injected, henceµ
∂(q∗o)

n

∂pnoi,j,k

¶
inj

= 0.

For a producer the derivative ∂q∗o
∂pnoi,j,k

is equal to

µ
∂q∗o

∂pnoi,j,k

¶
prod

= αeffVgbwkro


1
µo
(pwf − pgbo)

∂
∂pnoi,j,k

³
1
Bo

´
+ 1

Bo
(pwf − pgbo)

∂
∂pnoi,j,k

³
1
µo

´
− 1

Bo
1
µo

 . (C.96)

Derivatives with respect to the water saturation

Derivative
∂To1

i+1
2
,j,k

∂Snwi,j,k
equals

∂To1
i+1

2
,j,k

∂Snwi,j,k
=
∆yi,j,k∆zi,j,k
∆x

i+1
2
,j,k

∂λo
i+1

2
,j,k

∂Snwi,j,k
, (C.97)

where
∂λo

i+1
2
,j,k

∂Snwi,j,k
=

∂ k
kro
Boµo i+1

2
,j,k

∂Snwi,j,k
=
³

k
Boµo

´
i+ 1

2 ,j,k

∂(kro)i+1
2
,j,k

∂Snwi,j,k
. (C.98)

For the gravity term the derivative is
∂To4

i+1
2
,j,k

∂Snwi,j,k
= ρo

i+1
2
,j,k

g
∂To1

i+1
2
,j,k

∂Snwi,j,k
. (C.99)
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The general well model derivative is

∂(q∗o)
n

∂Snwi,j,k
= ∂

∂Snwi,j,k

µ
Vgb
Bo

·
αeff

kro
µo

w (pwf − pgbo)

¸¶
(C.100)

For an injector this derivative is zero since no oil is injected, i.e.µ
∂q∗o

∂Snwi,j,k

¶
inj

= 0. (C.101)

For a producer the derivative ∂(q∗o)
n

∂Snwi,j,k
is equal toµ

∂(q∗o)
n

∂Snwi,j,k

¶
prod

= αeff
Vgb
Boµo

w (pwf − pgbo)
∂kro

∂Snwi,j,k
. (C.102)

Derivatives with respect to the gas saturation

Derivative
∂To1

i+1
2
,j,k

∂Sngi,j,k
equals

∂To1
i+1

2
,j,k

∂Sngi,j,k
=
∆yi,j,k∆zi,j,k
∆x

i+1
2
,j,k

∂λo
i+1

2
,j,k

∂Sngi,j,k
, (C.103)

where
∂λo

i+1
2
,j,k

∂Sngi,j,k
=
³

k
Boµo

´
i+1

2
,j,k

∂(kro)
i+1

2
,j,k

∂Sngi,j,k
. (C.104)

The derivative
∂To4

i+1
2
,j,k

∂Sngi,j,k
is

∂To4
i+1

2
,j,k

∂Sngi,j,k
= ρo

i+1
2
,j,k

g
∂To1

i+1
2
,j,k

∂Sngi,j,k
. (C.105)

The general derivative for the well model is

∂(q∗o)
n

∂Sngi,j,k
=

∂
Vgb
Bo

αeff
kro
µo

w(pwf−pgbo )
n

∂Sngi,j,k
(C.106)

For a producer this derivative is zero since no oil is injected, i.e.µ
∂q∗o

∂Sngi,j,k

¶
inj

= 0. (C.107)

For a producer the derivative isµ
∂(q∗o)

n

∂Sngi,j,k

¶
prod

= αeff
Vgb
Boµo

w (pwf − pgbo)
∂knro

∂Sngi,j,k
. (C.108)
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C.3.2 The water equation

Derivatives with respect to the oil pressure

For term Tw1
i+1

2
,j,k

the derivative with respect to pnoi,j,k equals

∂Tw1
i+1

2
,j,k

∂pnoi,j,k
=
∆yi,j,k∆zi,j,k
∆x

i+1
2
,j,k

∂λw
i+1

2
,j,k

∂pnoi,j,k
, (C.109)

where

∂λw
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2
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∂
1
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2
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∂
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 . (C.110)

For term Tw2
i+1

2
,j,k

the derivative equals

∂Tw2
i+1

2
,j,k

∂pnoi,j,k
=
³
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∂Sw

´
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2 ,j,k
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2
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. (C.111)

Similarly, for term Tw3
i+1

2
,j,k

∂Tw3
i+1

2
,j,k

∂pnoi,j,k
=
³
∂pcow
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´
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2
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. (C.112)

Finally, for term Tw4
i+1

2
,j,k

∂Tw4
i+1

2
,j,k

∂pnoi,j,k
= g

Ã
ρw

i+1
2
,j,k

∂Tw1
i+1

2
,j,k

∂pnoi,j,k
+ Tw1
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2
,j,k

∂ρw
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2
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∂pnoi,j,k

!
. (C.113)

If water is the injected fluid, the derivative of the water injection rate with respect to the pres-
sure isµ

∂q∗w
∂pnoi,j,k

¶
inj

=
∂q∗tinj
∂pnoi,j,k

, (C.114)

= Vgbαeff


n
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o ∂
1
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+ 1
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 ,

where
∂λrt

∂pnoi,j,k
= kro

∂ 1
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∂pnoi,j,k
+ krw

∂ 1
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∂ 1
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If no water is injected µ
∂(q∗w)

n

∂pnoi,j,k

¶
inj

= 0. (C.116)

For a producer the derivative is equal to

µ
∂(q∗w)

n

∂pnoi,j,k

¶
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= αeffVgbkrww


1
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∂
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³
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´
− 1

Bw
1
µw
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(C.117)

Derivatives with respect to the water saturation

For term Tw1
i+1

2
,j,k

, the derivative with respect to the water saturation is

∂Tw1
i+1

2
,j,k

∂Snwi,j,k
=
∆yi,j,k∆zi,j,k
∆x

i+1
2
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where
∂λw
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2
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=
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´
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For term Tw2
i+1

2
,j,k

the derivative is

∂Tw2
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For term Tw3
i+1

2
,j,k

∂Tw3
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2
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=
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´
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which is zero if pcow = pcow (Sw).
Finally, for term Tw4

i+1
2
,j,k

the derivative is equal to

∂Tw4
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2
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∂Snwi,j,k
= ρw
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g
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If water is the injected liquid the derivative ∂(q∗w)
n

∂Snwi,j,k
equalsµ

∂q∗w
∂Snwi,j,k

¶
inj

=
∂q∗tw

∂Snwi,j,k
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=
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where
∂λrt

∂Snwi,j,k
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∂krw
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If no water is injected, the ∂q∗w
∂Snwi,j,k

derivative equals

µ
∂q∗w

∂Snwi,j,k

¶
inj

= 0. (C.125)

For a producer the derivative is equal toµ
∂(q∗w)

n

∂Snwi,j,k

¶
prod

= αeff
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Bwµw
w ((pwf − pgbo) + pcow)

∂krw
∂Snwi,j,k
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Derivatives with respect to the gas saturation

For term Tw1
i+1

2
,j,k

the derivative with respect to the gas saturation is
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where
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For term Tw2
i+1

2
,j,k

the derivative is
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For term Tw3
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which is zero if pcow = pcow (Sw).
Finally for term Tw4

i+1
2
,j,k

the derivative is
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If water is the injected liquid the derivative ∂q∗w
∂Snwi,j,k

equals

µ
∂q∗w

∂Snwi,j,k
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=
Vgb
Bw

αeffw

 (pwf − pgbo)
∂λrt

∂Sngi,j,k
+ 1

µw
pcow

∂krw
∂Sngi,j,k

+krw
µw

∂pcow
∂Sngi,j,k

− 1
µg
pcgo

∂krg
∂Sngi,j,k

− krg
µg

∂pcgo
∂Sngi,j,k

 ,

where
∂λrt

∂Sngi,j,k
=
1

µo

∂kro
∂Sngi,j,k

+
1

µw

∂krw
∂Sngi,j,k

+
1

µg

∂krg
∂Sngi,j,k

. (C.133)

If no water is injected µ
∂q∗w

∂Sngi,j,k

¶
inj

= 0. (C.134)

For a producer the derivative is equal to

∂(q∗w)
n

∂Sngi,j,k
= αeff
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= 0. (C.136)

C.3.3 The gas equation

Derivatives with respect to the oil pressure

For term Tg1
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2
,j,k

the derivative with respect to the oil pressure equals
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where
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For term Tg2
i+1

2
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the derivative equals
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For term Tg3
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Finally for the term Tg4
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the derivative is
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If gas is the injected fluid, the derivative ∂q∗ng
∂pnoi,j,k
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If no gas is injected µ
∂q∗ng

∂pnoi,j,k

¶
inj

= 0. (C.144)

For a producer the derivative is
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where
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and
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Derivatives with respect to the water saturation

For term Tg1
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the derivative with respect to the water saturation equals
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For term Tg2
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the derivative is
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which is zero if pcgo = pcgo (Sg).
For term Tg3
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Finally, for the term Tg4
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the derivative is
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If gas is the injected fluid, the derivative ∂q∗ng
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If no gas is injected µ
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For a producer well the derivative isµ
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Derivatives with respect to the gas saturation

For term Tg1
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For term Tg2
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the derivative is
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which is zero if pcgo = pcgo (Sg).
For term Tg3
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For the term Tg4
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the derivative is
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If gas is the injected fluid, the derivative ∂q∗ng
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If no gas is injected, µ
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For a producer the derivative isµ
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C.4 Derivatives ∂gn

∂αn
eff

C.4.1 The oil equation
If an injector is located in the grid block this derivative is zero since no oil is injected, hence³
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If a producer is located in the grid block the derivative is
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C.4.2 The water equation
If a water injector is located in the grid block the derivative is
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where
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If no water is injected ³
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If a producer is located in the grid block the derivative is
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C.4.3 The gas equation
If the well in the grid block is a gas injector, the derivative is
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If no gas is injected µ
∂q∗n+1tg
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If a producer is located in the grid block the derivative is
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where
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C.5 Derivatives of the objective function
The Net Present Value objective function for three phase flow can be written as

J =
N−1X
n=0
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It is based only on the production wells, and thus only on oil, water and gas production rates.
Furthermore, the cost/revenue parameters are thus those related to oil, water and total gas
production. The cost of gas and water injection is thus not taken into account.

C.5.1 Derivative ∂J n

∂xn

At producer locations the derivatives of the objective function with respect to the states are
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C.5.2 Derivative ∂J n

∂αneff

At producer locations, the derivative of the objective function J with respect to the control
αneff is
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Appendix D
One dimensional fractional flow problem

D.1 Dynamic system
The one dimensional fractional flow equation for incompressible fluids without capillary pres-
sure is, after Aziz and Settari (1986),

∂Sw
∂t = −ut

φ

∂fw
∂x
− qw

φ
+

fwqt
φ

, (D.1)

where Sw is the water saturation [−], ut the total fluid velocity
£
m
s

¤
, φ the porosity [−], fw the

fractional flow of water [−], x the distance in the x-direction [m], and qw and qt are respectively
the water and total injection or production rates.

The term ∂fw
∂x is discretized with an upstream weighting scheme, assuming the flow is from

i to i+ 1, i.e. ·
∂fw
∂x

¸
i

≈ fwi − fwi−1
∆x

. (D.2)

Substituting eq. D.2 into eq. D.1 and discretizing explicitly in time (and replacing ≈ with =)
gives, after some rearranging

Sn+1wi =
∆t

φ

·
−unti

µ
fwi − fwi−1
∆x

¶
− qnwi + fnwiq

n
ti

¸
+ Snwi ,

= fni . (D.3)

The time step size ∆t is taken constant and the porosity φ is the same in every grid block.
The left boundary (i = 0) is a no-flow boundary, hence unt0 = 0. The initial saturation at
this boundary equals the connate water saturation, just like in all other grid blocks. All flow
is directly related to injection of water, and for the corresponding grid block the equation thus
reduces to

Sn+1w0 =
∆t

φ

¡−1 + fnw0
¢
qnt0 + Snw0 ,

= fn0 , (D.4)

where the injection rate qnt0 has negative sign. For all grid blocks without a source term the
equation is

Sn+1wi = −∆tu
n
ti

φ

µ
fwi − fwi−1
∆x

¶
+ Snwi ,

= fni , (D.5)
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where the relation between the total injection rate qnt and the total fluid velocity unti is given
by

unti = −qnt ∆x. (D.6)

For the right boundary (i = r), the production equals the flow through this boundary. The
equation then becomes

Sn+1wr =
untr
∆x

∆t

φ
fnwr−1 −

∆t

φ

untr
∆x

fnwr + Snwr , (D.7)

= fnr , (D.8)

where the term −untr
∆x f

n
wr corresponds to the water production rate from this grid block.

D.2 Objective function
The objective function to be optimized is again the NPV objective function

J =
N−1X
n=0

µ
−Vgb [(1− fnw) ro + fnwrw] q

n
t ∆t

n

(1 + b)
tn

¶
,

=
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where Vgb is the grid block volume
£
m3
¤
, ro is the oil revenue

h
$
m3

i
which is positive, rw is the

water cost
h
$
m3

i
which is negative, b is the discount factor

h
%
yr

i
, t is the cumulative time [yr],

and the total production rate equals the total injection rate qnt , since flow is incompressible.
Parameter n represent the discrete time step, and N the final time step. The objective function
is evaluated from the production rates in grid block r.

D.3 Optimal control formulation
The optimal control problem is again a fixed end time, free terminal state optimal control
problem. The objective function that has to be maximized is the NPV objective function,
described in the previous section

J =
N−1X
n=0

Jn. (D.10)
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The dynamic system is added to this objective function with a set of Lagrange multipliers, with
one multiplier for each grid block. The result is the modified objective function

J̄ =
N−1X
n=0

h
Jn −

³¡
λn+1

¢T
Sn+1w − ¡λn+1¢T fn´i . (D.11)

For this system an auxiliary functionHn is defined as
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¡
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fn. (D.12)

Eq. D.12 is referred to as the Hamiltonian. Substitution into eq. D.11 gives
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Hn − ¡λn+1¢T Sn+1w

´
. (D.13)

Taking the first variation gives

δJ̄ =
N−1X
n=0

 ³
∂Hn

∂Snw

´
δSnw −

¡
λn+1

¢T
δSn+1w

+
³

∂Hn

∂λn+1
− STn+1w

´
δλn+1 +

³
∂Hn

∂qnt

´
δqnt

 , (D.14)

where ∂Hn

∂Snw
,
¡
λn+1

¢T , ∂Hn

∂λn+1
, S

Tn+1
w , and ∂Hn

∂qnt
are row vectors. Changing the index of sum-

mation (discrete summation by parts) for the second term in eq. D.14 gives

N−1X
n=0

¡
λn+1

¢T
δSn+1w =

NX
n=1

(λn)T δSnw,

=
N−1X
n=1

³
(λn)

T
δSnw

´
+
³
λN
´T

δSNw . (D.15)

Substitution of eq. D.15 into eq. D.14 gives, after some rearranging

δJ̄ = −
³
λN
´T

δSNw +
N−1X
n=1

·µ
∂Hn

∂Snw
− (λn)T

¶
δSnw

¸

+
N−1X
n=0

·µ
∂Hn

∂λn+1
− STn+1w

¶
δλn+1 +

µ
∂Hn

∂qnt

¶
δqnt

¸
. (D.16)

In an optimum the terms
³
λN
´T

,
³
∂Hn

∂Snw
− (λn)T

´
,
³

∂Hn

∂λn+1
− STn+1w

´
,
³
∂Hn

∂qnt

´
should be

zero. The adjoint equation

(λn)T =
∂Hn

∂Snw
=

∂
³
Jn +

¡
λn+1

¢T
fn
´

∂Snw
=

∂Jn

∂Snw
+
¡
λn+1

¢T ∂fn

∂Snw
(D.17)
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can be calculated backward in time using the Final Conditions
³
λN
´T

= 0 as initial condi-
tions.

D.4 Derivatives for the dynamic system
For the dynamic system equations in most grid blocks there are two nonzero derivatives with
respect to the water saturation Sw. For the dynamic system in grid block i these nonzero
derivatives are

∂fnwi
∂Snwi

and
∂fnwi

∂Snwi−1
.

D.4.1 Derivatives ∂fnwi
∂Snwi

For the grid block at the left boundary, containing only water injection, i.e. qnwi = qnti the
derivative of the dynamic system becomes

∂fn0
∂Snw0

=
∆t

φ
qnt0

∂fnw0
∂Snw0

+ 1. (D.18)

In grid blocks without a source the derivative is

∂fni
∂Snwi

= −∆t unti
∆xφ

∂fwi
∂Snwi

+ 1. (D.19)

For the last grid block, at the right boundary, the derivative is

∂fnr
∂Snwr

= −∆t
φ

untr
∆x

∂fnwr
∂Snwr

+ 1. (D.20)

D.4.2 Derivatives ∂fnwi
∂Snwi−1

For the grid block at the left boundary this derivative is

∂f0
∂Snw0−1

= 0. (D.21)

For grid blocks without source terms

∂fni
∂Snwi−1

= ∆t
unti
∆xφ

∂fwi−1
∂Snwi−1

. (D.22)
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For the last grid block
∂fnr

∂Snwr−1
=

untr
∆x

∆t

φ

∂fnwr−1
∂Snwr−1

. (D.23)

D.4.3 Derivative with respect to qnt
The control parameter is the total injection/production rate qnt . For the grid block at the left
boundary, the derivative with respect to qnt is

∂fn0
∂qnt

=
∆t

φ

¡−1 + fnw0
¢

. (D.24)

For grid blocks without source terms

∂fni
∂qnt

= −∆t
φ

µ
fwi − fwi−1
∆x

¶
∂unti
∂qnt

. (D.25)

The derivative
∂unti
∂qnt

can be calculated by using eq. D.6

∂unti
∂qnt

=
∂ (−qnt ∆x)

∂qnt
= −∆x. (D.26)

For the last grid block the derivative with respect to qnt is

∂fnr
∂qnt

=

µ
∆t

∆xφ
fnwr−1 −

∆t

φ∆x
fnwr

¶
∂untr
∂qnt

. (D.27)

D.5 Derivatives of the objective function
Since the objective function is based on the production rates in grid block r it has only nonzero
derivatives with respect to the water saturation in this grid block

¡
Snwr

¢
∂Jn

∂Snwr
= −Vgb qnt ∆t

n

(1 + b)t
n (−ro + rw)

∂fnwr
∂Snwr

. (D.28)

The derivative with respect to the control qnt is

∂Jn

∂qnt
= −Vgb [(1− fnw) ro + fnwrw]∆t

n

(1 + b)
tn . (D.29)





Appendix E
Meaning of the Lagrange multipliers

In this appendix the general formulation for the (physical) meaning of the Lagrange mul-
tipliers is derived, based on Kraaijevanger (2004). We consider a dynamic system of type
gn
¡
xn+1, xn, un

¢
= 0.

E.1 Perturbation in the state
We consider the objective function J , defined as

J =
N−1X
n=0

J n (xn, un). (E.1)

Furthermore, we consider a perturbation in the state x at time step j, from xj to
¡
xj + δxj

¢
.

Because of this perturbation the states at subsequent time steps k (with k = j + 1, j + 2, .., N − 1)
will generally be affected, as opposed to the states at prior time steps p (with 0 ≤ p ≤ j − 1)
which are not affected. Due to the perturbation in the state the objective function will change
by dJ . Because the perturbation occurs at j only the part of the objective function for time
steps j, j+1, ..,N−1will be affected. For this reason we define a cost-to-go objective function
Jj as

Jj =
N−1X
n=j

J n (xn, un). (E.2)

Jj is a function of the state xj and the controls uj, uj+1, .., uN−1, i.e.

Jj = Jj
¡
xj , uj , uj+1, .., uN−1

¢
. (E.3)

The states at time steps xk (with k = j + 1, j + 2, .., N − 1) are calculated from xj and uj ,
uj+1, .., uN−1 through the dynamic system

gn
¡
xn+1, xn, un

¢
= 0, with n = j, j + 1, .., N − 2. (E.4)

For perturbation of only xj , keeping uj , uj+1, .., uN−1 fixed, the total differential of eq. E.2
is equal to

dJj =
N−1X
n=j

∂J n (xn, un)

∂xn
dxn. (E.5)

Furthermore, the total differential of eq. E.4 is

dgn =
∂gn

∂xn+1
dxn+1 +

∂gn

∂xn
dxn= 0. (E.6)
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The derivative ∂Jn(xn,un)
∂xn can be obtained from the adjoint equation

− (λn)T ∂gn−1

∂xn
=
¡
λn+1

¢T ∂gn

∂xn
− ∂J n

∂xn
(E.7)

(like eq. 4.12). Substitution into eq. E.5 gives

dJj =
N−1X
n=j

·
− (λn)T ∂gn−1

∂xn
− ¡λn+1¢T ∂gn

∂xn

¸
dxn

= −
N−1X
n=j

(λn)
T ∂gn−1

∂xn
dxn −

N−1X
n=j

¡
λn+1

¢T ∂gn

∂xn
dxn. (E.8)

The first summation on the second line of eq. E.8 can be rewritten as
N−1X
n=j

(λn)T
∂gn−1

∂xn
dxn =

¡
λj
¢T ∂gj−1

∂xj
dxj +

N−1X
n=j+1

(λn)T
∂gn−1

∂xn
dxn

=
¡
λj
¢T ∂gj−1

∂xj
dxj +

N−2X
n=j

¡
λn+1

¢T ∂gn

∂xn+1
dxn+1. (E.9)

The second summation on the second line of eq. E.8 can be rewritten as
N−1X
n=j

¡
λn+1

¢T ∂gn

∂xn
dxn =

¡
λN
¢T ∂gN−1

∂xN−1
dxN−1 +

N−2X
n=j

¡
λn+1

¢T ∂gn

∂xn
dxn. (E.10)

Substitution of eqs. E.9 & E.10 into eq. E.8, using the Final Condition λN =0 (like eq. 4.10),
yields

dJj = − ¡λj¢T ∂gj−1

∂xj
dxj −

N−2X
n=j

¡
λn+1

¢T ∂gn

∂xn+1
dxn+1 −

N−2X
n=j

¡
λn+1

¢T ∂gn

∂xn
dxn

= − ¡λj¢T ∂gj−1

∂xj
dxj −

N−2X
n=j

¡
λn+1

¢T µ ∂gn

∂xn+1
dxn+1 +

∂gn

∂xn
dxn

¶
. (E.11)

Substitution of eq. E.6 gives

dJj = −
¡
λj
¢T ∂gj−1

∂xj
dxj . (E.12)

Eq. E.12 describes the first order change in the cost-to-go objective function resulting from a
perturbation in the state xj at time step j. For systems of type gn = xn+1 − f (xn, un), like
the fractional flow problem in section 5.5 and appendix D, the derivative ∂gj−1

∂xj = 1. For these
systems eq. E.12 reduces to

dJj = −
¡
λj
¢T

dxj . (E.13)
In eq. E.13 the Lagrange multiplier, apart from the minus sign, directly reflects the sensitivity
of the objective function with respect to slight changes in the state. The minus sign difference
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could be removed by defining the adjoint equation (eq. E.7) as

(λn)T
∂gn−1

∂xn
= − ¡λn+1¢T ∂gn

∂xn
− ∂J n

∂xn
. (E.14)

E.2 Perturbation in the constraint
In this section a perturbation in the constraint is considered. At time step j − 1 the constraint
is equal to

gj−1
¡
xj , xj−1, uj−1

¢
= 0. (E.15)

Because xj−1 and uj−1 are fixed at time step j − 1, the derivative of eq. E.15 can be written
as

dgj−1 =
∂gj−1

∂xj
dxj (E.16)

Substitution into eq. E.12 then gives

dJj = −
¡
λj
¢T

dgj−1. (E.17)

Eq. E.17 describes the first order change in the cost-to-go objective function resulting from a
perturbation in the constraint g at time step j.





Summary
During the oil production process water is generally injected into the reservoir to maintain

reservoir pressure and to displace the oil towards the production wells. Ideally, as the pro-
duction process continues the injected water will slowly move through the reservoir in the
direction of the producers, in the meantime sweeping the oil in between. However, because
the rock properties vary spatially, the displacement generally does not occur uniformly. There
may be preferential, high permeability flow paths through which the injected water channels
to the producer. Oil outside these channels may as a result not be displaced by the injected wa-
ter. Because of this non-uniform displacement water production often starts at an early stage.
With conventional wells there is little that can be done to remedy this early water production
without significant costs. This early water production can also hardly be prevented, because
identification of possible preferential flow paths is difficult due to the reservoir’s limited ac-
cessibility. As a result of the uncertainty and the lack of control on the production process
typically only a relatively small percentage (30-40 percent) of the oil present in the reservoir
can be recovered economically. Hence, the world’s recoverable reserves may be increased if a
larger percentage of oil can be recovered from the reservoir.

In de last few years a variety of technologies to better measure and control the production
process through the wells have been developed. These technologies are typically installed
within the well and they can be operated remotely. A well equipped with this type of mea-
surement and control technology is generally referred to as a smart, intelligent or instrumented
well. With down-hole control valves and isolating packers a well can be split up in segments
that can be controlled separately. This enables an increased control on fluid flow into or out
of the well. By manipulating the valve-settings it is to some degree possible to change the
pressure distribution and thereby the fluid flow direction in the reservoir. The objective of this
thesis work is to examine if by doing this it is possible to increase the percentage of oil re-
covered from the reservoir. An important part of this study comprises the calculation of the
valve-settings that will optimize the net present value of the displacement process. To be able
to do this for various reservoirs a numerical reservoir model was used, instead of a real reser-
voir. The calculation of the optimal valve-settings was done with a gradient-based optimization
routine, the derivative information was calculated with optimal control theory.

The results show that significant improvement in the water flooding process can be achieved
by dynamically controlling the valve-settings in the injection and production wells. In fields
equipped with smart wells this is realized by controlling the down-hole valves, in fields equipped
with vertical conventional wells by controlling the valves at the surface. The degree of im-
provement depends on the fluid properties and on the spatial variation in the rock properties.
The scope for improvement also depends on constraints on the well operating conditions, it
generally increases with increasing pressure available to inject or produce fluids. In addition
the scope for improvement depends on the relative well locations, because these partly deter-
mine to what extent the fluid flow direction in the reservoir can be affected. The improvement
partly results from the fact that through dynamic flow control the negative impact of geological
features can be mitigated.
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Because the rock properties are poorly known in reality, the displacement optimization must
be calculated based on estimated reservoir properties. We investigated if significant improve-
ment in the water flooding process can also be realized if some of the reservoir properties
must be estimated from production data. To this end the gradient-based optimization routine
was combined with an ensemble Kalman filter data-assimilation method, developed in RF-
Rogaland Research. The Kalman filter was used to frequently update the estimated pressure-,
saturation, and permeability distribution in the reservoir, based on production data. After each
update of the reservoir model, the optimum valve-settings were recalculated for the remaining
producing period. First results indicate that significant improvements may be possible with
this closed-loop approach.



Samenvatting
Tijdens het olieproductieproces dient vaak water geïnjecteerd te worden teneinde de druk in

het reservoir op een voldoende hoog peil te houden. Dit geïnjecteerde water dient er tevens toe
de in de porieruimte van het gesteente opgeslagen olie in de richting van de productieputten te
verdringen. Doordat de gesteente-eigenschappen veelal ruimtelijk variëren geschiedt deze ver-
dringing over het algemeen niet gelijkmatig. Vanwege ruimtelijke verschillen in permeabiliteit
(vloeistofdoorlaatbaarheid) kan kanalisering van de vloeistofstroming optreden, welke er dan
toe leidt dat het geïnjecteerde water voornamelijk olie in deze hoog permeabele kanalen ver-
dringt. Dit heeft tevens vaak tot gevolg dat waterproductie al in een vroeg stadium aanvangt,
hetgeen de olieproductie negatief kan beïnvloeden. Veelal kan er weinig aan deze waterproduc-
tie gedaan worden zonder aanzienlijke extra investeringen. Deze vroegtijdige waterdoorbraak
is ook moeilijk te voorkomen, aangezien de ruimtelijke variatie in gesteenteeigenschappen
vanwege de beperkte toegankelijkheid tot het reservoir grotendeels onbekend is, en eventuele
kanalisering derhalve moeilijk is te voorspellen.

De grote onzekerheden in de gesteente-eigenschappen en de beperkte controle over het pro-
ductieproces hebben tot gevolg dat over het algemeen slechts een beperkt percentage (circa
30-40 procent) van de in het reservoir aanwezige olie op economische wijze gewonnen kan
worden. De winbare wereldwijde olievoorrraden zouden in principe dus vergroot kunnen wor-
den als een hoger percentage van de in het reservoir aanwezige olie gewonnen kan worden.

In de laatste jaren zijn verschillende technieken ontwikkeld waarmee het productieproces
beter gemeten en geregeld kan worden. Een put uitgerust met deze meet- en regelapparatuur
wordt vaak aangeduid als een slimme of intelligente put. Door kleppen in de put te installeren
kan deze in vescheidene zones worden ingedeeld die elk afzonderlijk van het oppervlak bestu-
urd kunnen worden. Hierdoor kan beter geregeld worden waar de vloeistoffen de put in- of
uitstromen.

Door het veranderen van de klepstanden in de putten kan de drukverdeling en daarmee de
stromingsrichting in het reservoir tot op zekere hoogte beïnvloed worden. Het doel van dit
proefschrift is om te onderzoeken of het hierdoor mogelijk is om een groter percentage van de
olie uit het reservoir te produceren. Een belangrijk deel van het onderzoek omvat het uitreke-
nen van de klepstanden als funktie van de tijd die de economische waarde van het verdringing-
proces optimaliseren. Om dit voor een groot aantal verschillende soorten reservoirs te kunnen
doen is in plaats van een echt reservoir gebruik gemaakt van een numeriek reservoir model.

Voor het uitrekenen van de klepstanden is gebruik gemaakt van de steilste afdalingsmethode
waarbij optimale besturingstheorie is gebruikt om de benodigde gradiënten uit te rekenen.

Het blijkt dat wanneer de vloeistof- en gesteente-eigenschappen bekend zijn een significante
verbetering van het olie-water verdringsproces vaak mogelijk is door dynamische aansturing
van de klepstanden in de injectie- en productieputten. In slimme putten kan dit bereikt worden
door het controleren van de ondergrondse kleppen, in conventionele vertikale putten door het
controleren van de kleppen aan het oppervlak. Aanzienlijke verbeteringen blijken in principe
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ook mogelijk in reservoirs die reeds geruime tijd op niet-optimale wijze geëxploiteerd zijn.
De mate van verbetering is onder andere afhankelijk van de vloeistofeigenschappen en van de
ruimtelijke variatie in de permeabiliteit. Een negatief effect van de laatste kan door middel
van dynamische aansturing vaak deels tenietgedaan worden. De realiseerbare verbetering is
daarnaast ook sterk afhankelijk van restricties op de putbesturing. Grotere verbeteringen zijn
haalbaar naarmate een grotere overduk voor vloeistofinjectie of een grotere onderdruk voor
vloeistofproductie mogelijk is.

Omdat met name de gesteente-eigenschappen in de werkelijkheid slecht bekend zijn, is ook
onderzocht of verbeteringen gerealiseerd kunnen worden wanneer de ruimtelijke variatie in
het permeabiliteitsveld aanvankelijk onbekend is en geschat dient te worden op basis van
meetgegevens van het productieproces. In deze aanpak werd de op optimale besturingsthe-
orie gebaseerde optimalisatiemethode gecombineerd met een, elders ontwikkelde, parameter
identificatiemethode (Kalman filter). Het Kalman filter werd gebruikt om op gezette tijden,
op basis van de meetgegevens van het productieproces, een nieuwe schatting van de druk-,
de waterverzadigings- en de permeabiliteitsverdeling in het reservoir te verkrijgen. Op basis
van de nieuw geschatte verdelingen werd de optimale aansturingsfunctie opnieuw uitgerek-
end voor het resterende deel van het productieproces. De eerste resultaten duiden erop dat
aanzienlijke verbeteringen haalbaar zijn met deze gesloten-lus aanpak.
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